2018哈尔滨市中考模拟(05)
2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷

2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷的全部内容。
2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷一、选择题(每小题3分,共计30分)1.(3.00分)(2018•香坊区)﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.(3。
00分)(2018•香坊区)下列计算正确的是()A.2x﹣x=1 B.x2•x3=x6C.(m﹣n)2=m2﹣n2D.(﹣xy3)2=x2y63.(3.00分)(2018•香坊区)下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.4.(3.00分)(2018•香坊区)如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.5.(3.00分)(2018•香坊区)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小6.(3。
00分)(2018•香坊区)某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元7.(3.00分)(2018•香坊区)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°8.(3。
2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷

2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷一、选择题(每小题3分,共计30分)1.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣2.(3分)下列计算正确的是()A.2x﹣x=1B.x2•x3=x6C.(m﹣n)2=m2﹣n2D.(﹣xy3)2=x2y63.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.5.(3分)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小6.(3分)某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元7.(3分)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°8.(3分)如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+160)C.160米D.360米9.(3分)如图,点D、E、F分别是△ABC的边AB、AC、BC上的点,若DE ∥BC,EF∥AB,则下列比例式一定成立的是()A.=B.=C.=D.=10.(3分)如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共计30分)11.(3分)将数字37000000用科学记数法表示为.12.(3分)函数y=中自变量x的取值范围是.13.(3分)化简:+3=.14.(3分)把多项式9x3﹣x分解因式的结果是.15.(3分)不等式组的解集为.16.(3分)如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为.17.(3分)已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且tan∠EAC=,则BE的长为.18.(3分)一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是.19.(3分)如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为.20.(3分)如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为.三、解答题(其中21-22题各7分,23-24题各8分,25题10分)21.(7分)先化简,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.22.(7分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.23.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:(1)本班有多少同学优秀?(2)通过计算补全条形统计图.(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?24.(8分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.(1)求证:OE=OF;(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.25.(10分)某校为美化校园,计划对面积为l800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲,乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?四、附加题26.(10分)已知△ABC内接于⊙O,AD平分∠BAC.(1)如图1,求证:=;(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE =AF;(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.27.(10分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷参考答案一、选择题(每小题3分,共计30分)1.D;2.D;3.A;4.D;5.C;6.A;7.D;8.C;9.C;10.C;二、填空题(每小题3分,共计30分)11.3.7×107;12.x≠﹣3;13.3;14.x(3x+1)(3x﹣1);15.﹣2≤x<;16.3;17.3或5;18.;19.;20.5;三、解答题(其中21-22题各7分,23-24题各8分,25题10分)21.;22.;23.;24.;25.;四、附加题26.;27.;。
2018年哈尔滨市中考英语模拟试题与答案

2018年哈尔滨市中考英语模拟试题与答案(试卷满分120分,考试时间120分钟)第Ⅰ卷 (选择题,共75分)一、听力(25分)(材料附后)第一节:听句子,选出句中所包含的信息(共5小题,每小题1分,计5分)1. A. took B. look C. cook2. A. $9 B. $19 C. $903. A. give up B. cheer up C. show up4. A. It had stopped raining when he got home.B. He had got home before it rained heavily.C. It rained heavily on his way home.5. A. Grace didn’t take part in the singing competition.B. Nobody took part in the singing competition.C. Only Grace took part in the singing competition.第二节:听句子,选出该句的最佳答语。
(共5小题,每小题1分,计5分)6. A. Yes, please. B. You are welcome. C. Sorry, I can’t.7. A. Really? I don’t think so. B. Sorry, I will. C. OK. Let’s play.8. A. Once a week. B. For two weeks C. On Friday night.9. A. Me, too. B. Me neither. C. So have I.10.A. No, I haven’t. B. No, I didn’t C. No, I ‘m not.第三节:听对话和问题,选择正确答案(共8分,每小题1分,计8分)11. Which sign are they talking about?A. B. C.12. How did Tom feel?A. B. C.13. What sports does Jack like now?A. footballB. basketballC. table tennis.14. What are the speakers talking about?A. Their family.B. Their holiday. C Their hometown.15. Where did the speakers stay in Canada last year?A. In a hotel.B. In an apartment.C. In a little house.16. What happened to the man?A.He hurt his arm.B. He failed in a match.C. His leg was broken17. How long will the man stay in bed?A. For three month.B. For two weeks.C. For several days.18. What will the woman do next?A. Go to the hospital.B. Visit the manC. Open the door.第四节:听短文和问题,选择正确答案。
2018年黑龙江省哈尔滨市中考数学模拟试卷(二)

2018年黑龙江省哈尔滨市中考数学模拟试卷(二)一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)哈市某天的最低气温为﹣28℃,最高气温为﹣12℃,则这一天的最高气温与最低气温的差为()A.14℃B.16℃C.﹣14℃D.﹣16℃2.(3分)在下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.3a﹣2a=1B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab3 4.(3分)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1B.y=﹣2(x+1)2+3C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x﹣1)2+35.(3分)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.6.(3分)分式方程+1=的解为()A.x=4B.x=3C.x=2D.x=17.(3分)如图,AB是⊙O的弦,OA、OC是⊙O的半径,=,∠BAO=37°,则∠AOC的度数是()度.A.74B.106C.117D.1278.(3分)在Rt△ABC中,∠C=90°,sin A=,则cos B的值为()A.B.C.D.9.(3分)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8B.3:8C.3:5D.2:510.(3分)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法中错误的是()A.打电话时,小刚和妈妈的距离为1250米B.打完电话后,经过23分钟小刚到达学校C.小刚和妈妈相遇后,妈妈回家的速度为150米/分D.小刚家与学校的距离为2550米二、填空题(本大题共10小题,每小题3分,共计30分)11.(3分)用科学记数法表示370000为.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)把多项式2a2﹣4ab+2b2分解因式的结果是.14.(3分)计算:﹣=.15.(3分)在反比例函数y=图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是16.(3分)不等式组的整数解是.17.(3分)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.18.(3分)一个扇形的弧长是4π,半径是6,则这个扇形的圆心角度数是.19.(3分)矩形ABCD中,CE平分∠BCD,交直线AD于点E,若CD=6,AE =2,则tan∠ACE=.20.(3分)如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交BC边于点D,DE⊥AB于点E,EF∥BC交线段AD于点F.若=,S△AEF=,则线段AD的长为.三、解答题(共60分)21.(7分)先化简,再求代数式:÷(1+)的值,其中α=tan60°﹣1.22.(7分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(﹣3,2),B(﹣1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(﹣5,﹣2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.23.(8分)我国北方又进入了交通事故频发的季节,为此,某校在全校2000名学生中随机抽取一部分人进行“交通安全”知识问卷调查活动,对问卷调查成绩按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了如图扇形统计图和条形统计图.(1)本次活动共抽取了多少名同学?(2)补全条形统计图;(3)根据以上调查结果分析,估计该校2000名学生中,对“交通安全”知识了解一般的学生约有多少名.24.(8分)如图,AD与BC相交于点F,F A=FC,∠A=∠C,点E在BD的垂直平分线上.(1)如图1,求证:∠FBE=∠FDE;(2)如图2,连接CE分别交BD、AD于点H、G,当∠FBD=∠DBE=∠ABF,CD=DE时,直接写出所有与△ABF全等的三角形.25.(10分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)26.(10分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O 于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;(3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.27.(10分)如图,在平面直角坐标系xOy中,点O为坐标原点,抛物线y=x2+bx+c 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),直线y=﹣x+3经过B、C两点.(1)求抛物线的解析式;(2)点P是x轴下方抛物线上一点,连接AC,过点P作PQ∥AC交BC于点Q,过点Q作x轴的平行线,过点P作y轴的平行线,两条直线相交于点K,PK交BC于点H,设QK的长为t,PH的长为d,求d与t之间的函数关系式;(不要求写出自变量t的取值范围)(3)在(2)的条件下,PK交x轴于点R,过点R作RT⊥PQ,垂足为T,当PK=PT时,将线段QT绕点Q逆时针旋转90°得到线段QL,M是线段PQ上一动点,过点M作直线AC的垂线,垂足为N,连接ON、ML,当ML ∥ON时,求N点坐标.2018年黑龙江省哈尔滨市中考数学模拟试卷(二)参考答案一、选择题(本题共10个小题,每小题3分,共30分)1.B;2.A;3.C;4.D;5.D;6.B;7.D;8.D;9.A;10.C;二、填空题(本大题共10小题,每小题3分,共计30分)11.3.7×105;12.x≥﹣1且x≠2;13.2(a﹣b)2;14.﹣3;15.k >4;16.1;17.;18.120°;19.或;20.;三、解答题(共60分)21.;22.;23.;24.;25.;26.;27.;。
2018初中数学中考模拟试卷(通用版2)

2018 年初中数学中考模拟试卷(总分150分 考试时间120分钟)第 I 卷(选择题共36分)选择题(本题共12小题, 每小题3分, 共36分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的. 1.31-的倒数是( ) A.3 B.一3 C.31 D.31- 2.下列运算中正确的是( )A .a 2· a 3 =a 5B ( a 2 )3=a 5C a 6+ a 2= a 3D a 5+ a 5 =2a 103.下列角度中, 是多边形内角和的只有( )..270° B.560. C.630° .D.1800°4.神州五号飞船与送它上天的火箭共有零部件约120000 个, 用科学记数法表示为( ) A.1.2 ×104 B.1.2 × 105 C.1.2 ×106 D.12×l 045 .下列由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是( )6.己知圆锥的底面半径为高为4, 则圆锥的侧面积为( )A.10πB.12π C.15π D..20π7.如图, PA 为⊙O的切线, A 为切点, P O 交 ⊙O于点B, 且PO=2AO, 则 cos ∠APO 的值为 ( )A....B.....C.. .D.8.小亮在上午8 时、9时30分、10时、12 时四次到室外阳光下观察向日葵的头茎随太阳转动的情况, 无意之中, 他发现这四个时刻向日葵影子的长度各不相同, 那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时9.小彬从正面观察下图所示的两个物体, 主视图是( )10.两相似三角形的相似比为2: 3 , 其中较小三角形的面积为12, 则较大三角形的面积为( )A..B.16C.24 .D.2711.小王于上午8时从甲地出发去相距50千米的乙地.图中折线ABCD 是表示小王离开甲地的时间 t (时)与路程s (千米)之间的函数关系的图象。
┃精选3套试卷┃2018年哈尔滨市中考适应性考试数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A.0.86×104B.8.6×102C.8.6×103D.86×102【答案】C【解析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).2.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+9【答案】B【解析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.3.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.【答案】B【解析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:3010xx-≥⎧⎨+>⎩,解得:3x,故选:B.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.4.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.72.510⨯C.6⨯D.52.5100.2510⨯B.7⨯2510【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.5.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲命中的环数(环) 6 7 8 6 8乙命中的环数(环) 5 10 7 6 7根据以上数据,下列说法正确的是( )A.甲的平均成绩大于乙B.甲、乙成绩的中位数不同C.甲、乙成绩的众数相同D.甲的成绩更稳定【答案】D【解析】根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.【详解】把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;∴甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环,乙的众数是7环,∴甲、乙成绩的众数不同,故选项C错误;甲命中的环数的平均数为:(环),乙命中的环数的平均数为:(环),∴甲的平均数等于乙的平均数,故选项A错误;甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,因为2.8>0.8,所以甲的稳定性大,故选项D正确.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.6.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确; ∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.7.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( ) A .20cm2B .20πcm2C .10πcm2D .5πcm2【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C8.下列几何体中,俯视图为三角形的是( )A.B.C.D.【答案】C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.9.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则BC的长是( )A.πB.13πC.12πD.16π【答案】B【解析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴BC 的长=6011803ππ⋅⋅=, 故选B . 【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型. 10.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠3【答案】B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B. 考点:函数图像与x 轴交点的特点. 二、填空题(本题包括8个小题)11.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________. 【答案】①③.【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确; ④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.12.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.【答案】50°.【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.13.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=5,tan∠BOC=12,则点A′的坐标为_____.【答案】34 (,)55 -【解析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.【详解】解:∵四边形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC=12=BC OA OC AB=,∴AB=2OA,∵222OB AB OA=+,5∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′= OA=2.如图,过点A′作A′D⊥x轴与点D;设A′D=a,OD=b;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=a,BC=AO=b;∵OB=5,tan∠BOC=12,∴225)2(12a bba⎧+=⎪⎨=⎪⎩,解得:21ab=⎧⎨=⎩;由题意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面积公式得:12xy+2×12×2×2=12(x+2)×(y+2)②;联立①②并解得:x=45,y=35.故答案为(−35,45)【点睛】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.14.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.【答案】85【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:5AC==,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.考点:1.网格型问题;2.勾股定理;3.三角形的面积.15.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:111112151012-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是.【答案】1.【解析】依据调和数的意义,有15-1x=13-15,解得x=1.16.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.【答案】﹣1【解析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.【答案】4+23或23+【解析】根据裁开折叠之后平行四边形的面积可得CD的长度为23+4或2+3.【详解】如图①,当四边形ABCE为平行四边形时,作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.∵AB=BC,∴四边形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.设BT=x,则CN=x,BC=EC=2x.∵四边形ABCE面积为2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=22-=,213∴AN=AE+EN=2+3,∴CD=AD=2AN=4+23.如图②,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.设AB=y,则DE=BE=2y,AE=3y.∵四边形BEDF的面积为2,∴AB·DE=2,即2y2=2,解得y=1,∴AE=3,DE=2,∴AD=AE+DE=2+3.综上所述,CD的值为4+23或2+3.【点睛】考核知识点:平行四边形的性质,菱形判定和性质.18.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为_____.【答案】1【解析】在△AGF和△ACF中,{GAF CAF AF AF AFG AFC∠=∠=∠=∠,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=12BG=1.故答案是:1.三、解答题(本题包括8个小题)19.2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.【答案】15元.【解析】首先设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元,根据题意列出一元一次方程进行求解.【详解】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元.根据题意,列方程得:200=120(25)x x ,解得:x=15答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【答案】(1)12;(2)34【解析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=12;故答案为12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=3 4 .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.22.如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.【答案】(1)证明见解析;(2)3.【解析】(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=3.【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.23.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【答案】(1)15人;(2)补图见解析.(3)1 2 .【解析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=3162=. 【点睛】 本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.24.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11︒≈,tan58 1.60︒≈.【答案】甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.详解:如图,过点D 作DE AB ⊥,垂足为E .则90AED BED ∠=∠=︒.由题意可知,78BC =,48ADE ∠=︒,58ACB ∠=︒,90ABC ∠=︒,90DCB ∠=︒. 可得四边形BCDE 为矩形.∴78ED BC ==,DC EB =.在Rt ABC 中,tan AB ACB BC∠=, ∴tan58781.60125AB BC =⋅︒≈⨯≈. 在Rt AED 中,tan AE ADE ED ∠=, ∴tan48AE ED =⋅︒.∴tan58EB AB AE BC =-=⋅︒ 781.60781.1138≈⨯-⨯≈.∴38DC EB =≈.答:甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.25.如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N .求证:=OM AN ;若O 的半径=3R ,=9PA ,求OM 的长【答案】(1)见解析(2)5【解析】解:(1)证明:如图,连接OA ,则OA AP ⊥.∵MN AP ⊥,∴//MN OA .∵//OM AP ,∴四边形ANMO 是平行四边形.∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP ,∴=OB MN ,=OMB NPM ∠∠.∴Rt OBM Rt MNP ∆≅∆.∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM .26.某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.【答案】(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.【详解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依题意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣2,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列关于x 的方程中一定没有实数根的是( )A .210x x --=B .24690x x -+=C .2x x =-D .220x mx --= 【答案】B【解析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x 2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 24x 6x 90-+=, △=36-144=-108<0,∴原方程没有实数根,C. 2x x =-, 2x x 0+=, △=1>0,∴原方程有两个不相等的实数根,D. 2x mx 20--=, △=m 2+8>0,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.2.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A .18B .16C .14D .12【答案】B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是16. 故选B.考点:简单概率计算.3.一个正多边形的内角和为900°,那么从一点引对角线的条数是( )A .3B .4C .5D .6 【答案】B【解析】n 边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n ,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n ,则(n-2)•180°=900°,解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.4.如图,在等边三角形ABC 中,点P 是BC 边上一动点(不与点B 、C 重合),连接AP ,作射线PD ,使∠APD=60°,PD 交AC 于点D ,已知AB=a ,设CD=y ,BP=x ,则y 与x 函数关系的大致图象是( )A .B .C .D .【答案】C【解析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD ,进而即可证出△ABP ∽△PCD ,根据相似三角形的性质即可得出y=-1a x 2+x ,对照四个选项即可得出. 【详解】∵△ABC 为等边三角形,∴∠B=∠C=60°,BC=AB=a ,PC=a-x .∵∠APD=60°,∠B=60°,∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,∴∠BAP=∠CPD ,∴△ABP ∽△PCD , ∴CD PC BP AB =,即y a x x a-=, ∴y=-1a x 2+x. 故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-1ax 2+x 是解题的关键.5.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74 B .44 C .42 D .40【答案】C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数.6.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 2【答案】D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a =-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.7.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.【答案】D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D.点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.8.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或50°C.20°D.80°或20°【答案】D【解析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.9.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°【答案】B【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:28007040=(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D正确.故选C.考点:函数的图象、行程问题.二、填空题(本题包括8个小题)11.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.【答案】k>2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.12.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.【答案】13【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC13,∴这圈金属丝的周长最小为2AC=13.故答案为213.【点睛】本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.13.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.【答案】404033【解析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB =80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x 40403+。
2018年黑龙江省哈尔滨市中考数学模拟试题及参考答案

2018年黑龙江省哈尔滨市中考模拟试题数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣32.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b23.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥4.下列二次函数中,图象经过原点,且顶点的坐标为(﹣1,3)的是()A.y=x2+2B.y=﹣(x+1)2+3C.y=﹣3(x+1)2+3D.y=﹣3(x﹣1)2+3 5.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.6.要把分式方程=化为整式方程,方程两边可同时乘以()A.2x﹣4B.x C.x﹣2D.x(x﹣2)7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.如图,在△ABC中,点D在AC上,DE⊥BC,垂足为E,若AD=2DC,AB=4DE,则sinB等于()A.B.C.D.9.如图,已知AB∥CD∥EF,AC=CE=EP,△PEF的面积是2,则四边形ABCD的面积是()A.18B.16C.12D.1010.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是().B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)11.今年“十一”黄金周期间,共接待游客38.88万人次,388800用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.因式分解:mx4﹣my4=.14.计算:(﹣)﹣(﹣﹣)=.15.若原点O与反比例函数y=(k<0)的图象上的点之间的距离的最小值为4,则k的值为.16.若不等式组无解,则m的取值范围是.17.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.18.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).19.若菱形的两条对角线之和为l,面积为S,则它的边长为.20.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、解答题(本大题共60分)21.(7分)先化简,再求代数式的值.(﹣)÷,其中tan60°>a>sin30°,请你取一个合适的数作为a 的值代入求值.22.(7分)如图,在小正方形的边长均为1的方格纸中,有线段AB,点A,B 均在小正方形的顶点上.(1)在图1中画出一个以线段AB为一边的平行四边形ABCD,点C,D均在小正方形的顶点上,且平行四边形ABCD的面积为8;(2)在图2中画一个钝角三角形ABE,点E在小正方形的顶点上,且三角形ABE 面积为2,tan∠AEB=.请直接写出BE的长.23.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?24.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.25.(10分)某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月)12成本y(万元/件)1112需求量x(件/月)120100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.26.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.27.(10分)如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,点P是AC上的一动点,过点P作PD∥y轴,与抛物线交于点D.(1)求此抛物线的函数关系式;(2)是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)连接AD,求△PAD为直角三角形时点P的坐标.参考答案:一、选择题1.A2.D3.D4.C5.C6.D7.C8.D9.D10.A二、填空题11.3.888×105.12.x≥﹣,且x≠2.13.m(x2+y2)(x+y)(x﹣y).14.+.15.816.m<17.18.π+119..20.40或三、解答题21.(7分)解:原式=(﹣)×=×=.∵tan60°>a>sin30°,即>a>.取a=,原式==.22.(7分)解:(1)、(2)如图1、2所示:BE==2.23.(8分)解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.24.(8分)(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.25.(10分)解:(1)由题意,设y=a+,由表中数据可得:,解得:,∴y=6+,由题意,若12=18﹣(6+),则=0,∵x>0,∴>0,∴不可能;(2)将n=1、x=120代入x=2n2﹣2kn+9(k+3),得:120=2﹣2k+9k+27,解得:k=13,∴x=2n2﹣26n+144,将n=2、x=100代入x=2n2﹣26n+144也符合,∴k=13;由题意,得:18=6+,解得:x=50,∴50=2n2﹣26n+144,即n2﹣13n+47=0,∵△=(﹣13)2﹣4×1×47<0,∴方程无实数根,∴不存在;(3)第m个月的利润为W,W=x(18﹣y)=18x﹣x(6+)=12(x﹣50)=24(m2﹣13m+47),∴第(m+1)个月的利润为W′=24[(m+1)2﹣13(m+1)+47]=24(m2﹣11m+35),若W≥W′,W﹣W′=48(6﹣m),m取最小1,W﹣W′取得最大值240;若W<W′,W′﹣W=48(m﹣6),由m+1≤12知m取最大11,W′﹣W取得最大值240;∴m=1或11.26.(10分)证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.27.(10分)解:(1)根据题意得,,∴,∴抛物线解析式为y=x2﹣2x﹣6,(2)∵抛物线解析式为y=x2﹣2x﹣6,∴C(6,0)∵A(0,﹣6),∴直线AC解析式为y=x﹣6,设P(t,t﹣6),∴D(t,t2﹣2t﹣6),∴PD=|t2﹣2t﹣6﹣(t﹣6)|=|t2﹣3t|=|(t﹣3)2﹣|=﹣(t﹣3)2+,当t=3时,PD=;最大值(3)设P(t,t﹣6),∴D(t,t2﹣2t﹣6),∵PD∥y轴,∴CD∥x轴时,∠ADP=90°,∴﹣6=t2﹣2t﹣6,∴t=0(舍)或t=4;∴P(4,﹣2);∵抛物线的解析式为y=x2﹣2x﹣6=(x﹣2)2﹣8,∴抛物线的顶点坐标为D(2,﹣8),∴P(2,﹣4),∵A(0,﹣6)∴AD2=4+4=8,PD2=42=16,PA2=4+4=8,∴AD2+PA2=PD2,∴△PAD为直角三角形,∴P(2,﹣4).即:△PAD为直角三角形时点P的坐标为(2,﹣4),(4,﹣2).。
2018年黑龙江省哈尔滨市阿城区中考数学模拟试卷(解析版)

A.3
B.4
C.6
D.8 )
8. (3 分)如图,l1∥l2,AF:FB=3:5,BC:CD=3:2,则 AE:EC=(
A.5:2
B.4:3
C.2:1
D.3:2
9. (3 分)如图所示,在长方形纸片 ABCD 中,AB=32cm,把长方形纸片沿 AC 折叠,点 B 落在点 E 处,AE 交 DC 于点 F,AF=25cm,则 AD 的长为( )
6. (3 分)如图.在坡角为 a 的山坡上栽树,要求相邻两树之间的水平距离为 5 米,那么这 两树在坡面上的距离 AB 为( )
A.5cosa
B.
C.5sina
D.
7. (3 分)如图,AB 是⊙O 的弦,半径 OC⊥AB 于 D,若 CD=2,⊙O 的半径为 5,那么 AB 的长为( )
第 1 页(共 23 页)
27. (10 分)如图,在平面直角坐标系中,抛物线 y=﹣x ﹣2ax 与 x 轴相交于 O、A 两点, OA=4,点 D 为抛物线的顶点,并且直线 y=kx+b 与该抛物线相交于 A、B 两点,与 y 轴相交于点 C,B 点的横坐标是﹣1. (1)求 k,a,b 的值; (2)若 P 是直线 AB 上方抛物线上的一点,设 P 点的横坐标是 t,△PAB 的面积是 S,求 S 关于 t 的函数关系式,并直接写出自变量 t 的取值范围; (3) 在 (2) 的条件下, 当 PB∥CD 时, 点 Q 是直线 AB 上一点, 若∠BPQ+∠CBO=180°, 求 Q 点坐标.
A.5:2 【解答】解:∵l1∥l2, ∴ = = ,
B.4:3
C.2:1
D.3:2
设 AG=3x,BD=5x, ∵BC:CD=3:2, ∴CD= BD=2x, ∵AG∥CD,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017中考伴我行(05)
16.生活中经常对一些物理量进行估测,下列数值最接近实际情况的是 ( ) A .地球的半径约为6400m B .人体正常温度约为36.5℃ C .将一枚鸡蛋举过头顶做功约为l0J D .家用电饭锅正常工作时的电流约为0.1 A 17.在下列所示的四幅图中,成实像的是
( )
18.物理学是人类探索自然,认识自然的有力武器,下列自然现象属于汽化的是
( )
A .空气中的水蒸气凝结成细小的水滴,形成黄山云海
B .雪融化为水,水又形成了晶莹剔透的冰锥
C .毛巾上的水慢慢变成水蒸气,吸收铁箱里面的热
D .寒冷的天气里,你呼出的每一口气都是一小朵白云
19.正确的研究方法是科学实验成功的保证,下列说法不正确的是
( )
A .A 图中M 、N 两点接入不同的导体,用电流大小可以反映电阻大小
B .B 图中灯泡的亮度可以反映灯泡实际功率的大小
C .C 图中吸引大头针的多少可以反映磁场的分布
D .D 图中小磁针静止时N 极的指向可以表示该点磁场的方向
20.下列四幅图片中,关于物理知识应用与其它三个所用知识不同的是( )
A .用吸管吸饮料
B .鸡自动饮水装置
C .塑料吸盘挂钩挂衣物
D .用重垂线来检查墙壁上的画是否挂正 21.如图做法符合安全用电原则的是( )
A .站在地面上的人用手接触裸露的火线
B .电水壶金属外壳接地
C .用湿布擦正在工作的灯具
D .行人走近落地的高压线
22.通过直接感知的现象;推测元法直接感知的事实,这是物理学中常用的方法,小明同学对下面观察到的现象作了以下推测,其中符合事实的是 ( )
A .现象:用手很难将固体压缩. 推测:固体内分子之间有引力
B .现象:酒精和水混后体积变小 推测:分子是无规则运动的
C .现象:通电导体靠近小磁针时,小磁针发生偏转 推测:通电导体周围存在磁场
D .现象:摩擦起电 推测:做功可以改变物体的内能 23.关于测量仪器的使用要求,下列说法中错误的是( )
A .用温度计测量液体温度读数时,视线要与温度计液柱的上表面相平
B .用天平称量的物体质量不能超过天平的最大称量
C. 用弹簧测力计测力时,要使测力计弹簧伸长方向与受力方向一致
D .用电流表测量电流时,应使电流从电流表的正极流入,从负极流出
24.小明同学进行实验探究的实验装置如图甲、乙所示,对这两个实验装置的判断中正确的是 ( ) A .图甲是研究电磁感应现象的装置,利用该装置的原理可以制成发电机
B.图乙是探究磁场对电流作用的装置,利用该实验的原理可以制成发电机
C.图乙是探究电磁感应现象的装置,利用该实验的原理可以制成电动机
D.图甲是探究磁场对电流作用的装置,利用该实验的原理可以制成电动机
25.下面事例中,说法错误的是( )
A.在道路旁安装隔音板是从声音传播过程中控制噪声的
B.在汽油机工作的四个冲程中,做功冲程将机械能转化为内能
C.验电器的工作原理是同种电荷相互排斥
D.我国的北斗卫星定位系统是利用电磁波来传递信号的
26.如图是人们利用滑轮的两种组合,现利用其把相
同重物相同时间内匀速提起相同的高度,下面说法正
确的是( )
A.甲滑轮组不能省力,甲做有用功率比乙大
B.乙图中人的拉力功率大,所以乙滑轮组的效率高
C.乙滑轮组能改变动力的方向,且比甲滑轮组省力
D.乙滑轮组的机械效率比甲高,乙的总功率更大
27.如图所示电路中,电源电压为3 V且保持不变,闭合
开关S后,滑片P从b端移动到a端的过程中,电压表示
数U与电流表示数I的关系图像如图所示,下列判断不正
确的是( )
A.R1的电阻为5Ω B.滑动变阻器的最大电阻为log
C.电路消耗的最大功率为l.8w D.电路消耗的最小功率为1 w
二、非选择题(36题~5l题,共计46分)
36.(2分)在观察会“跳舞”的蜡烛活动中,如图打开音响,播放乐曲,将
一支点燃的蜡烛放在音响前,加大音量.你看到的现象是
说明
37.(2分)六月的清晨,一摄影爱好者驾车到太阳岛拍照,一路上,丁香花迎面扑来,伴随着阵阵清香;花叶上挂有晶莹的露珠,美如画卷.丁香花迎面扑来是以为参照物,闻到丁香花的清香是现象.
38.(2分)同学们在游乐园游玩,小明用桨向后划水,船向前运动,这是因为
小华在荡秋千,当秋千荡到最高点时,小华的能最大.
39.(2分)鱼缸中装满水,在水中轻轻放人一只小船,小船漂浮在水面上,从鱼缸中溢出5×10-4m3的水,则小船受到的浮力是 N,小船所受的重力与浮力的关系是.(g=l0 N/kg) .40.(2分)重为l20 N的物体在80 N的水平拉力作用下向右作匀速直线运动,如图甲所示,物体运动的s—t图像如图乙所示.物体受到的摩擦力是 N.运动的速度是 m/s.
41.(2分)如图是投影仪的成像光路,它的镜头是凸透镜.投影仪的成像原理是;
平面镜的作用是.
42.(2分)某太阳能热水器每天能使500 kg的水温度升高30℃,则这些水吸收的热量为 J.这些热量相当于完全燃烧 m3的天然气放出的热量.[q天然气=7×107J/m3]
43.(2分)甲、乙两灯的额定电压均为9V,测得其电流与电压变化的关系图像如图所示.则乙灯正常发光时的电阻是Ω;若将甲、乙两灯串联接人9 V的电路中,通电1 min,两灯消耗的总电能为 J.
44.(2分)在烧杯中倒人适量的酱油,用天平测出烧杯和酱油的总质量为76.2 g;将烧杯中的酱油倒入量筒中40 cm3,再用天平测出烧杯和剩余酱油的质量,砝码和游码的示数如图所示;则量筒中酱油的质量为 g;酱油的密度为ρ= g/cm3.
45.(2分)甲、乙运动员分别进行60 m和100 m短跑,成绩如图所示.由此可知,运动较快的是,你判断的理由是:.
46.(2分)当光线从水中射向空气时,它的反射光线如图所示,请画出入射光线和折射光线.
47.(2分)磁针在通电螺线管产生的磁场中静止,指向如图所示.请将电源符号填入虚线框内,并画出该通电螺线管导线的绕法.
48.(5分)组装合理的实验装置是实验成功的关键了小东同学利用图甲中的器材,探究凸透镜成像规律。
(1)为了使像承在光屏的中央,他应该怎样调整蜡烛、凸透镜和光屏?
(2)如图乙所示是小东组装的实验装置,你认为这样会对实验产生的影响是:
(3)同组的小红同学在调整时发现,将凸透镜向上调节后像也能成在光屏中央,于是她认为自己找到了更加简单的方法。
请你对她的方法提出自己的看法。
49.(6分)在实验复习中,同学们对实验操作进行归纳整理,认为要想得到正确的结论,实验条件是很重要的。
他对以下几个实验进行了研究。
请你帮助他解决。
(1)在研究杠杆平衡条件时,怎样排除杠杆的重力对实验的影响
?
(2)在探究“推断物体不受力时的运动情况”时,每次都需要保持小车到达水平面的初始速度相同,观察小车在水平面上运动的距离,来判断小车 · ①你认为,实验中你需要控制哪些量相同?为什么
?
②根据实验中需要收集的证据及推理分析的过程,设计记录实验探究过程的表格。
50.(5分)在“测定2.5 V 小灯泡功率”的实验中,小红设计了如图甲所示的电路.
(1)请在图的“o”内填入合适的“灯泡”和“电表”符号.
(2)小红按电路图连接电路,进行实验,测得数据如表所示。
断开开关时,发现电表如图乙所示,其 中电流表出现这种现象的原因是:
(3)假如不重新实验,请你利用小红已获取的信息,计算出该灯泡的额定功率是 w .若小灯泡两端的实际电压为3 V ,则小灯泡的实际功率 额定功率(选填“大于”、“等于”或“小于’’). 51.(6分)小东家新买一个电热壶,电热壶的铭牌如图.请你根据电热壶的铭牌,求:
(1)电热壶正常工作时的电流(得数保留2位小数);
(2)电热壶正常工作时电阻不变,求1min 内电热壶产生的热量? (电能全部转化为内能);
(3)完成上述计算后,小东还想用电能表验证电热壶标的额定功率是否准确.经测量,他家电路中的电压是220 V :他将家中其它的用电器全部断开,把电热壶装上水后单独接人电路中.小东观察到电能表转盘在1 min 内转过了84圈;电能表的铭牌如图所示.请你通过计算,判断电热壶的铭牌中标的额定功率 是否准确.。