解析几何的结论
解析几何结论大全

解析几何结论大全
解析几何结论大全是一个非常广泛的主题,涵盖了许多方面。
以下是一些常见的解析几何结论:
1. 两点之间的距离公式:$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
2. 直线方程:点斜式 $y-y_1=m(x-x_1)$,斜截式 $y=mx+b$,两点式$y=\frac{y_2-y_1}{x_2-x_1}x+y_1$
3. 圆的方程:$(x-a)^2+(y-b)^2=r^2$,圆心 $(a,b)$,半径 $r$
4. 圆与圆的位置关系:相交、相切、相离
5. 圆锥曲线的标准方程:椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 或 $\frac{y^2}{a^2}-
\frac{x^2}{b^2}=1$,抛物线 $y^2=2px$ 或 $x^2=2py$
6. 圆锥曲线的焦点、准线、离心率等性质
7. 空间向量的加法、数乘、向量的模
8. 向量的数量积、向量积、向量的混合积
9. 向量的坐标表示:$(a,b,c)$,向量的模 $\sqrt{a^2+b^2+c^2}$
10. 空间直角坐标系中的点 $(x,y,z)$ 与其相邻三个坐标面围成的单位体积为$\frac{1}{6}$。
以上只是解析几何的一部分结论,还有许多其他结论和定理,可以根据需要进行查阅和学习。
解析几何中点结论六种形式

解析几何中点结论六种形式
解析几何中点结论是几何学中的一个重要定理,它有六种形式,分别是:
1. 两个中点之间的距离是原线段的一半。
2. 过一个三角形的三个顶点的中点作一条线段,这条线段是原
三角形的平行四边形的一半。
3. 过一个四边形的四个顶点的中点作一条线段,这条线段是原
四边形的平行四边形的一半。
4. 一个四边形的对角线的交点是对角线的中点。
5. 一个四边形的对角线的中点连成的线段是平行四边形的对角
线的一半。
6. 一个四边形的对角线的中点连成的线段是四边形的对角线的
中点。
这些形式展示了中点结论在不同几何图形中的应用,它们是几
何学中的基本定理,对于理解和解决各种几何问题都具有重要意义。
通过这些形式的解析,我们可以更好地理解中点结论的几何意义和
应用方法。
解析几何的经典结论

解析几何的经典结论1.通径椭圆、双曲线的通径为22b a,抛物线的通径为2p .2.点差法结论AB 是椭圆()222210x y a b a b +=>>的一条弦,()00,M x y 为弦AB 的中点,则中点弦AB 所在直线的斜率是:2020AB b x k a y =-;椭圆()222210y x a b a b +=>>,()00,M x y 为弦AB 的中点,中点弦AB 所在直线的斜率是:2020AB a x k b y =-;双曲线()222210,0x y a b a b -=>>,()00,M x y 为弦AB 的中点,中点弦AB 所在直线的斜率是:2020AB b x k a y =;双曲线()222210,0y x a b a b -=>>,()00,M x y 为弦AB 的中点,中点弦AB 所在直线的斜率是:2020AB a x k b y =; 抛物线)0(22>=p px y ,()00,M x y 为弦AB 的中点,中点弦AB 所在直线的斜率是:0AB p k y =;抛物线22(0)y px p =->,()00,M x y 为弦AB 的中点,中点弦AB 所在直线的斜率是:0AB p k y =-;抛物线)0(22>=p py x ,()00,M x y 为弦AB 的中点,中点弦AB 所在直线的斜率是:0AB x k p =;抛物线22(0)x py p =->,()00,M x y 为弦AB 的中点,中点弦AB 所在直线的斜率是:0AB x k p=-;(注意使用点差法结论时,保证直线AB 与圆锥曲线相交.另外,结论中的直线AB 斜率存在,且00y ≠). 3.设椭圆 ()222210x y a b a b+=>>的左、右顶点分别为A 、B ,点P 在椭圆上且异于A 、B 两点,则22PA PBb k k a ⋅=-;设椭圆()222210y x a b a b+=>>的下顶点、上顶点分别为A 、B ,点P 在椭圆上且异于A 、B 两点,则22PA PBa k k b⋅=-;设双曲线()222210,0x y a b a b-=>>的左、右顶点分别为A 、B ,点P 在双曲线上且异于A 、B 两点,则22PA PBb k k a ⋅=;设双曲线()222210,0y x a b a b-=>>的下顶点、上顶点分别为A 、B ,点P 在双曲线上且异于A 、B 两点,则22PA PBa k k b⋅=. 4.焦半径公式椭圆()222210x y a b a b+=>>,()00,P x y 为椭圆上一点,则焦半径10PF a ex =+,20PF a ex =-,其中e 是椭圆的离心率.椭圆()222210y x a b a b+=>>,()00,P x y 为椭圆上一点,则焦半径10PF a ey =+,20PF a ey =-,(注意此时焦点1F 在y 轴负半轴,焦点2F 在y 轴正半轴).双曲线()222210,0x y a b a b-=>>,()00,P x y 为双曲线上一点,若P 在右支,则焦半径10PF ex a =+,20PF ex a =-;若P 在左支,则焦半径10PF ex a =--,20PF ex a =-+.双曲线()222210,0y x a b a b-=>>,()00,P x y 为双曲线上一点,若P 在上支,则焦半径10PF ey a =+,20PF ey a =-;若P 在下支,则焦半径10PF ey a =--,20PF ey a =-+.(注意此时焦点1F 在y 轴负半轴,焦点2F 在y 轴正半轴). 抛物线的焦半径公式:抛物线)0(22>=p px y ,()00,P x y 为抛物线上一点,则焦半径02pPF x =+;过F 的焦点弦AB 的倾斜角为θ,则焦半径1cos p AF θ=-,1cos pBF θ=+.(A 在x 轴上方、B 在x 轴下方)抛物线)0(22>-=p px y ,()00,P x y 为抛物线上一点,则02pPF x =-; 抛物线)0(22>=p py x ,()00,P x y 为抛物线上一点,则02pPF y =+; 抛物线)0(22>-=p py x ,()00,P x y 为抛物线上一点,则02pPF y =-. 5.焦点三角形面积椭圆()222210x y a b a b +=>>、()222210y x a b a b +=>>的焦点分别为1F 、2F ,点P 为椭圆上任意一点,12F PF θ∠=,则椭圆的焦点三角形面积为:122tan2F PF S b θ∆=;双曲线()222210,0x y a b a b -=>>、()222210,0y x a b a b-=>>的焦点分别为1F 、2F ,点P 为双曲线上任意一点,12F PF θ∠=,则双曲线的焦点三角形面积为:1222cot 2tan 2F PF b S b θθ∆==; 6.切线与切点弦所在直线方程 ①切线方程过圆222x y r +=上一点()00,M x y 的切线方程:200x x y y r +=;过椭圆()222210x y a b a b +=>>上一点()00,M x y 的切线方程:00221x x y ya b +=;过双曲线()222210,0x y a b a b -=>>上一点()00,M x y 的切线方程:00221x x y ya b-=;过抛物线)0(22>=p px y 上一点()00,M x y 的切线方程:()00y y p x x =+;过抛物线)0(22>=p py x 上一点()00,M x y 的切线方程:()00x x p y y =+.②切点弦方程过圆222x y r +=外一点()00,M x y 作圆的两条切线,切点分别为A 、B ,则切点弦AB 所在直线的方程为:200x x y y r +=;过椭圆()222210x y a b a b+=>>外一点()00,M x y 作椭圆的两条切线,切点分别为A 、B ,则切点弦AB 所在直线的方程为:00221x x y ya b+=; 过双曲线()222210,0x y a b a b-=>>外一点()00,M x y 作双曲线的两条切线,切点分别为A 、B ,则切点弦AB 所在直线的方程为:00221x x y ya b-=; 过抛物线)0(22>=p px y 外一点()00,M x y 作抛物线的两条切线,切点分别为A 、B ,则切点弦AB 所在直线的方程为:()00y y p x x =+;过抛物线)0(22>=p py x 外一点()00,M x y 作抛物线的两条切线,切点分别为A 、B ,则切点弦AB 所在直线的方程为:()00x x p y y =+.7.等轴双曲线可设为:)0(22≠=-λλy x ;共渐近线x aby ±=的双曲线的标准方程可设为:()22220x y a b λλ-=≠. 8.若椭圆焦点位置不明确,椭圆方程可设为:221(0,0,)mx ny m n m n +=>>≠;若双曲线焦点位置不明确,双曲线方程可设为:221(0)mx ny mn +=<. 9. 弦长公式设斜率为()0k k ≠的直线l 与圆锥曲线C 相交于A 、B 两点,()11,A x y 、()22,B x y ,则弦长:12AB x =-==,其中a和∆分别是()200ax bx c a ++=≠中的二次项系数和判别式,k 为直线l 的斜率;当代入消元消掉的是x 时,得到02=++c by ay ,此时弦长公式为:()21212122221111141AB y y y y y y k k k a∆=+-=++-=+,其中a 和∆分别是()200ay by c a ++=≠中的二次项系数和判别式,k 为直线l 的斜率.10.抛物线)0(22>=p px y 焦点弦的常用结论①2124p x x ⋅=,212y y p ⋅=-;②1222sin pAB p x x θ=++=(θ为直线AB 的倾斜角). ③22sin AOBp S θ∆=(θ为直线AB 的倾斜角); ④112AF BF p+=; ⑤以AB 为直径的圆与准线相切,以AF 或BF 为直径的圆与y 轴相切; ⑥90CFD ︒∠=;⑦过焦点弦的端点的切线互相垂直且交点在准线上.11.已知点()11,A x y 、()22,B x y ,则以AB 为直径的圆的方程是:()()()()12120x x x x y y y y --+--=.。
平面解析几何中四个有用的向量结论

平面解析几何中四个有用的向量结论浙江师范大学数学系547# 蔡妙才(321004)平面解析几何是利用坐标法去研究平面内的曲线的性质,向量亦有坐标形式,因此,向量在解析几何中的应用比较广泛.1、利用两个非零向量,的数量积例1(2000年全国高考题)椭圆的焦点为,点P为其上的动点,当为钝角时,点P横坐标的取值范围是_.解:由题设P,,F,则2由于为钝角,所以,即…………………………①又点P在椭圆上,………………………………………………②由①、②不难得到2、利用两向量共线的充要条件:充要条件是存在一个实数,使例2(2001年安徽春季高考题)已知抛物线y²=2px(p≠0),若有过动点M (a,0)且斜率为1的直线L与抛物线交于不同的两点A,B,⑴求a 的取值范围;⑵若线段AB 的垂直平分线交x 轴于点N ,求的面积的最大值.解:(1)设A (),B (),如图1,则222121(,)2y y AB y y p -=- ,211(,)y MA a y =-()MB 与MA共线,22122()(22y y a y p p ∴--- 可得.= =令02,AB p <≤ 可得24p pa -≤≤-(2)设AB 的垂直平分线交AB 于点Q (),则(,)MQ p p ∴=,=(定值).,(AB 斜率为1,即三角形MQN 为直等腰三角形),故面积最大值为.3、 利用两个非零向量夹角公式cos a ba bθ⋅=⋅ ()例3 (1999年全国高考题)如图2,给出定点A ()(a 和直线L:x=-1,B是直线L 上的动点,的角平分线交AB 于点C ,求C 点的轨迹方程,并讨论方程表示的曲线类型a 值的关系.解:设B (-1,b ),C(x,y),则OA = (),OB = (),OC = (),则(),由OC 平分,知(1)当b 0,y 0,0x a,OA OC OB OC OA OC OB OC ⋅⋅=⋅⋅ x=……………………………①又共线,有(x-a )(y-b )-y (x+1)=0,b= ……………………………②将②代入①得: (1-a )(0x a )…………③(2) 当b=0时,,点C (0,0)适合③.综上⑴、⑵得C 的轨迹方程为: (1-a )(0x a ).(讨论略)4、 利用两个非零向量的充分条件0a b ⋅=.例4 (2000年北京、安徽春季高考题)如图3,设点A 和B 为抛物线y ²=4px (p 0)除原点以外的两个动点,已知,求点M 的轨迹方程,并说明它表示什么曲线.解:设A (则=(x,y ),AB=(,,,=0,即化简得=-16又OM AB ⊥ ,则OM AB ⋅即化简得:②又,()()-()()=0……③即()=0. 将①②代入③得:-4px=0A 、B 是异于原点的点,故x ≠0,所以点M 的轨迹方程-4px=0( x ≠0),它表示(2p ,0)为圆心,以2p 为半径的圆(除去原点).。
【二级结论】专题12 解析几何3

=,=(图1 图2 图3①以为直径的圆与准线相切;②以为直径的圆与轴相切;③以为直径的圆与轴相切;④分别以为直径的圆之间的关系:圆与圆外切;圆与圆既与轴相切,⼜与圆相内切.结合圆的⼏何性质易得有关直线垂直关系的结论,如图3有,①以为直径的圆的圆⼼在准线上的射影与两点的连线互相垂直,即;②以为直径的圆的圆⼼在轴上的射影与两点的连线互相垂直,即;③以为直径的圆的圆⼼在轴上的射影与两点的连线互相垂直,即;④以为直径的圆必过原点,即;⑤.【应⽤场景】AB M AF C y BF D y AB ,AF ,BF C D C D y M AB M 1A ,B A ⊥B M 1M 1AF y C 1A ,F A ⊥F C 1C 1BF y D 1B ,F B ⊥F D 1D 1A 1B 1F ⊥F A 1B 1F ⊥AB M 1运⽤焦点弦与圆有关的结论可以很⽅便的解决直线、圆、抛物线有关综合题,解题中要注意抛物线的定义、⼏何性质以及圆的⼏何性质的应⽤.【典例指引1】【反思】本题考查了抛物线的标准⽅程,抛物线的⼏何性质,以及直线和圆,直线和抛物线的位置关系的相关问题,当题设涉及直线,圆,圆锥曲线时,⼀般是直线与圆锥曲线相交于两点,需联⽴⽅程,得到根与系数的关系,⽽直线与圆经常利⽤圆的⼏何性质,得到⼀些常量,这些不变的量和圆锥曲线建⽴联系,从⽽进⼀步求解.【典例指引2】【针对训练】⼀、单选题:11. 在平⾯直⻆坐标系中,已知点,直线,动直线垂直于于点,线段的垂直平分线交于点,设的轨迹为.(1)求曲线的⽅程;(2)以曲线上的点为切点作曲线的切线,设 分别与,轴交于,两点,且恰与以定点为圆⼼的圆相切. 当圆的⾯积最⼩时,求与⾯积的⽐.12. 已知抛物线的准线为l ,记l 与y 轴交于点M ,过点M 作直线与C 相切,切点为N ,则以MN 为直径的圆的⽅程为( )A .或B .或C .或D .或13. 阿基⽶德(公元前287年---212年)是古希腊伟⼤的物理学家、数学家、天⽂学家,不仅在物理学⽅⾯贡献巨⼤,还享有“数学之神”的称号.抛物线上任意两点A 、B 处的切线交于点P ,称△为“阿基⽶德三⻆形”,当线段AB 经过抛物线焦点F 时,△具有以下特征:(1)P 点必在抛物线的准线上;(2)△为直⻆三⻆形,且;(3).若经过抛物线焦点的⼀条弦为AB ,阿基⽶德三⻆形为△,且点P 的纵坐标为4,则直线AB 的⽅程为( )A .x -2y -1=0B .2x +y -2=0C .x+2y -1=0D .2x -y -2=0(1)若的⾯积为,求的值及圆的⽅程(2)若直线与抛物线C交于P,Q两点,且,准线与y轴交于点S,点S关于直线PQ的对称点为T,求的取值范围.。
数学解析几何二级结论公式

数学解析几何二级结论公式一、椭圆部分。
1. 焦半径公式。
- 对于椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),设F_1,F_2为左右焦点,P(x,y)为椭圆上一点。
- 当P在椭圆上时,| PF_1|=a + ex,| PF_2|=a - ex(其中e=(c)/(a),c=√(a^2)-b^{2})。
- 对于椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1(a>b>0),设F_1,F_2为上下焦点,P(x,y)为椭圆上一点。
- | PF_1|=a+ey,| PF_2|=a - ey(其中e=(c)/(a),c=√(a^2)-b^{2})。
2. 椭圆的切线方程。
- 过椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{x_0x}{a^2}+frac{y_0y}{b^2} = 1。
- 过椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{y_0y}{a^2}+frac{x_0x}{b^2} = 1。
3. 中点弦结论(点差法)- 设椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),弦AB的中点为M(x_0,y_0)。
- 设A(x_1,y_1),B(x_2,y_2),将A、B两点代入椭圆方程相减得:k_AB=-frac{b^2x_0}{a^2y_0}(k_AB为弦AB的斜率)。
二、双曲线部分。
1. 焦半径公式。
- 对于双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1,设F_1,F_2为左右焦点,P(x,y)为双曲线上一点。
- 当P在双曲线右支上时,| PF_1|=ex + a,| PF_2|=ex - a(其中e=(c)/(a),c=√(a^2)+b^{2})。
高考数学专题六解析几何 微专题38 圆锥曲线中二级结论的应用

当我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率
π 与椭圆的长半轴长与短半轴长的乘积,已知椭圆 C:ax22+by22=1(a>b>0)的
面积为 6π,两个焦点分别为 F1,F2,点 P 为椭圆 C 的上顶点,直线 y=
kx 与椭圆 C 交于 A,B 两点,若 PA,PB 的斜率之积为-49,则椭圆 C 的
A,B
两点,且|A→F|=λ|F→B|,则椭圆的离心率等于λ+λ1-c1os
α.
2.设点 P 是双曲线ax22-by22=1(a>0,b>0)上异于实轴端点的任一点,则
(1)|PF1||PF2|=1-2cbo2s
θ.(2)
S△PF1F2
= b2 tan
由二级结论可知S△F1PF2 =
∠bF2 1PF2=5 3.
tan 2
(2)已知 P 为椭圆 C:x42+y32=1 上的一个动点,F1,F2 是椭圆 C 的左、右焦 点,O 为坐标原点,O 到椭圆 C 在 P 点处切线的距离为 d,若|PF1|·|PF2|=
274,则
14 d=____2____.
方法二 因为AB过抛物线的焦点, 设A(x1,y1),B(x2,y2), 则 x1x2=p42=1,y1y2=-p2=-4,
所以O→A·O→B=x1x2+y1y2=-3.
总结提升
圆锥曲线有许多形式结构相当漂亮的结论,记住圆锥曲线中一些二 级结论,能快速解决圆锥曲线压轴小题,常用结论包括椭圆与双曲 线中的焦点三角形面积公式、焦半径、切线方程、离心率等,周角 定理以及抛物线焦点弦二级结论的综合应用.
3.M为抛物线y2=2px(p>0)的准线l上一点,MA,MB均与抛物线相切,A, B为切点,则有:(见图4) (1)AB过焦点F. (2)2yM=yA+yB. (3)MA⊥MB. (4)MF⊥AB.
高中数学解析几何总结(非常全)

高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αt a n =k(1).倾斜角为︒90的直线没有斜率。
(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+bya x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何的结论Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#有关解析几何的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=. 6.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=. 7.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PFS b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12.若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13.若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b +=+. 二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b -=. 6.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7.双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
12.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-. 13.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-. 椭圆与双曲线的对偶性质--(会推导的经典结论)椭 圆1.椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P1、P2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2.过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22a c co a c αβ-=+.4.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8.已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +.9.过椭圆22221x y a b +=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10.已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.11.设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan2PF FS b γ∆=.12.设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2)2tan tan 1eαβ=-.(3) 22222cot PABa b S b aγ∆=-.13.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BCx ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.双曲线1.双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.2.过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).3.若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F2是焦点,12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+).4.设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.5.若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e ≤1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6.P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -.9.过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10.已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.11.设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b γ∆=.12.设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2) 2tan tan 1eαβ=-.(3) 22222cot PABa b S b a γ∆=+.13.已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BCx ⊥轴,则直线AC 经过线段EF 的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.其他常用公式:1、连结圆锥曲线上两个点的线段称为圆锥曲线的弦,利用方程的根与系数关系来计算弦长,常用的弦长公式:212122111AB k x x y y k =+-=+-2、直线的一般式方程:任何直线均可写成(A,B 不同时为0)的形式。