【初中教育】最新最新八年级数学上册第二章轴对称图形单元练习题四苏科版

合集下载

2023年苏科版八上数学第2章轴对称图形测试题

2023年苏科版八上数学第2章轴对称图形测试题

2022-2023学年苏科版八年级数学上册《第2章轴对称图形》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列各图形均是由边长为1的小正方形组成,其中不是轴对称图形的是()A.B.C.D.2.已知一个等腰三角形的两边长分别为3cm、7cm,则该三角形的周长是()A.13cm B.13cm或17cm C.17cm D.16cm3.如图,在△ABC中,∠C=90°,∠A=15°,点D是AC上一点,连接BD,∠DBC=60°,BC=4,则AD长是()A.4B.6C.8D.104.如图,△ABC中,AB的垂直平分线交AC与点M.若AC=9cm,BC=5cm,则△MBC 的周长是()cm.A.23B.19C.14D.125.已知线段AB垂直平分线上有两点C、D,若∠ADB=80°,∠CAD=10°,则∠ACB=()A.80°B.90°C.60°或100°D.40°或90°6.如图①是一个直角三角形纸片,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,如果C′为AB的中点,△BCD的面积为1,则△ABC的面积为()A.2B.3C.4D.57.如图,在△ABC中,点E、D分别在AB、AC的延长线上,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②CP平分∠BCD;③BP垂直平分CE,其中正确的结论有()A.0个B.1个C.2个D.3个8.如图,在△ABC中,BD平分∠ABC,点E在BC的垂直平分线上,若∠A=60°,∠ABD =24°,则∠ACE的度数为()A.48°B.50°C.55°D.60°二.填空题(共8小题,满分40分)9.如果一个等腰三角形的一角为80°,那么它的顶角是.10.如图,已知∠A=13°,AB=BC=CD,那么∠BCD=度.11.如图,P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,垂足分别为D,E,若PD=3,则PE的长是.12.若等腰三角形一腰上的中线将它的周长分成了15cm和18cm两部分,则它的腰长为cm.13.如图,在Rt△ABC中,∠C=90°,直线DE是边AB的垂直平分线,连接BE.(1)若∠A=35°,则∠CBE=°;(2)若AE=3,EC=1,则△ABC的面积为.14.如图,已知ABC为等边三角形,若沿图中虚线剪去∠A,则∠1+∠2=.15.如图,线段AC,AB的垂直平分线交于点O,连接OA、OB、OC,已知OC=2cm,则OB等于cm.16.如图,在△ABC中,∠ABC=50°,∠C=23°,∠ABC的角平分线交AC于点D,过点D作DF∥AB交BC于点F,点E是BA延长线上一点,且BE=FC,连接EF交AC 于点O,则∠EOC=.三.解答题(共6小题,满分40分)17.如图,△ABC中,已知AB=AC,BC平分∠ABD.(1)求证:AC∥BD;(2)若∠A=100°,求∠1的度数.18.如图,在△ABC中,AD为∠BAC的角平分线,FE垂直平分AD,垂足为E,EF交BC 的延长线于点F,若∠CAF=50°,求∠B的度数.19.在△ABC中,∠ABC=∠ACB,点D在BC边所在的直线上,点E在射线AC上,且始终保持∠ADE=∠AED.(1)如图1,若∠B=∠C=30°,∠BAD=80°,求∠CDE的度数;(2)如图2,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)如图3,当点D在BC边的延长线上时,猜想∠BAD与∠CDE的数量关系,并说明理由.20.如图,已知△ABC,AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若AB+AC=10,DE=3,求△ABC的面积.21.如图,在单位长度为1的正方形网格中,已知△ABC的三个顶点都在格点上.(1)画出△ABC关于直线DE的轴对称图形△A1B1C1;(2)求△A1B1C1的面积.22.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.请你用三种不同的方法分别在每个网格中再选一个白色小方格涂成黑色,使涂成黑色部分的图形成为轴对称图形.参考答案一.选择题(共8小题,满分40分)1.解:A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.2.解:当3cm是腰时,3+3<7,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17(cm).故它的周长为17cm.故选:C.3.解:∵∠C=90°,∠DBC=60°,∴∠BDC=90°﹣60°=30°,又∵∠A=15°,∴∠ABD=30°﹣15°=15°=∠A,∴AD=BD,在Rt△BDC中,BC=4,∠BDC=30°,∴BD=2BC=8=AD,故选:C.4.解:∵MD是AB的垂直平分线,∴AM=BM,∴△MBC的周长为BM+MC+BC=AM+CM+BC=AC+BC=14(cm).故选:C.5.解:如图,DE垂直平分AB,垂足为E,∴DA=DB,∴∠DAB=∠DBA=(180°﹣∠ADB)=×(180°﹣80°)=50°,当C点在线段DE上,∠CAD=10°时,则∠CAB=50°﹣10°=40°,∵CA=CB,∴∠CAB=∠CBA=40°,∴∠ACB=180°﹣40°﹣40°=100°;当C′点在ED的延长线上,∠C′AD=10°时,则∠C′AB=50°+10°=60°,∵CA=CB,∴∠C′AB=60°,综上所述,∠ACB的度数为60°或100°.故选:C.6.解:∵△ABC为直角三角形,∴∠C=∠BC′D=∠AC′D=90°,由折叠的性质得:△BCD≌△BC′D,∴S△BCD=S△BC′D=1,∵C′为AB的中点,∴AC′=BC′,∵∠BC′D=∠AC′D=90°,DC′=DC′,∴△ADC′≌△BDC′(SAS),∴S△ADC′=S△BCD=S△BC′D=1,∴△ABC的面积=S△ADC′+S△BDC′+S△BCD=3,故选:B.7.解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP,故①正确;②∵∠BAC与∠CBE的平分线相交于点P,∴点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,故②正确;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),故③正确;故选:D.8.解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠CBD=∠ABD=24°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣60°﹣48°=72°,∵点E在BC的垂直平分线上,∴EB=EC,∴∠ECB=∠CBD=24°,∴∠ACE=∠ACB﹣∠ECB=72°﹣24°=48°,故选:A.二.填空题(共8小题,满分40分)9.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20°.10.解:∵AB=BC,∴∠BCA=∠A=13°,∴∠CBD=∠A+∠BCD=26°,又∵BC=CD,∴∠CBD=∠D=26°,∴∠BCD=180°﹣∠CBD﹣∠D=128°.故答案为:128.11.解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.12.解:根据题意画出图形,如图,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,若AB+AD的长为15,则2x+x=15,解得x=5,则x+y=18,解得y=13,所以2x=10;若AB+AD的长为18,则2x+x=18,解得x=6,则x+y=15,即6+y=15,解得y=9,所以2x=12,10、10、13和12、12、9均能构成三角形,所以等腰三角形的腰长为10或12.故答案为:10或12.13.解:(1)在Rt△ABC中,∠C=90°,∠A=35°,∴∠ABC=90°﹣∠A=90°﹣35°=55°,∵DE是边AB的垂直平分线,∴EA=EB∴∠ABE=∠A=35°,∴∠CBE=55°﹣35°=20°,故答案为:20;(2)∵AE=3,EC=1,∴AC=EC+EA=3+1=4,BE=AE=3,∴BC==2,∴S△ABC=×4×2=4,故答案为:4.14.解:∵△ABC为等边三角形,∴∠A=60°,∵∠1=∠A+∠ADE,∠2=∠A+∠AED,∴∠1+∠2=∠A+∠ADE+∠A+∠AED,∵∠A+∠AED+∠ADE=180°,∴∠1+∠2=60°+180°=240°,故答案为:240°.15.解:∵线段AC,AB的垂直平分线交于点O,∴OA=OC,OA=OB,∴OB=OC,∵OC=2cm,∴OB=2cm,故答案为:2.16.解:∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠FBD=25°,∵AB∥DF,∴∠DFC=∠ABC=50°,∠BDF=∠ABD=25°,∴∠BDF=∠FBD,∴BF=FD,∵BE=FC,∴△BEF≌△FCD(SAS),∴∠E=∠C=23°,∵AB∥DF,∴∠EFD=∠E=23°,∴∠OFC=∠EFD+∠DFC=73°,∴∠EOC=∠OFC+∠C=96°.故答案为:96°.三.解答题(共6小题,满分40分)17.(1)证明:∵AB=AC,∴∠ABC=∠C,∵BC平分∠ABD,∴∠ABC=∠1,∴∠C=∠1,∴AC∥BD;(2)解:∵AC∥BD,∠A=100°,∴∠ABD=180°﹣∠A=80°,∴∠1=40°.18.解:∵EF垂直平分AD,∴AF=DF,∴∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠B=∠CAF=50°,故∠B的度数是50°.19.解:(1)在△ABD中,∠B=∠C=30°,∠BAD=70°,∴∠ADB=180°﹣(∠B+∠BAD)=180°﹣100°=80°,∠BAC=180°﹣(∠B+∠C)=180°﹣60°=120°,∴∠DAE=∠BAC﹣∠BAD=120°﹣70°=50°,∵∠ADE=∠AED,∴∠ADE=×(180°﹣50°)=65°,∴∠EDC=65°﹣30°=35°;(2)∵∠ACB为△DCE的外角,∴∠ACB=∠AED+∠CDE,∵∠ABC=∠ACB=70°,∠CDE=15°,∴∠ADE=∠AED=55°,∴∠ADC=∠ADE﹣∠CDE=40°,∵∠ABC为△ABD的外角,∴∠ABC=∠ADC+∠BAD,∴∠BAD=30°;(3)∠CDE和∠BAD的数量关系是∠BAD=2∠CDE,理由如下:当点D在BC的延长线上时,设∠ABC=∠ACB=x,∠ADE=∠AED=y,∠CDE=α,∠BAD=β,则有∠ADC=x﹣α,根据题意得:,②﹣①得:2α﹣β=0,即2α=β,故∠BAD=2∠CDE.20.(1)证明:∵DE⊥AB,DF⊥AC,∴∠DEA=∠DF A=90°,∵AD是∠BAC的角平分线,∴∠EAD=∠F AD,在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∵AD是∠BAC的角平分线,∴AG⊥EF,EG=FG,∴AD垂直平分EF;(2)解:∵AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∵DE=3,∴DF=3,∵AB+AC=10,∴△ABC的面积===15.21.解:(1)如图,△A1B1C1即为所求.(2)=3×3﹣﹣﹣=.∴△A1B1C1的面积为.22.解:图形如图所示:。

苏科版八年级数学上册 第二章 轴对称图形 单元测试(含答案)

苏科版八年级数学上册 第二章 轴对称图形 单元测试(含答案)

第二章轴对称图形单元测试一、选择题1.今年实施的新交规让人们的出行更具安全性,以下交通标志中不是是轴对称图形的是()A. B. C. D.2.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )A. 6B. 8C. 10D. 123.下列语句中,正确的有( )①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.⑤角平分线上任意一点到角的两边的线段长相等.A. 1个B. 2个C. 3个D. 4个4.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为( )A. 1B. 2C. 3D. 45.下列图形中对称轴只有两条的是()A. 圆B. 等边三角形C. 矩形D. 等腰梯形6.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A. B. C. D.7.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是( )A. B. C. D.8.下列图形不是轴对称图形的是( )第2页,共7页A. B. C. D.9.若∠AOB=45∘,P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1,P2,连接OP1,OP2,则下列结论正确的是( )A. OP1⊥OP2B. OP1=OP2C. OP1≠OP2D. OP1⊥OP2且OP1=OP210.四边形ABCD中,∠BAD=130∘,∠B=∠D=90∘,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为( )A. 80∘B. 90∘C. 100∘D. 130∘二、填空题11.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.则sin∠BAG=______ .12.轴对称是指______ 个图形的位置关系,轴对称图形是指______ 个具有特殊形状的图形.13.黑体汉字中的“中”,“田”,“日”等都是轴对称图形,请至少再写出两个具有这种特征的汉字:______ .14.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长______ cm.15.如图,在五边形ABCDE中,∠BAE=120∘,∠B=∠E=90∘,AB=BC=1,AE=DE=2,在BC,DE上分别找一点M,N,使△AMN的周长最小,则△AMN的最小周长为______ .三、解答题16.操作题:如图,在3×3网格中,已知线段AB、CD,以格点为端点画一条线段,使它与AB、CD组成轴对称图形.(画出所有可能)17.如图,是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.18.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.第4页,共7页19.已知:如图,∠AOB内有一点P,作点P关于直线OA的对称点P1,再作点P关于直线OB的对称点P2.试探索∠POP2与∠AOB的大小关系并说明理由.20.如图,草原上,一牧童在A处放马,牧童家在B处,A、B处距河岸的距离AC,BD的长分别为500m和700m,且CD=500m,天黑前牧童从A点将马牵到河边去饮水后,再赶回家,牧童将马牵到河边什么地方饮水,才能使走过的路程最短?牧童最少要走多少m?参考答案1. D2. A3. B4. D5. C6. D7. A8. D9. D10. C11. √101012. 两;一13. “木”,“古”14. 515. 2√716. 解:如图所示:17. 解:所补画的图形如下所示:18. 解:如下图所示:(答案不唯一).19. 解:∵点P关于直线OA的对称点P1,点P关于直线OB的对称点P2,∴∠1=∠2,∠3=∠4,第6页,共7页∴∠P1OP2=∠1+∠2+∠3+∠4=2(∠2+∠3)=2∠AOB.20. 解:作A点关于河岸的对称点A′,连接BA′交河岸与P,则PB+PA=PB+PA′=BA′最短,故牧童应将马赶到河边的P地点.作DB′=CA′,且DB′⊥CD,∵DB′=CA′,DB′⊥CD,BB′//A′A,∴四边形A′B′BA是矩形,,在Rt△BB′A′中,连接A′B′,则BB′=BD+DB′=1200,BA′=√12002+5002=1300(m).故牧童至少要走1300米.。

苏科版八年级上册第二章《轴对称图形》(难题)单元测试(含答案)

苏科版八年级上册第二章《轴对称图形》(难题)单元测试(含答案)

苏科版八年级上册第二章《轴对称图形》(难题)单元测试一、选择题1.如图,A,B,C三幢居民楼的位置成三角形,现决定在三幢楼之间修建一个禁毒宣传栏,使宣传栏到三个小区的距离相等,则宣传栏应建在()A.AC,BC两边中线的交点处B. AC,BC两边高线的交点处C. AC,BC两边垂直平分线的交点处D. ∠A,∠B两内角平分线的交点处2.如图所示的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A. 2个B. 3个C. 4个D. 5个3.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>bB. b>a>cC. c>b>aD. b>c>a4.如图,等腰△ABC的底边长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A. 6B. 18C. 7D. 95.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°6.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=()A. 115°B. 130°C. 135°D. 150°7.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A. 138∘B. 114∘C. 102∘D. 100∘8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG//AD交BC于F,交AB于G,下列结论:①GA=GP②S△PAC:S△PAB=AC:AB③BP垂直平分CE④FP=FC其中正确的判断有()A.只有①②B. 只有③④C. 只有①③④D. ①②③④二、填空题9.把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__________°.10.如图,已知在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC.则∠A=__________.11.△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_____.12.已知等腰三角形的周长为10,从底边上的一个顶点引腰的中线,分三角形的周长为两部分,其中一部分比另一部分长2,则腰长_________.13.如图,把△ABC分别沿AB边和AC边翻折得到△ABE和△ADC,BE的延长线与DC的延长线交于点F,若∠BCA:∠ABC:∠BAC=28:5:3,则∠EFC的度数为_____.14.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是_________________.15.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接ED,则图中等腰三角形共有____个16.如图,在ΔABC中,AB=6,∠CAB=15°,M、N分别是直线AC、AB上的动点,则BM+MN的最小值是______________.三、解答题17.如图,和均为等腰直角三角形,AB=AC,AD=AE,,连结BD、EC交于点P.(1)求证:≌;(2)试判断线段BD、EC的关系,并且加以证明;(3)连结PA,求的度数.18.如图,点M、N分别是∠AOB两点OA、OB上的点.(1)尺规作图:在∠AOB内作一点P,使得点P到∠AOB两边OA、OB的距离相等,且满足PM=PN(保留作图痕迹).(2)在(1)的条件下,若∠AOB=40°,求∠MPN的度数.19.已知:如图,▵ABC中,∠ABC=45∘,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;BF;(2)求证:CE=12(3)CE与BG的大小关系如何?试证明你的结论.20.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于______A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.21.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:______;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.22.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC的数量关系式,试证明.答案和解析1.C解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则宣传栏应建在AC,BC两边垂直平分线的交点处.2.B解:在网格中作出与△ABC成轴对称的格点三角形如下图所示:∴在此网格中与△ABC成对称的格点三角形一共有3个.3.D解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=12AC=12×4=2,DE⊥AC,∵∠ACB=90°,∴DE//BC,∴a=DE=12BC=12×3=32;第二次折叠如图2,折痕为MN,由折叠得:BN=NC=12BC=12×3=32,MN⊥BC,∵∠ACB=90°,∴MN//AC,∴b=MN=12AC=12×4=2;第三次折叠如图3,折痕为GH,由勾股定理得:AB =√32+42=5, 由折叠得:AG =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°,∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB∽△AGH , ∴AC AG =BC GH, ∴452=3GH , ∴GH =158,即c =158.∵2>158>32, ∴b >c >a .4. D解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×6×AD =18,解得AD =6,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值, ∴△CDM 的周长最短=(CM +MD)+CD =AD +12BC =6+12×6=6+3=9.5. B解:∵点A ,C 分别在线段BE ,BD 的中垂线上,∴AE =AB ,BC =DC .∵∠A =58°,∠C =100°, ∴∠ABE =180°−58°2=61°,∠CBD =180°−100°2=40°.∵∠EBD =36°,∴∠ABC =∠ABE +∠EBD +∠CBD =61°+36°+40°=137°,∴∠ADC =360°−∠A −∠C −∠ABC =360°−58°−100°−137°=65°. 故答案为:65°.6.A解:∵∠1+∠2=130°,∴∠AMN+∠DNM=360°−130°2=115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.7.C解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=12∠ACD,∠DBM=12∠ABC,∴∠M=∠DCM−∠DBM =12(∠ACD−∠ABC)=12∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=12∠CBN,∠BCQ=12∠BCN,∴△BCQ中,∠Q=180°−(∠CBQ+∠BCQ) =180°−12(∠CBN+∠BCN)=180°−12×(180°−∠N)=90°+12∠N=102°.8.D解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG//AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一);④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP =∠BCP ,又PG//AD ,∴∠FPC =∠DCP ,∴FP =FC .故①②③④都正确.9. 35解:∵沿OC 折叠,B 和B′重合,∴△BOC≌△B′OC ,∴∠BOC =∠B′OC ,∵∠AOB′=110°,∴∠BOB′=180°−110°=70°, ∴∠B′OC =12×70°=35°,10. (1807)°解:∵AB =AC ,AP =PQ =QC =BC , ∴ABC =∠ACB ,∠A =∠AQP ,∠QPC =∠QCP ,∠BQC =∠B , 设∠A =x°,则∠AQP =x°,∴∠BQC =∠ACQ +∠A ,∴∠BQC =3x°,∴∠B =3x°,∵∠A +∠ABC +∠ACB =180°,∴x°+3x°+3x°=180°, 解得:x =1807.∴∠A =(1807)°.11. 6解:∵AD 平分∠BAC ,CD ⊥AC ,∴D 点到AB 的距离等于CD 长度2. 所以△ABD 面积=12×6×2=6.12. 4或83解:设腰长为x ,底长为y ,当腰比底长时有 {x −y =22x +y =10 解得{x =4y =2; 当底比腰长时有{y −x =22x +y =10解得{x=83y=143.∵0<2<4+4=8,0<143<83+83=163∴这两种情况都能构成三角形.13.30°解:在△ABC中,∵∠BCA:∠ABC:∠BAC=28:5:3,∴设∠BCA为28x,∠ABC为5x,∠BAC为3x,则28x+5x+3x=180°,解得:x=5°,则∠BCA=140°,∠ABC=25°,∠BAC=15°,由折叠的性质可得:∠D=25°,∠DAE=3∠BAC=45°,∠BEA=140°,在△AOD中,∠AOD=180°−∠DAE−∠D=110°,∴∠EOF=∠AOD=110°,∴∠EFC=∠BEA−∠EOF=140°−110°=30°.14.4解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴AP+BP的值最小值为4.15.5解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形;∠ABC=∠ACB=1800−3602=72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∠ABD=∠A=36º,∴△ABD是等腰三角形;∴∠BDC=180º−36º−72º=72º=∠C,∴△BDC是等腰三角形,∴BD=BC,∵BE=BC,∴BE=BD,∴△BDE是等腰三角形,∴∠ADE=∠BED−∠A=72º−36º=36º=∠A,∴△AED是等腰三角形;16.3解:作B关于AC的对称点E,过E作EN⊥AB于N,交AC于M,连接AE,BM,则此时BM+MN的值最小,∵B关于AC的对称点为E,∴AE=AB=6,BM=EM,∠EAC=∠CAB=15°,∴∠EAB=30°,BM+MN=EM+MN=EN,在Rt△ENA中,∠ENA=90°,∠EAB=30°,AE=6,∴EN=12AE=3,BM+MN=EN=3,17.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS);(2)解:BD=EC,BD⊥EC,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠ABD+∠4=90°,∠4=∠5,∴∠ACE+∠5=90°,∴∠BPC=90°,∴BD⊥EC;(3)解:作AM⊥BD于M,AN⊥EC于N,∵△ABD≌△ACE,∴S△ABD=S△ACE,又∵BD=EC,∴AM=AN,∵AM⊥BD,AN⊥EC,∴PA平分∠BPE,又∵BD⊥EC,∴∠BPE=90°,∴∠APB=45°.18.解:(1)如图所示;(2)过P作PC⊥OA,PD⊥OB,垂足分别为C,D,则∠PCO=∠PDB=90°,由(1)知,OP是∠AOB的平分线,∴PC=PD,由题可知PM=PN,∴△PCM≌△PDN(HL),∴∠CPM=∠DPN,∴∠MPN=∠MPD+∠CPN=∠MPD+∠DPN=∠CPD,∵∠CPD=360°−∠AOB−∠PCO−∠PDO=140°∴∠MPN=140°.19.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵{∠DBF=∠DCA BD=CD∠BDF=∠ADC,∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中{∠ABE=∠CBE BE=BE∠BEA=∠BEC,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=12AC.又由(1),知BF=AC,∴CE=12AC=12BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=12∠ABC=12×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=√2CE,∴BG>CE.20.解:(1)C;(2)220°;(3)∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF,∴∠1=180°−2∠AFE,∠2=180°−2∠AEF,∴∠1+∠2=360°−2(∠AFE+∠AEF),又∵∠AFE+∠AEF=180°−∠A,∴∠1+∠2=360°−2(180°−∠A)=2∠A.解:(1):∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°−(∠A+∠B)=360°−90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+40°=220°,故答案是220°;(3)∠1+∠2与∠A 的关系是:∠1+∠2=180°+∠A ;21. (1)120°;(2)解:FE 与FD 之间的数量关系为:DF =EF . 理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG 和△CFD 中, {CG =CD ∠DCF =∠GCF CF =CF ,∴△CFG≌△CFD(SAS),∴DF =GF .∵∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线, ∴∠FAC =12∠BAC ,∠FCA =12∠ACB ,且∠EAF =∠GAF , ∴∠FAC +∠FCA =(∠BAC +∠ACB)=12(180°−∠B)=60°, ∴∠AFC =120°,∴∠CFD =60°=∠CFG ,∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中, {∠AFE =∠AFG AF =AF ∠EAF =∠GAF ,∴△AFG≌△AFE(ASA),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE +CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA =∠GFA . 又由题可知,∠FAC =12∠BAC ,∠FCA =12∠ACB ,∴∠FAC+∠FCA=12(∠BAC+∠ACB)=12(180°−∠B)=60°,∴∠AFC=180°−(∠FAC+∠FCA)=120°,∴∠EFA=∠GFA=180°−120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°−60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°−(∠FAC+∠ACF)=120°故答案为120°;22.解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=12∠ACB=22.5°,在△ABE中,∠BAE=180°−∠B−∠E=112.5°,∴∠DAE=∠BAE−∠BAD=112.5°−67.5°=45度;(2)不改变.设∠CAE=x,∵CA=CE,∴∠E=∠CAE=x,∴∠ACB=∠CAE+∠E=2x,在△ABC中,∠BAC=90°,∴∠B=90°−∠ACB=90°−2x,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=x+45°,在△ABE中,∠BAE=180°−∠B−∠E,=180°−(90°−2x)−x=90°+x,∴∠DAE=∠BAE−∠BAD,=(90°+x)−(x+45°)=45°;(3)∠DAE=12∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°−2y,∠E=∠CAE=x,∴∠BAE=180°−∠B−∠E=2y−x,∴∠DAE=∠BAE−∠BAD=2y−x−y=y−x,∠BAC=∠BAE−∠CAE=2y−x−x=2y−2x,∴∠DAE=12∠BAC.。

苏科版八年级数学上《第2章轴对称图形》单元测试卷含答案解析初二数学试题试卷

苏科版八年级数学上《第2章轴对称图形》单元测试卷含答案解析初二数学试题试卷

《第2章轴对称图形》一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.54.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个B.3个C.4个D.6个5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.47.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4 B.5 C.6 D.8二、耐心填一填9.请写出4个是轴对称图形的汉字:.10.若等腰三角形的一个外角为130°,则它的底角为度.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC= °;(2)若BC=21cm,则△BCE的周长是.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM= ,理由是:.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长cm.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是.猜想:EF与BE、CF之间的关系是.理由:(2)如图②,若AB≠AC,图中等腰三角形是.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC 交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.《第2章轴对称图形》参考答案与试题解析一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定与性质;线段垂直平分线的性质.【专题】几何图形问题;综合题.【分析】利用等腰三角形的概念、性质以及角平分线的性质做题.【解答】解:∵AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC∴△ABC是等腰三角形,AD⊥BC,BD=CD,∠BED=∠DFC=90°∴DE=DF∴AD垂直平分EF∴(4)错误;又∵AD所在直线是△ABC的对称轴,∴(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF.故选C.【点评】有两边相等的三角形是等腰三角形;等腰三角形的两个底角相等;(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”).3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.5【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】根据等腰三角形的性质,可分2种情况对本题讨论解答:①当腰长为3时,②当底为3时;结合题意,把不符合题意的去掉即可.【解答】解:设等腰三角形的腰长为l,底长为a,根据等腰三角形的性质得,S=2l+a;①、当l=3时,可得,a=7;则3+3<7,即2l<a,不符合题意,舍去;②、当a=3时,可得,l=5;则3+3>5,符合题意;所以这个等腰三角形的底边长为3.故选B.【点评】本题主要考查了等腰三角形的性质和三角形三边性质定理,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个B.3个C.4个D.6个【考点】等腰三角形的判定.【分析】由已知条件,根据三角形内角和等于180°、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.【解答】解:AB=AC,∠ABC=36°,∴∠BAC=108,∴∠BAD=∠DAE=∠EAC=36°.∴等腰三角形△ABC,△ABD,△ADE,△ACE,△ACD,△ABE,共有6个.故选D.【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°【考点】角平分线的性质;三角形内角和定理.【分析】由角平分线的性质可得MA=MB,再求解出∠MAB的大小,在△ABM中,则可求解∠MAB 的值.【解答】解:∵∠AOB=40°,且OM为其平分线,∴∠AOM=∠BOM=20°,又MA⊥OA,MB⊥OB,∴MA=MB,∠AMO=∠BMO=70°,∴∠AMB=140°,∴∠MAB=(180°﹣∠AMB)=×(180°﹣140°)=20°,故选D.【点评】本题考查了角平分线的性质;熟练掌握角平分线的性质,能够求解一些简单的计算问题.6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【考点】轴对称的性质.【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.7.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点【考点】三角形的内切圆与内心.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选C.【点评】此题主要考查了线段的垂直平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4 B.5 C.6 D.8【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.【专题】压轴题.【分析】根据∠COP=∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO≌△COD,进而可以证明AP=CO,即可解题.【解答】解:∵∠COP=∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD.在△APO和△COD中,,∴△APO≌△COD(AAS),∴AP=CO,∵CO=AC﹣AO=6,∴AP=6.故选C.【点评】本题考查了等边三角形各内角为60°的性质,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△APO≌△COD是解题的关键.二、耐心填一填9.请写出4个是轴对称图形的汉字:如中、日、土、甲等.【考点】轴对称图形.【分析】根据轴对称图形的概念,以及汉字的特征求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:答案不唯一,如中、日、土、甲等.【点评】解答此题的关键是掌握轴对称图形的概念,以及汉字的特征.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.若等腰三角形的一个外角为130°,则它的底角为65°或50°度.【考点】等腰三角形的性质;三角形内角和定理.【专题】计算题;分类讨论.【分析】根据已知可求得与这个外角相邻的内角,因为没有指明这个内角是顶角还是底角,所以分两情况进行分析,从而不难求得其底角的度数.【解答】解:∵等腰三角形的一个外角为130°,∴与这个外角相邻的角的度数为50°,∴当50°角是顶角时,其底角为65°;当50°角是底角时,底角为50°;故答案为:65°或50°.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51 .【考点】镜面对称.【专题】几何图形问题.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为40cm .【考点】等腰梯形的性质.【专题】探究型.【分析】作DE∥AB交BC与点E.则四边形ABED是平行四边形,△DEC是等边三角形,即可求得CD,BE的长度,从而求解.【解答】解:作DE∥AB交BC与点E.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴AB=AD=CD=DE=BE=8cm,∵∠C=60°,∴△DEC是等边三角形.∴EC=DC=AB=8cm.∴梯形ABCD的周长=AD+AB+BC+CD=AB+AD+BE+EC+CD=8×5=40cm.故答案为:40cm.【点评】本题考查等腰梯形的性质,正确作出辅助线,把等腰梯形转化成平行四边形与等边三角形是解答此题的关键.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC= 15 °;(2)若BC=21cm,则△BCE的周长是53cm .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由DE垂直平分AB交AC于E,可得AE=BE,然后由等腰三角形的性质,可求得∠ABE的度数,又由AB=AC,∠ABC的度数,继而求得答案;(2)由AB=AC=32cm,BC=21cm,△BCE的周长=AC+BC,即可求得答案.【解答】解:(1)∵DE垂直平分AB交AC于E,∴AE=BE,∵∠A=50°,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C==65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵AB=AC=32cm,BC=21cm,∴△BCE的周长是:BC+BE+EC=BC+_AE+EC=BC+AC=21+32=53(cm).故答案为:(1)15,(2)53cm.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是 3 cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD 即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM= 5 ,理由是:直角三角形斜边上的中线等于斜边的一半.【考点】直角三角形斜边上的中线.【专题】网格型.【分析】先根据网格结构求出AB的长,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由图可知,AB=10,∵∠ACB=90°,M是AB的中点,∴CM=AB=×10=5(直角三角形斜边上的中线等于斜边的一半).故答案为:5,直角三角形斜边上的中线等于斜边的一半.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,读懂题目信息并熟练掌握性质是解题的关键.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长 5 cm.【考点】轴对称的性质.【分析】由O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,根据轴对称的性质,可得OE=ME,OF=NF,继而可得△OEF的周长=MN,则可求得答案.【解答】解:∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5.【点评】此题考查了轴对称的性质.此题比较简单,注意掌握转化思想的应用.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数45°或135°.【考点】等腰三角形的性质.【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为45°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为135°.【解答】解:①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故答案为45°或135°.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有8 个.【考点】等腰三角形的判定;勾股定理.【专题】网格型.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC 其中的一条腰.【解答】解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故答案为:8.【点评】此题主要考查了等腰三角形的判定,解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解,数形结合的思想是数学解题中很重要的解题思想.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.【考点】利用轴对称设计图案.【专题】压轴题;开放型.【分析】因为正三角形是轴对称图形,其对称轴是从顶点向底边所作垂线,故只要所涂得小正三角形关于大正三角形的中垂线对称即可.【解答】解:如图.【点评】解答此题要明确:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形;对称轴:折痕所在的这条直线叫做对称轴.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【考点】作图—基本作图.【专题】作图题.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.【点评】解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)中垂线上的点到两个端点的距离相等.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.【考点】全等三角形的判定与性质.【专题】证明题;压轴题.【分析】利用SAS证得△ACD≌△ABD,从而证得BD=CD,利用等边对等角证得结论即可.【解答】证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴在△ACD和△ABD中,∴△ACD≌△ABD,∴BD=CD,∴∠DBC=∠DCB.【点评】本题考查了全等三角形的判定与性质,特别是在应用SAS进行判定三角形全等时,主要A为两边的夹角.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.【考点】等腰梯形的性质.【分析】由AB=AD=CD,可知∠ABD=∠ADB,又AD∥BC,可推得BD为∠B的平分线,而由题可知梯形ABCD为等腰梯形,则∠B=∠C,那么在RT△BDC中,∠C+∠C=90°,可求得∠C=60°.【解答】解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°【点评】先根据已知条件可知四边形为等腰梯形,然后根据等腰梯形的性质和已知条件求解.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是△AEF、△OEB、△OFC、△OBC、△ABC .猜想:EF与BE、CF之间的关系是EF=BE+CF .理由:(2)如图②,若AB≠AC,图中等腰三角形是△EOB、△FOC .在第(1)问中EF与BE、CF 间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC 交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.【考点】等腰三角形的判定.【专题】探究型.【分析】(1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得:∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出的等腰三角形有:△AEF、△OEB、△OFC、△OBC、△ABC;已知了△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(2)由(1)的证明过程可知:在证△OEB、△OFC是等腰三角形的过程中,与AB=AC的条件没有关系,故这两个等腰三角形还成立.所以(1)中得出的EF=BE+FC的结论仍成立.(3)思路与(2)相同,只不过结果变成了EF=BE﹣FC.【解答】解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF.(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.(证明过程同(1))(3)△EOB和△FOC仍是等腰三角形,EF=BE﹣FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO﹣FO=BE﹣FC.【点评】此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.进行线段的等量代换是正确解答本题的关键.。

苏科版八年级上册数学第二章 轴对称图形含答案(满分必备)

苏科版八年级上册数学第二章 轴对称图形含答案(满分必备)

苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、下列命题是真命题的是().A.有两条边、一个角相等的两个三角形全等。

B.等腰三角形的对称轴是底边上的中线。

C.全等三角形对应边上的中线相等。

D.有一个角是60°的三角形是等边三角形。

2、如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°3、有一张平行四边形纸片ABCD,已知,按如图所示的方法折叠两次,则的度数等于()A.55°B.50°C.45°D.40°4、到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条垂直平分线的交点5、在下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、如图,在△ABC中,AB>AC,分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=7,AC=5,则△ACD的周长为()A.2B.12C.17D.197、剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A. B. C. D.8、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长9、如图,C、D在以线段AB为直径的⊙O上,若CA=CD,且∠ACD=40°,则∠CAB=()A.10°B.20°C.30°D.40°10、已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B 为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是()A.12cm 2B.24cm 2C.36cm 2D.48cm 211、如图,AB∥CD,AB=AC,∠1=40°,则∠ACE的度数为()A.80°B.100°C.120°D.160°12、如图,把一矩形纸片OABC放入平面直角坐标系xoy中,使OA,OC分别落在x轴、y轴上,现将纸片OABC沿OB折叠,折叠后点A落在点A'的位置,若OA=1,OB=2,则点A'的坐标为()A. B. C.() D.()13、将AD与BC两边平行的纸条ABCD按如图所示折叠,则∠1的度数为()A.72°B.45°C.56°D.60°14、如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个B.2个C.3个D.4个15、如图,等边的边长为3,点D在边上,,线段在边上运动,,有下列结论:① 与可能相等;② 与可能相似;③四边形面积的最大值为;④四边形周长的最小值为.其中,正确结论的序号为()A.①④B.②④C.①③D.②③二、填空题(共10题,共计30分)16、某同学从平面镜里看到镜子对面的电子钟的示数如图所示,这时的实际时间是________.17、如图,在△ABC中,已知∠B=∠C,则可判定AB=AC的依据是________;18、如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为________.19、在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则折痕CE的长为________.20、已知点在直线上,点在直线上,与关于y轴对称.则和的交点坐标为________.21、如图,矩形纸片ABCD,AD=2AB=4,点F在线段AD上,将△ABF沿BF向下翻折,点A的对应点E落在线段BC上,点M,N分别是线段AD与线段BC上的点,将四边形CDMN沿MN向上翻折,点C恰好落在线段BF的中点C'处,则线段MN的长为________.22、如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.23、如图,△ABC中,已知AB=5,AC=4,AD平分∠BAC交BC于D,DE⊥AC交AC于点E,若DE=2,则△ABC的面积为________.24、如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=________.25、把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,在长方形ABCD中,已知AB=8cm,BC=10cm,将AD沿AF折叠,使点D落在BC上的点E处.求BE及CF的长.28、作图题:(要求保留作图痕迹,不写作法)(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);(2)连结BE,若AC=10,AB=6,求△ABE的周长.29、如图,在中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.30、如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC =3AD.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、D5、A6、B7、D8、A9、B10、B11、B12、B13、C14、C15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、。

苏科版数学八年级上第二单元《轴对称图形》单元考试(含答案解析)

苏科版数学八年级上第二单元《轴对称图形》单元考试(含答案解析)

苏科版数学八年级上第二单元《轴对称图形》单元考试一.选择题(共8小题)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=106°,则∠C的度数()A.40°B.37°C.36D.32°3.如图,已知四边形ABCD中,∠B=98°,∠D=62°,点E、F分别在边BC、CD上.将△CEF沿EF翻折得到△GEF,若GE∥AB,GF∥AD,则∠C的度数为()A.80°B.90°C.100°D.110°4.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.25.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm6.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.157.如图,在△ABC中,AB=AC,∠A=38°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为()A.33°B.38°C.43°D.48°8.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=28,DE=4,AB=8,则AC长是()A.8B.7C.6D.5二.填空题(共9小题)9.在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有种.10.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.题号一二三四五总分第分11.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF =AB;②∠BAF=∠CAF;③S四边形ADFE=AF×DE;④∠BDF+∠FEC=2∠BAC,正确的是(填序号)12.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.13.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=.14.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=21,则DE=.15.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=.16.若等腰三角形的一边是6,另一边是3,则此等腰三角形的周长是.17.如图,△ABC中,AB=AC,∠A=40°,DE垂直平分AC交AB于E,则∠BCE=三.解答题(共10小题)18.已知如下图,求作△ABC关于对称轴l的轴对称图形△A′B′C′.19.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.20.如图,在△ABC 中,AB =AC ,作AB 边的垂直平分线交直线BC 于M ,交AB 于点N.(1)如图(1),若∠A =40°,则∠NMB =度;(2)如图(2),若∠A =70°,则∠NMB =度;(3)如图(3),若∠A =120,则∠NMB =度;(4)由(1)(2)(3)问,你能发现∠NMB 与∠A 有什么关系?写出猜想,并证明.21.如图所示,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、AC 延长线于点F 、E .求证:DF ∥AC .证明:∵AD 平分∠BAC ∴∠=∠(角平分线的定义)∵EF 垂直平分AD ∴=(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD =∠ADF ()∴∠DAC =∠ADF (等量代换)∴DF ∥AC ()22.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠DCB 交AB 于点E .(1)求证:∠AEC =∠ACE ;(2)若∠AEC =2∠B ,AD =2,求AB的长.23.在△ABC 中,AD 是BC 边上的高,CE 是AB 边上的中线,且∠B =2∠BCE ,求证:DC =BE.24.等腰△ABC 中,AB =AC ,CE 为△ABC 的外角∠ACD 的平分线,∠ACB =2∠D ,BF ⊥AD .(1)求证:BF ∥CE ;(2)若∠BAC =40°,求∠ABF的度数.25.已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.26.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN的度数.(用含α的代数式表示)27.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A 、是轴对称图形,不合题意;B 、不是轴对称图形,符合题意;C 、是轴对称图形,不合题意;D 、是轴对称图形,不合题意;故选:B .【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2.【分析】连接AO 、BO .由题意EA =EB =EO ,推出∠AOB =90°,∠OAB +∠OBA =90°,由DO =DA ,FO =FB ,推出∠DAO =∠DOA ,∠FOB =∠FBO ,推出∠CDO =2∠DAO ,∠CFO =2∠FBO ,由∠CDO +∠CFO =106°,推出2∠DAO +2∠FBO =106°,推出∠DAO +∠FBO =53°,由此即可解决问题.【解答】解:如图,连接AO 、BO .由题意EA =EB =EO ,∴∠AOB =90°,∠OAB +∠OBA =90°,∵DO =DA ,FO =FB ,∴∠DAO =∠DOA ,∠FOB =∠FBO ,∴∠CDO =2∠DAO ,∠CFO =2∠FBO ,∵∠CDO +∠CFO =106°,∴2∠DAO +2∠FBO =106°,∴∠DAO +∠FBO =53°,∴∠CAB +∠CBA =∠DAO +∠OAB +∠OBA +∠FBO =143°,∴∠C =180°﹣(∠CAB +∠CBA )=180°﹣143°=37°,故选:B.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.3.【分析】依据平行线的性质,即可得到∠CEG =∠B =98°,∠CFG =∠D =62°,再根据四边形内角和进行计算即可.【解答】解:∵GE ∥AB ,GF ∥AD ,∴∠CEG =∠B =98°,∠CFG =∠D =62°,由折叠可得,∠C =∠G ,∴四边形CEGF 中,∠C =(360°﹣98°﹣62°)=100°,故选:C .【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n 的最小值为3,故选:C .【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.5.【分析】先求出CD 的长,过点D 作DE ⊥AB 于点E ,根据角平分线上的点到角的两边的距离相等的性质可得DE =CD ,从而得解.【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BC =12cm ,BD =8cm ,∴CD =BC ﹣BD =12﹣8=4cm ,∵∠C =90°,AD 平分∠CAB ,∴DE =CD =4cm ,即点D 到直线AB 的距离是4cm .故选:B .【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.6.【分析】直接利用线段垂直平分线的性质得出AE =BE ,进而得出答案.【解答】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE =BE ,∵AC =8,BC =5,∴△BEC 的周长是:BE +EC +BC =AE +EC +BC =AC +BC =13.故选:B .【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.7.【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD =BD ,根据等边对等角的性质,可得∠ABD =∠A ,然后求∠DBC 的度数即可.【解答】解:∵AB =AC ,∠A =38°,∴∠ABC =(180°﹣∠A )=(180°﹣38°)=71°,∵MN 垂直平分线AB ,∴AD =BD ,∴∠ABD =∠A =38°,∴∠DBC =∠ABC ﹣∠ABD =71°﹣38°=33°.故选:A .【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.8.【分析】首先由角平分线的性质可知DF =DE =4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【解答】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,∴28=×8×4+×AC ×4,∴AC =6.故选:C .【点评】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.二.填空题(共9小题)9.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有等腰三角形、矩形、菱形、正方形、正六边形、圆6种.故答案为:6.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.10.【分析】由D 为BC 中点知BD =3,再由折叠性质得ND =NA ,从而根据△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD 可得答案.【解答】解:∵D 为BC 的中点,且BC =6,∴BD =BC =3,由折叠性质知NA =ND ,则△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD =3+9=12,故答案为:12.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【分析】根据翻折变换的性质可得AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,根据平行线的性质和等腰三角形三线合一的性质判断只有AB =AC 时①②正确;根据对角线互相垂直的四边形的面积等于对角线乘积的一半可得S 四边形ADFE =AF •DE ,判断出③正确;根据翻折的性质和平角的定义表示出∠ADE 和∠AED ,然后利用三角形的内角和定理列式整理即可得到∠BDF +∠FEC =2∠BAC ,判断出④正确.【解答】解:∵△ABC 沿DE 折叠点A 与BC 边的中点F 重合,∴AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,只有AB =AC 时,∠BAF =∠CAF =∠AFE ,EF ∥AB ,故①②错误;∵AF ⊥DE ,∴S 四边形ADFE =AF •DE ,故③正确;由翻折的性质得,∠ADE =(180°﹣∠BDF),∠AED =(180°﹣∠FEC),在△ADE中,∠ADE+∠AED+∠BAC=180°,∴(180°﹣∠BDF)+(180°﹣∠FEC)+∠BAC=180°,整理得,∠BDF+∠FEC=2∠BAC,故④正确.综上所述,正确的是③④共2个.故答案为:③④.【点评】本题考查了翻折变换的性质,主要利用了平行线判定,等腰三角形三线合一的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.12.【分析】根据轴对称图形的定义求解可得.【解答】解:如图所示,共有4种涂黑的方法,故答案为:4.【点评】本题主要考查的是利用轴对称的性质设计图案,掌握轴对称图形的性质是解题的关键.13.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【解答】解:过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为:4.【点评】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.14.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,∴S△ABC=AB•DE +BC•DF =×6DE +×8DE=21,即3DE+4DE=21,解得DE=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.15.【分析】作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.【解答】解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=6,故答案为:6.【点评】本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.16.【分析】根据等腰三角形的两腰相等,分①6是腰长,②3是腰长,两种情况讨论求解即可.【解答】解:①6是腰长,能够组成三角形,周长=6+6+3=15,②3是腰长,∵3+3=6,∴3、3、6不能组成三角形,∴三角形的周长为15.故答案为:15.【点评】本题考查了等腰三角形的性质,注意要分情况讨论并利用三角形的三边关系判断是否能够组成三角形,然后再求解.17.【分析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=40°,再由∠A=40°,AB=AC,根据三角形内角和定理可求∠ACB的度数,即可解答.【解答】解:∵DE垂直平分AC,∠A=40°,∴AE=CE,∴∠ACE=∠A=40°,∵∠A=40°,AB=AC,∴∠ACB=70°,∴∠BCE=∠ACB﹣∠ACE=70°﹣40°=30°.故∠BCE的度数是30°.故答案为:30°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,熟记性质是解题的关键.三.解答题(共10小题)18.【分析】分别作出点B与点C关于直线l的对称点,然后连接AB′,AC′,B′C′.即可得到△ABC关于对称轴l的轴对称图形△A′B′C′.【解答】解:【点评】作一个图形的对称图形就是作各个顶点关于对称轴的对称点,把作对称图形的问题可以转化为作点的对称点的问题.19.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.20.【分析】(1)利用等腰三角形的性质求出∠B,再利用三角形内角和定理解决问题即可.(2)(3)(4)方法类似.【解答】解:(1)如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB =(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(3)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.【点评】本题考查线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】根据角平分线的定义,线段垂直平分线的性质,等边对等角解决问题即可.【解答】证明:∵AD平分∠BAC∴∠BAD=∠DAC(角平分线的定义)∵EF垂直平分AD∴FD=FA(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD=∠ADF(等边对等角)∴∠DAC=∠ADF(等量代换)∴DF∥AC(内错角相等两直线平行).故答案为:BAD,DAC,FD,FA,等边对等角,内错角相等两直线平行.【点评】本题考查线段的垂直平分线的性质,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)依据∠ACB=90°,CD⊥AB,即可得到∠ACD=∠B,再根据CE平分∠BCD,可得∠BCE=∠DCE,进而得出∠AEC=∠ACE;(2)依据∠ACD=∠BCE=∠DCE,∠ACB=90°,即可得到∠ACD=30°,进而得出Rt△ACD中,AC=2AD =4,Rt△ABC中,AB=2AC=8.【解答】解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=4,∴Rt△ABC中,AB=2AC=8.【点评】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.23.【分析】连接DE.想办法证明∠BCE=∠DEC即可解决问题.【解答】证明:连接DE.∵AD是BC边上的高,CE是AB边上的中线,∴∠ADB=90°,AE=BE,∴BE=AE=DE,∴∠EBD=∠BDE,∵∠B=2∠BCE,∴∠BDE=2∠BCE,∵∠BDE=∠BCE+∠DEC,∴∠BCE=∠DEC,∴BE=DC.【点评】本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【分析】(1)根据三角形外角的性质可得∠DAC=∠D,可得CA=CD,再根据等腰三角形的性质和平行线的判定即可求解;(2)根据等腰三角形的性质可求∠ACB,再根据三角形外角的性质可得∠CAD,再根据三角形内角和为180°即可求解.【解答】(1)证明:∵∠ACB=2∠D,∴∠DAC=∠D,∴CA=CD,∵CE为△ABC的外角∠ACD的平分线,∴CE⊥AD,∵BF⊥AD,∴BF∥CE;(2)解:∵∠BAC=40°,∴∠ACB=70°,∴∠DAC=35°,∴∠ABF=180°﹣90°﹣(40°+35°)=15°.【点评】考查了等腰三角形的性质,平行线的判定,三角形外角的性质,关键是得到CA=CD.25.【分析】(1)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论;(2)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论.【解答】解:(1)∵∠XOY=90°,∠OAB=40°,∴∠ABY=130°,∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB=20°,∠EBA =∠YBA=65°,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=45°,故答案为:45;(2)∠ACB的大小不变化.理由:∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB,∠EBA =∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB =∠YBA ﹣∠OAB=(∠YBA﹣∠OAB),∵∠YBA﹣∠OAB=90°,∴∠C =×90°=45°,即:∠ACB的大小不发生变化.【点评】此题主要考查了角平分线定理,三角形的外角的性质,解本题的关键是得出∠YBA﹣∠OAB=90°.26.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE =∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.27.【分析】(1)先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;(2)利用等腰三角形的性质和三角形的内角和即可得出结论;(3)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.【点评】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.第13页(共13页)。

苏科版八年级上册数学第二章 轴对称图形 含答案(各地真题)

苏科版八年级上册数学第二章 轴对称图形 含答案(各地真题)

苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、下列四个图案中,不是轴对称图形的是().A. B. C. D.2、如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①AE=CE;②S△ABC =AB•AC;③S△ABE=2S△AOE;④OE=BC,成立的个数有()A.1个B.2个C.3个D.43、下列图形中轴对称图形的个数有()A.4个B.3个C.2个D.1个4、如图是一个由几个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图D.主视图5、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点7、等腰三角形有两条边的长分别为4和9,则该三角形的周长是()A.17或22B.13或22C.17D.228、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,在△ABC中,AD是中线,DE⊥BC交AB于E,AH∥DE交BC于H,且∠DAH=∠CAH,连接CE交AD于F,交AH于G.下列结论:①△AEF∽△CEA;②FH ∥AC;③若CE⊥AB,则tan∠BAC=2;④若四边形AEDG是菱形,则∠ACB=60°.其中正确的是()A.①②③B.②③④C.①②D.①②③④10、如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6 cm,则∠AOB的度数是()A.15B.30C.45D.6011、若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70°B.40°C.70°或40°D.70°或55°12、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是()A.2∠A=∠1-∠2B.3∠A=2(∠1-∠2)C.3∠A=2∠1-∠2D.∠A=∠1-∠213、如图,在△ABE中,AE的垂直平分线MN交BE于点C,∠E=30°,且AB=CE,则∠BAE的度数是()A.80°B.85°C.90°D.105°14、等腰三角形底边长10 cm,腰长为13,则此三角形的面积为( )A.40B.50C.60D.7015、如图,在△ABC中,点O是∠ABC的平分线与线段BC的垂直平分线的交点,则下列结论不一定成立的是()A.OB=OCB.OD=OFC.BD=DCD.OA=OB=OC二、填空题(共10题,共计30分)16、如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC 的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是________°.17、如图,已知等边三角形ABC的高为7cm,P为△ABC内一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F.则PD+PE+PF=________.18、已知等边△ABC的高为6,在这个三角形所在的平面内有一点P,若点P到直线AB的距离是1,点P到直线AC的距离是3,则点P到直线BC的距离可能是________.19、如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q 分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).当t为________ 时,以B,P,Q三点为顶点的三角形是等腰三角形?20、如图所示,在中,,,将绕点顺时针旋转至,使得点恰好落在上,则旋转角度为________.(注:等腰三角形的两底角相等)21、在中,AB=AC,,则 :∠B=________。

第2章+轴对称图形+综合提优练习2024-2025学年苏科版八年级数学上册+

第2章+轴对称图形+综合提优练习2024-2025学年苏科版八年级数学上册+

第2章《轴对称图形》综合提优练习一、选择题1.△ABC中,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,且DE =4,则AD+AE的值为()A.6B.14C.6或14D.8或122.如图,在△ABC中,∠BAC>90°,D为BC的中点,点E在AC上,将△CDE沿DE 折叠,使得点C恰好落在BA的延长线上的点F处,连接AD、CF,则图中所有的等腰三角形的个数为()A.1B.2C.3D.43.如图,AD∥BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2﹣AD2的值等于()A.14B.9C.8D.54.如图,四边形ABCD中,AB=AD,BC=BD,若∠ABD=∠BAC=α,则∠BDC的度数为()A.2αB.45°+αC.90°﹣αD.180°﹣3α5.如图,∠BAC=30°,AP平分∠BAC,GF垂直平分AP,交AC于F,Q为射线AB上一动点,若PQ的最小值为3,则AF的长为()A.3B.6C.3D.96.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.以下四个结论:①△ADC≌△AEB;②∠AEG=∠CDB;③△EGM是等腰三角形;④BG=AF+FG;恒成立的结论有()A.①②③④B.①③C.②③④D.①②④二、填空题7.如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=28°,∠EBD=25°,则∠AED =°.8.如图,在△ABC中,∠C=60°,AC=5,BC=4,点D为CB延长线上一点.当点D 在CB延长线上运动时,AD﹣BD的最小值为.9.如图,线段OM⊥ON,O为垂足,一把角尺的直角顶点A在线段OM上,端点B在线段ON上,已知ON=AB=4,AC=2,当点B在从点O运动到点N的过程中,点C也随着运动,当线段OC最长时,∠BAO的度数为.10.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB上的一点,连接CD,将△BCD 沿CD翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF 翻折,点A恰好与点E重合,则∠CEF的度数为.11.如图,∠ABC=60°,AB=4,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒(t>0),当△ABP为锐角三角形时,t的取值范围是.12.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ADC沿直线AD折叠后,点C落在点E的位置上,连接BE,则BE的长是.13.如图,△ABC的边AB、AC的垂直平分线m、n相交于点D,连接CD,若∠1=39°,则∠BCD的大小是度.14.如图,在△ABC中,∠ACB=90°,S△ABC=14,BC=4,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.三、解答题15.如图,已知线段a、b,请用无刻度的直尺和圆规作出特定的三角形:(1)求作一个等腰三角形,使得它的腰长为b,底边上的高为a.(2)求作一个三角形,使得它的两边长分别为a、b,第三边上的中线为c.16.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连接CD、DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,EC=8时,求△EDC的面积.17.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(不用写作法)(1)如图①,在l上求作一点M,使得AM+BM最小;(2)如图②,在l上求作一点M,使得|AM﹣BM|最小;(3)如图②,在l上求作一点M,使得|AM﹣BM|最大.18.如图钢架中,∠A=20°,焊上等长的钢条来加固钢架,若AP1=P1P2,问这样的钢条至多需要多少根?(1)请补充完整如下解答:解:由题意可知,P1P2=P2P3=P3P4=P4P5=…∵∠A=20°,AP1=P1P2,∴∠AP2P1=.∴∠P2P1P3=∠P1P3P2=40°,同理可得,∠P3P2P4=∠P2P4P3=60°,∠P4P3P5=∠P4P5P3=.∴∠P5P4B=100°>90°,∴对于直线P4B上任意一点P6(点P4除外),P4P5<P5P6,∴这样的钢条至多需要根.(2)继续探究:当∠A=15°时,这样的钢条至多需要多少根?19.在探索三角形全等的条件时,老师给出了定长线段a,b,且长度为b的边所对的角为n°(0<n<90°)小明和小亮按照所给条件分别画出了图1中的三角形,他们把两个三角形重合在一起(如图2),其中AB=a,BD=BC=b,发现它们不全等,但他们对该图形产生了浓厚兴趣,并进行了进一步的探究:(1)当n=45时(如图2),小明测得∠ABC=65°,请根据小明的测量结果,求∠ABD 的大小;(2)当n≠45时,将△ABD沿AB翻折,得到△ABD′(如图3),小明和小亮发现∠D′BC的大小与角度n有关,请找出它们的关系,并说明理由;(3)如图4,在(2)问的基础上,过点B作AD′的垂线,垂足为点E,延长AE到点F,使得EF=(AD+AC),连接BF,请判断△ABF的形状,并说明理由.20.定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图1,BE是△ABD的“双等腰线”,AD、BE是△ABC的“三等腰线”.(1)请在图2三个图中,分别画出△ABC的“双等腰线”,并做必要的标注或说明.(2)如果一个等腰三角形有“双等腰线”,那么它的底角度数是.(3)如图3,△ABC中,∠C=∠B,∠B<45°.画出△ABC所有可能的“三等腰线”,使得对∠B取值范围内的任意值都成立,并做必要的标注或说明.(每种可能用一个图单独表示,如果图不够用可以自己补充)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——教学资料参考参考范本——【初中教育】最新最新八年级数学上册第二章轴对称图形单
元练习题四苏科版
______年______月______日
____________________部门
1.下列图形中,不是轴对称图形的是()
A. B. C. D.
2.下列说法中正确的是()
A. 4的平方根是2
B.点(﹣3,﹣2)关于x轴的对称点是(﹣3,2)
C.是无理数38
D.无理数就是无限小数
3.如图,在△ABC中,∠ABC=90°,∠A=30°,BC=1. M、N分别是AB、AC上的任意一点,求MN+NB的最小值为()
A. 1.5 B. 2 C. + D.3
23
4
3
4.在下列图案中,不是轴对称图形的是()
A.B.C.D.
5.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个
6.下列汽车标志不是轴对称的图形是()
A. B.
C. D.
7.剪纸是中国古老的汉族传统民间艺术之一.下面
是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形
B.是中心对称图形但不是轴对称图形
C.既是轴对称图形也是中心对称图形
D.既不是轴对称图形也不是中心对称图形
8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.
9.下列图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
10.下列图形中是轴对称图形的是()
A. B. C. D.
11.已知点A(-2,-3),点A与点B关于y轴对称,则点B的坐标为___________.
12.如图,在三角形纸片ABC中,∠C=90°,BC=4,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,AC=8,则AE的长为_________.
13.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m-n=__________.
14.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=100°,那么∠BCD的度数等于_______.
15.如图,△ABC的内部有一点P,且D,E,F是点P分别以AB,BC,AC为对称轴的对称点,则∠ADB+∠BEC+∠CFA=___.
16.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是____.
17.若点,关于轴对称,则____________..()
M a-(),
N b a x a b
3,2
+= 18.将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2=______.
19.如图,四边形ABCD中,∠C=70°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小,此时∠MAN的度数为_________°.
20.点p(-1, -2)关于y轴对称的点的坐标是_______
21.如图,在平面直角坐标系xoy中,A(-1,5),B(-1,0),C(-4,3).(1)画出△ABC关于y轴的对称图形是△A1B1C1,并写出点A1,B1,C1 的坐标.
(2)求出△ABC的面积.
22.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.
23.(1)如图,在“4×4”正方形网格中,已有2个小正方形被涂黑.请你分别在下面2张图中再将若干个空白的小正方形涂黑,使得涂黑的图形成为轴对称图形.(图(1)要求只有1条对称轴,图(2)要求只有2条对称轴).
(只有1条对称轴) (只有2条对称轴) 图⑴ 图⑵
⑵如图,A 、B 为直线MN 外两点,且到MN 的距离不相等.分别在MN 上求一点P ,并满足如下条件:①在图⑶中求一点P 使得PA+PB 最小; ②在图⑷中求一点P 使得|PA -PB |最大. (不写作法,保留作图痕迹)
24.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC 关于直线l 对称的△A1B1C1;(要求:A 与A1,B 与B1,C 与C1相对应)
(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C 的面积. 25.如图,方格纸中的每个小方格都是边长为的正方形,在建立平面直角坐标系后, 的顶点均在格点上, , , .1
ABC ()
1,5A -()2,0B -()4,3C -
(1)画出关于轴对称的;(其中、、是、、的对应点,不写画法)
ABC y 111A B C 1A 1B 1C A B C
(2)写出、、的坐标;1A 1B 1C (3)求出的面积.111A B C 26.阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.
(1)已知一次函数y=﹣2x的图象为直线l1,求过点P(1,4)且与已知直线l1平行的直线l2的函数表达式,并在坐标系中画出直线l1和l2的图象;
(2)设直线l2分别与y轴、x轴交于点A、B,过坐标原点O作OC⊥AB,垂足为C,求l1和l2两平行线之间的距离OC的长;
(3)若Q为OA上一动点,求QP+QB的最小值,并求取得最小值时Q 点的坐标.
27.长方形具有四个内角均为直角,并且两组对边分别相等的特征.如图,把一张长方形纸片ABCD折叠,使点C与点A重合,折痕为EF.(1)如果∠DEF=130°,求∠BAF的度数;
(2)判断△ABF和△AGE是否全等吗?请说明理由.
28.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC 关于x轴和y轴对称的图形.。

相关文档
最新文档