2019高中数学第二章函数第6节对数与对数函数课时作业北师大版必修1
高考数学一轮复习第二章第六节对数与对数函数课时作业理含解析北师大版

第六节 对数与对数函数授课提示:对应学生用书第281页〖A 组 基础保分练〗1.(2020·高考全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B.19 C.18 D.16〖解 析〗法一:因为a log 34=2,所以log 34a =2,所以4a =32=9,所以4-a =14a =19.法二:因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a ==9-1=19.〖答 案〗B2.函数y =log 3(2x -1)+1的定义域是( ) A.〖1,2〗 B.〖1,2) C.⎣⎡⎭⎫23,+∞ D.⎝⎛⎭⎫23,+∞ 〖解 析〗由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎨⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.〖答 案〗C 3.(2021·吕梁模拟)已知a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( ) A.c <a <b B.c <b <a C.a <c <b D.a <b <c〖解 析〗1<a =log 35=12log 325<12log 327=1.5,b =1.51.5>1.5,c =ln 2<1,所以c <a <b .〖答 案〗A4.已知x ∈⎝⎛⎭⎫12,1,a =ln x ,b =2ln x ,c =ln 3x ,那么( )A.a <b <cB.c <a <bC.b <a <cD.b <c <a〖解 析〗由于12<x <1,故x >x 2,故ln x >ln x 2=2ln x ,所以a >b .c -a =ln 3x -ln x =ln x (ln 2x-1),由于ln x <0,|ln x |<ln 2<1,ln 2x -1<0,所以ln x (ln 2x -1)>0,故c >a . 〖答 案〗C5.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎦⎤0,12C.⎝⎛⎭⎫12,+∞ D.(0,+∞)〖解 析〗因为-1<x <0,所以0<x +1<1.又因为f (x )>0,所以0<2a <1,所以0<a <12.〖答 案〗A 6.(2021·西安模拟)设方程10x =|lg (-x )|的两个根分别为x 1,x 2,则( ) A.x 1x 2<0 B.x 1x 2=0 C.x 1x 2>1 D.0<x 1x 2<1 〖解 析〗作出y =10x 与 y =|lg (-x )|的大致图像,如图所示.显然x 1<0,x 2<0. 不妨令x 1<x 2, 则x 1<-1<x 2<0,所以10x 1=lg (-x 1),10x 2=-lg (-x 2), 此时10x 1<10x 2,即lg (-x 1)<-lg (-x 2),由此得lg (x 1x 2)<0,所以0<x 1x 2<1. 〖答 案〗D7.已知2x =72y =A ,且1x +1y=2,则A 的值是__________.〖解 析〗由2x =72y =A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.〖答 案〗7 28.已知函数f (x )=log 0.5(x 2-ax +3a )在〖2,+∞)上单调递减,则a 的取值范围为__________. 〖解 析〗令g (x )=x 2-ax +3a ,因为f (x )=log 0.5(x 2-ax +3a )在〖2,+∞)上单调递减, 所以函数g (x )在区间〖2,+∞)内单调递增,且恒大于0,所以12a ≤2且g (2)>0,所以a ≤4且4+a >0,所以-4<a ≤4. 〖答 案〗(-4,4〗9.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 〖解 析〗(1)因为f (1)=2,所以log a 4=2(a >0,且a ≠1),所以a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2〖(1+x )(3-x )〗=log 2〖-(x -1)2+4〗, 所以当x ∈(-1,1〗时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. 〖解 析〗(1)∵f (1)=1,∴log 4(a +5)=1,得a =-1, 故f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3,函数定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上递增,在(1,3)上递减, 又y =log 4x 在(0,+∞)上递增,所以f (x )的单调递增区间是(-1,1),递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此⎩⎨⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.〖B 组 能力提升练〗1.函数f (x )=|log a (x +1)|(a >0,且a ≠1)的图像大致是( )〖解 析〗函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图像可知选C. 〖答 案〗C2.函数y =log a x 与y =-x +a 在同一平面直角坐标系中的图像可能是( )〖解 析〗当a >1时,函数y =log a x 的图像为选项B ,D 中过点(1,0)的曲线,此时函数y =-x +a 的图像与y 轴的交点的纵坐标a 应满足a >1,选项B ,D 中的图像都不符合要求;当0<a <1时,函数y =log a x 的图像为选项A ,C 中过点(1,0)的曲线,此时函数y =-x +a 的图像与y 轴的交点的纵坐标a 应满足0<a <1,选项A 中的图像符合要求. 〖答 案〗A3.已知函数f (x )=|ln x |.若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是( ) A.(4,+∞) B.〖4,+∞) C.(5,+∞) D.〖5,+∞) 〖解 析〗由f (a )=f (b )得|ln a |=|ln b |,根据函数y =|ln x |的图像及0<a <b ,得-ln a =lnb ,0<a <1<b ,1a =b .令g (b )=a +4b =4b +1b ,易得g (b )在(1,+∞)上单调递增,所以g (b )>g (1)=5,即a +4b >5.〖答 案〗C4.若log 2x =log 3y =log 5z <-1,则( ) A.2x <3y <5z B.5z <3y <2x C.3y <2x <5z D.5z <2x <3y〖解 析〗设log 2x =log 3y =log 5z =t ,则t <-1,x =2t ,y =3t ,z =5t ,因此2x =2t +1,3y =3t+1,5z =5t +1.又t <-1,所以t +1<0,由幂函数y =x t +1的单调性可知5z <3y <2x .〖答 案〗B 5.(2020·高考全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b〖解 析〗∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝⎛⎭⎫log 52422-1log 58<⎝⎛⎭⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4,4<5log 138,∴log 85<log 138,∴log 53<log 85<log 138,即a <b <c . 〖答 案〗A6.(2021·黄石模拟)已知x 1=log 132,x 2=2,x 3满足⎝⎛⎭⎫13x 3=log 3x 3,则( )A.x 1<x 2<x 3B.x 1<x 3<x 2C.x 2<x 1<x 3D.x 3<x 1<x 2 〖解 析〗由题意可知x 3是函数y 1=⎝⎛⎭⎫13x 与y 2=log 3x 的图像交点的横坐标,在同一直角坐标系中画出函数y 1=⎝⎛⎭⎫13x与y 2=log 3x 的图像,如图所示,由图像可知x 3>1,而x 1=log 132<0,0<x 2=2<1,所以x 3>x 2>x 1.〖答 案〗A7.已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3,若存在实数a ,b ,c ,d ,满足f (a )=f (b )=f(c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围__________.〖解 析〗由题意可得-log 3a =log 3b =13c 2-103c +8=13d 2-103d +8,可得log 3(ab )=0,故ab =1.结合函数f (x )的图像,在区间〖3,+∞)上, 令f (x )=1可得c =3,d =7,cd =21. 令f (x )=0可得c =4,d =6,cd =24. 故有21<abcd <24.〖答 案〗(21,24)〖C 组 创新应用练〗 1.(2020·新高考全国卷)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( ) A.1.2天 B.1.8天 C.2.5天 D.3.5天 〖解 析〗由R 0=1+rT ,R 0=3.28,T =6, 得r =R 0-1T =3.28-16=0.38.由题意,累计感染病倒数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8.〖答 案〗B 2.(2021·朝阳模拟)在标准温度和大气压下,人体血液中氢离子的物质的量浓度(单位mol/L ,记作〖H +〗)和氢氧根离子的物质的量浓度(单位mol/L ,记作〖OH -〗)的乘积等于常数10-14.已知pH 值的定义为pH =-lg 〖H +〗,健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( ) A.12 B.13 C.16 D.110〖解 析〗由题意可得pH =-lg 〖H +〗∈(7.35,7.45),且〖H +〗·〖OH -〗=10-14,∴lg [H +][OH -]=lg[H +]10-14[H +]=lg 〖H +〗2+14=2lg 〖H +〗+14.∵7.35<-lg 〖H +〗<7.45,∴-7.45<lg 〖H +〗<-7.35,∴-0.9<2lg 〖H +〗+14<-0.7,即-0.9<lg[H +][OH -]<-0.7.∵lg 12=-lg 2≈-0.30,故A 错误;lg 13=-lg 3≈-0.48,故B 错误;lg 16=-lg 6=-(lg 2+lg 3)≈-0.78,故C 正确;lg 110=-1,故D 错误.〖答 案〗C3.已知函数f (x )=ln x1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是__________.〖解 析〗由题意可知ln a 1-a +ln b1-b=0,即ln ⎝ ⎛⎭⎪⎫a 1-a ·b 1-b =0,从而a 1-a ·b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14.又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14,即ab ∈⎝⎛⎭⎫0,14. 〖答 案〗⎝⎛⎭⎫0,14。
高中数学 3.5 对数函数(二)课时作业 北师大版必修1

§5 对数函数(二)课时目标 1.进一步加深理解对数函数的性质.2.掌握对数函数的性质及其应用.1.函数y =log a x 的图像如图所示,则实数a 的可能取值是( )A .5 B.15C.1eD.12 2.下列各组函数中,表示同一函数的是( )A .y =x 2和y =(x )2B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x+1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图像经过(-1,0)和(0,1)两点,则f (2)=________.6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点______________________________ __________________________________________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x)的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( )A .f (2)>f (-2)B .f (1)>f (2)C .f (-3)>f (-2)D .f (-3)>f (-4)4.函数f (x )=a x+log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x(-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)二、填空题7.函数f (x )=lg(2x-b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是________. 9.若log a 2<2,则实数a 的取值范围是______________. 三、解答题10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=12log 1-axx -1的图像关于原点对称,其中a 为常数.(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (x -1)<m 恒成立.求实数m 的取值范围.能力提升12.若函数f (x )=log a (x 2-ax +12)有最小值,则实数a 的取值范围是( )A .(0,1)B .(0,1)∪(1,2)C .(1,2)D .[2,+∞) 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图像的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图像均过点(1,0),且由定义域的限制,函数图像穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图像绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图像,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.§5 对数函数(二) 双基演练 1.A2.D [y =log a a x=x log a a =x ,即y =x ,两函数的定义域、值域都相同.]3.C [由题意得:2≤12log x ≤4,所以(12)2≥x ≥(12)4,即116≤x ≤14.] 4.A [∵3x +1>1,∴log 2(3x+1)>0.] 5.2解析 由已知得log a (b -1)=0且log a b =1, ∴a =b =2.从而f (2)=log 2(2+2)=2. 6.(3,1)解析 若x -2=1,则不论a 为何值,只要a >0且a ≠1, 都有y =1. 作业设计1.D [因为0<log 53<log 54<1,1<log 45, 所以b <a <c .]2.D [∵-1≤x ≤1,∴2-1≤2x≤2,即12≤2x ≤2.∴y =f (x )的定义域为[12,2].即12≤log 2x ≤2,∴2≤x ≤4.] 3.C [∵log a 8=3,解得a =2,因为函数f (x )=log a |x |(a >0且a ≠1)为偶函数,且在(0,+∞)上为增函数,在(-∞,0)上为减函数,由-3<-2,所以f (-3)>f (-2).]4.B [函数f (x )=a x +log a (x +1),令y 1=a x,y 2=log a (x +1),显然在[0,1]上,y 1=a x与y 2=log a (x +1)同增或同减.因而[f (x )]max +[f (x )]min =f (1)+f (0)=a +log a 2+1+0=a ,解得a =12.]5.B [f (-x )=lg 1+x 1-x =lg(1-x 1+x )-1=-lg 1-x1+x=-f (x ),则f (x )为奇函数,故f (-a )=-f (a )=-b .]6.C [由y =3x(-1≤x <0)得反函数是y =log 3x (13≤x <1).]7.b ≤1解析 由题意,x ≥1时,2x -b ≥1.又2x≥2,∴b ≤1.8.[12,1)∪(1,2]解析 ∵|y |>1,即y >1或y <-1, ∴log a x >1或log a x <-1,变形为log a x >log a a 或log a x <log a 1a.当x =2时,令|y |=1,则有log a 2=1或log a 2=-1,∴a =2或a =12.要使x >2时,|y |>1.如图所示,a 的范围为1<a ≤2或12≤a <1.9.(0,1)∪(2,+∞)解析 log a 2<2=log a a 2.若0<a <1,由于y =log a x 是减函数,则0<a 2<2,得0<a <2,所以0<a <1;若a >1,由于y =log a x 是增函数,则a 2>2,得a > 2.综上得0<a <1或a > 2. 10.解 由a >0可知u =3-ax 为减函数,依题意则有a >1. 又u =3-ax 在[0,2]上应满足u >0,故3-2a >0,即a <32.综上可得,a 的取值范围是1<a <32.11.解 (1)∵函数f (x )的图像关于原点对称, ∴函数f (x )为奇函数,∴f (-x )=-f (x ),即12log 1+ax -x -1=-12log 1-ax x -1=12log x -11-ax,解得a =-1或a =1(舍). (2)f (x )+12log (x -1)=12log 1+xx -1+12log (x -1) =12log (1+x ),当x >1时,12log (1+x )<-1,∵当x ∈(1,+∞)时,f (x )+12log (x -1)<m 恒成立,∴m ≥-1.12.C [已知函数f (x )有最小值,令y =x 2-ax +12,由于y 的值可以趋于+∞,所以a >1,否则,如果0<a <1,f (x )没有最小值.又由于真数必须大于0,所以y =x 2-ax +12存在大于0的最小值,即Δ=a 2-4×1×12<0,∴-2<a < 2.综上可知1<a < 2.]13.解数形结合可得0<n<m<1或1<n<m或0<m<1<n.。
北师大版高一数学必修第一册(2019版)_《对数函数的概念》典型例题剖析

《对数函数的概念》典型例题剖析题型1 求对数函数的函数值例1 当x =ln y x =的函数值.解析 把x =.答案 当1x =时,ln10y ==;当x e =时,ln e 1y ==;当x =时,121ln ln e 2y ===.变式训练1 当x =2log y x =的函数值.答案 当1x =时,2log 10y ==;当x =时,12221log log 22y ===;当x =13221log log 23y ===. 题型2 反函数的求法 例2 求下列对数函数的反函数:(1)0.7log y x =;(2)ln y x =;(3)log y x π=.解析 根据对数函数的反函数是与它同底数的指数函数进行求解.答案 (1)因为对数函数0.7log y x =的底数是0.7,所以它的反函数是0.7x y =.(2)因为对数函数ln y x =的底数是e ,所以它的反函数是e x y =.(3)因为对数函数log y x π=的底数是π,所以它的反函数是x y π=. 变式训练2 求下列函数的反函数:(1) 2.6x y =;(2)x y =;(3)3xy π⎛⎫= ⎪⎝⎭. 答案 (1)因为指数函数 2.6x y =的底数是2.6,所以它的反函数是2.6log y x =.(2)因为指数函数x y =,所以它的反函数是y x =.(3)因为指数函数3x y π⎛⎫= ⎪⎝⎭的底数是3π,反以它的反函数是3log y x π=. 点拨 指数函数的反函数是与它同底数的对数函数.规律方法总结1.判断一个函数是不是对数函数,关键是分析所给函数是否具有log a y x =(01a a >≠,且)这种形式.2.对数函数与和它同底的指数函数互为反函数,这也是求对数函数或指数函数的反函数的依据.核心素养园地例 我们知道,燕子每年秋天都要从北方飞向南方过冬研究燕子的科学家发现,a 岁燕子的飞行速度可以表示为函数()log 2aQ v Q =,单位是m/s ,其中Q 表示燕子的耗氧量.(1)假设一只a 岁燕子的耗氧量是16个单位,它的飞行速度是3m/s ,写出它的飞行速度与耗氧量的关系式;(2)上述解析式是对数函数吗?解析 (1)利用条件“a 岁燕子的耗氧量是16个单位,它的飞行速度是3m/s”,代入解析式()log 2a Q v Q =,得到关于a 的方程,求解即可; (2)根据对数函数解析式的形式进行判断.答案 (1)将耗氧量16Q =,飞行速度3v =代入已知函数关系式()log 2aQ v Q =,得163log 2a =,即log 21a =,所以2a =,所以它的飞行速度与耗氧量的关系式是()log 2a Q v Q =. (2)函数()log 2a Q v Q =不是对数函数,因为对数函数的形式为log a y x =(01a a >≠,且),真数必须只有自变量讲评若已知对数函数过定点,求函数解析式时常用待定系数法,设()log a f x x =(01a a >≠,且),将定点代入后,利用指数式与对数式的互化或指数幂的运算性质求a .如果能根据给出的条件正确地求出函数模型,那么可以认为达到数学运算核心素养水平一的要求.判断一个函数是对数函数必须是形如log a y x =(01a a >≠,且)的形式,即必须满足以下条件:(1)系数为1;(2)底数为大于0且不等于1的常数;(3)对数的真数仅有自变量x.如果能判断个函数是否为对数函数,那么可以认为达到逻辑推理核心素养水平一的要求.。
高三数学(理)一轮复习夯基提能作业本:第二章 函数第六节 对数与对数函数 Word版含解析

第六节对数与对数函数A组基础题组1.(2016河南洛阳模拟)函数f(x)=的定义域是()A.(-3,0)B.(-3,0]C.(-∞,-3)∪(0,+∞)D.(-∞,-3)∪(-3,0)2.若函数y=f(x)是函数y=3x的反函数,则f的值为()A.-log23B.-log32C.D.3.如果lo x<lo y<0,那么()A.y<x<1B.x<y<1C.1<x<yD.1<y<x4.函数f(x)=log a|x|+1(0<a<1)的图象大致为()5.(2016山东济南模拟)定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈时,f(x)=log2(x+1),则f(x)在区间内是()A.减函数且f(x)>0B.减函数且f(x)<0C.增函数且f(x)>0D.增函数且f(x)<06.计算:log23·log34+(=.7.函数y=log2|x+1|的单调递减区间为,单调递增区间为.8.已知函数f(x)=a x+log a x(a>0且a≠1)在1,2]上的最大值与最小值之和为log a2+6,则a的值为.9.计算:(1)lg25+lg2·lg50+(lg2)2;(2).10.(2017广东茂名一中期末)已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.B组提升题组11.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=lnx,则有()A.f<f(2)<fB.f<f(2)<fC.f<f<f(2)D.f(2)<f<f12.设a,b,c均为正数,且2a=lo a,=lo b,=log2c,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c13.已知函数f(x)=关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是.14.设f(x)=log a(1+x)+log a(3-x)(a>0且a≠1),且f(1)=2,求f(x)在区间上的最大值.15.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈1,4]时,求函数h(x)=f(x)+1]·g(x)的值域;(2)如果对任意的x∈1,4],不等式f(x2)·f()>k·g(x)恒成立,求实数k的取值范围.答案全解全析A组基础题组1.A因为f(x)=,所以要使函数f(x)有意义,需使即-3<x<0.2.B由y=f(x)是函数y=3x的反函数,知f(x)=log3x,从而f=log3=-log32,故选B.3.D由lo x<lo y<0,得lo x<lo y<lo 1.所以x>y>1.4.A由函数f(x)的解析式可确定该函数为偶函数,图象关于y轴对称.设g(x)=log a|x|,先画出x>0时g(x)的图象,然后作其关于y轴对称的图象,即画出x<0时g(x)的图象,最后将函数g(x)的图象向上整体平移一个单位即得f(x)的图象,结合选项知选A.5.B因为f(x)是R上的奇函数,则有f(x+1)=f(-x)=-f(x).当x∈时,x-1∈,所以f(x)=-f(x-1)=-log2x,所以f(x)在区间内是减函数且f(x)<0.6.答案4解析log23·log34+(=·+=2+=2+2=4.7.答案(-∞,-1);(-1,+∞)解析作出函数y=log2x的图象,再作出其关于y轴对称的图象即可得到函数y=log2|x|的图象,再将y=log2|x|的图象向左平移1个单位长度,就得到函数y=log2|x+1|的图象(如图所示).由图知,函数y=log2|x+1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).8.答案2解析显然函数y=a x与y=log a x在1,2]上的单调性相同,因此函数f(x)=a x+log a x在1,2]上的最大值与最小值之和为f(1)+f(2)=(a+log a1)+(a2+log a2)=a+a2+log a2=log a2+6,故a+a2=6,解得a=2或a=-3(舍去).9.解析(1)原式=(lg2)2+(1+lg5)×lg2+lg52=(lg2+lg5+1)×lg2+2lg5=(1+1)×lg2+2lg5=2×(lg2+lg5)=2.(2)原式===-.10.解析(1)因为f(1)=1,所以log4(a+5)=1,因此a+5=4,a=-1,此时f(x)=log4(-x2+2x+3).由-x2+2x+3>0得-1<x<3,即函数f(x)的定义域为(-1,3).令t=-x2+2x+3,则t=-x2+2x+3在(-1,1]上单调递增,在(1,3)上单调递减.又y=log4t在(0,+∞)上单调递增,所以f(x)的单调递增区间是(-1,1],单调递减区间是(1,3).(2)存在.理由如下:假设存在实数a,使f(x)的最小值为0.令h(x)=ax2+2x+3,则h(x)有最小值1,因此应有解得a=.故存在实数a=,使f(x)的最小值为0.B组提升题组11.C由f(2-x)=f(x),得f(1-x)=f(x+1),即函数f(x)图象的对称轴为直线x=1,结合图象,可知f<f<f(0)=f(2),故选C.12.A∵a>0,∴2a>1,∴lo a>1,∴0<a<.∵b>0,∴0<<1,∴0<lo b<1,∴<b<1.∵>0,∴log2c>0,∴c>1,∴0<a<<b<1<c,故选A.13.答案(1,+∞)解析问题等价于函数y=f(x)与y=-x+a的图象有且只有一个交点,结合函数图象可知a>1.14.解析∵f(1)=log a2+log a2=2log a2=2,∴log a2=1,解得a=2,∴f(x)=log2(1+x)+log2(3-x)=log2(1+x)·(3-x)]=log2-(x-1)2+4],设u=-(x-1)2+4,∵x∈,∴3≤u≤4,∵y=log2u在定义域内是增函数,∴log23≤log2u≤2,即log23≤f(x)≤2,∴f(x)在区间上的最大值是2.15.解析(1)h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2,因为x∈1,4],所以log2x∈0,2],故函数h(x)的值域为0,2].(2)由f(x2)·f()>k·g(x)得(3-4log2x)(3-log2x)>k·log2x,令t=log2x,因为x∈1,4],所以t=log2x∈0,2],所以(3-4t)(3-t)>k·t对一切t∈0,2]恒成立,①当t=0时,k∈R;②当t∈(0,2]时,k<恒成立,即k<4t+-15恒成立,因为4t+≥12,当且仅当4t=,即t=时取等号,所以4t+-15的最小值为-3,∴k<-3.综上,k∈(-∞,-3).。
数学北师大版高中必修1对数与对数函数

试卷五 必修1《对数与对数函数》练习题一、选择题(本大题共10小题,每小题5分,共50分,每题只有一个正确答案) 1.2log 的值为( )A..12- D . 122.对数式2log (5)a b a -=-中,实数a 的取值范围是() A.a>5,或a<2 B.2<a<5 C.2<a<3,或3<a<5 D.3<a<43.已知()log a f x x =(0,1)a a >≠满足(6)5f =,则(4)(9)f f +的值为( )A.5B.10C.2D.204. 设0.31231log 2,log 3,2a b c ⎛⎫=== ⎪⎝⎭,则 ( ) A a<b<c B a<c<b C b<c<a D b<a<c 5.已知()lg a f x x =,过点(2,1)则224()(22)1f f x x +++的值为( ) A.1 B.2 C.3 D.与x 的取值有关6.关于函数()log x a f x a x =+(0,1)a a >≠的叙述正确的是( ) A.定义域为RB.在定义域内单调递增C. 在定义域内具有单调性D.在定义域内不具有单调性7.若)(x f 的定义域为),3,21( 则函数)(lg x f 的定义域为( ) A.),10(+∞ B. ),0(+∞ C. ),1000(+∞ D.)1000,10(8.已知直线1y =与对数函数log a y x =,(62)log a y x -=图像的交点横坐标分别为x 1,x 2, 121x x <<,则实数a 的取值范围是( ) A.(1,2) B.(0,1)(1,2)⋃ C.(2,)+∞ D.(2,6)9.函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 10.2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭ B 、2,3⎛⎫+∞ ⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.化简:=+50lg 2lg 5lg 2________12.函数log (1)a y x =+(0,1)a a >≠的图象恒过点的坐标为13.函数3)4lg(--=x x y 的定义域是 .14.已知x 2+2y 2-6x +8y +17=0,则log x (y +5)的值=___________. 16.已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(1) lg 5.lg 800+lg25.132+(lg 23)2-lg0.00032。
高三数学一轮 第二章 第六节 对数、对数函数课件 理

与对数函数有关的复合函数的单调性的求解步 骤为:
(1)确定定义域;
(2)弄清函数是由哪些基本初等函数复合而成 的,将复合函数分解成基本初等函数y=f(u), u=g(x);
(3)分别确定这两个函数的单调区间;
(4)若这两个函数同增或同减,则y=f[g(x)]为 增函数,若一增一减,则y=f[g(x)]为减函数, 即“同增异减”.
【解析】 (1)由题设,3-ax>0 对一切 x∈[0,2]恒成立,a>0 且 a≠1, ∵a>0,∴g(x)=3-ax 在[0,2]上为减函 数,
从而 g(2)=3-2a>0,∴a<32, ∴a 的取值范围为(0,1)∪1,32.
(2)假设存在这样的实数 a,由题设知 f(1) =1,
即 loga(3-a)=1,∴a=32, 此时 f(x)=log323-32x, 当 x=2 时,f(x)没有意义,故这样的实 数不存在.
【答案】 A
4.已知 loga(3a-1)有意义,那么实数 a 的取值范围是________.
a>0
【解析】 由a≠1 3a-1>0
,可得 a>31且
a≠1.
【答案】 a>13且 a≠1
5.函数 y= log1(3x-2)的定义域是________.
2
【解析】 要使 y= log1(3x-2)有意义
(3)令 u(x)=xx+ -bb,则函数 u(x)=1+x2-bb 在(-∞,-b)和(b,+∞)上分别为减函 数,所以当 0<a<1 时,f(x)在(-∞,- b)和(b,+∞)上分别为增函数;当 a>1 时,f(x)在(-∞,-b)和(b,+∞)上分 别为减函数.
(4)解关于 x 的方程 y=logaxx+ -bb,得 x= b(ay+1)
最新高中数学教材新课标人教B版目录完整版

高中数学(B版)必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数 3.4 函数的应用(Ⅱ)高中数学(B版)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程 2.4 空间直角坐标系高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用高中数学(B版)必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算 2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积高中数学(B版)必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题高中数学(B版)选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用高中数学(B版)选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图高中数学(B版)选修2-1第一章常用逻辑用语1.1 命题与量词 1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程 2.2 椭圆 2.3 双曲线2.4 抛物线 2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算 3.2 空间向量在立体几何中的应用高中数学(B版)选修2-2第一章导数及其应用1.1 导数 1.2 导数的运算1.3 导数的应用 1.4 定积分与微积分基本定理第二章推理与证明2.1 合情推理与演绎推理 2.2 直接证明与间接证明 2.3 数学归纳法第三章数系的扩充与复数3.1 数系的扩充与复数的概念 3.2 复数的运算高中数学(B版)选修2-3第一章计数原理1.1基本计数原理 1.2排列与组合1.3二项式定理第二章概率2.1离散型随机变量及其分布列 2.2条件概率与事件的独立性2.3随机变量的数字特征 2.4正态分布第三章统计案例3.1独立性检验 3.2回归分析高中数学(B版)选修4-4第一章坐标系1.1直角坐标系平面上的压缩变换 2极坐标系1.3曲线的极坐标方程 1.4圆的极坐标方程1.5柱坐标系和球坐标系第二章参数方程2.1曲线的参数方程 2.2直线和圆的参数方程2.3圆锥曲线的参数方程高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法 1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式 2.2 排序不等式 2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理 3.2 用数学归纳法证明不等式,贝努利不等式文科学必修1-5,选修1-1,1-2,4-4就够了理科学必修1-5,先修2-1,2-2,2-3,4-4内容上文比理少,知识相对简单,但是对于文科生来说,数学是较难的。
高中数学高考09第二章 函数概念与基本初等函数 2 6 对数与对数函数

(2)函数f(x)=2x|log0.5x|-1的零点个数为
A.1
√B.2
C.3
D.4
解析 函数 f(x)=2x|log0.5x|-1 的零点个数即方程|log0.5x|=12x 的解的个数,
即函数 y=|log0.5x|与函数 y=12x 图象交点的个数,
作出两函数的图象(图略)可知它们有2个交点.
① alogaN = N ;②logaaN= N (a>0,且a≠1).
(3)对数的换底公式
logab=
logcb logca
(a>0,且a≠1;c>0,且c≠1;b>0).
3.对数函数的图象与性质
y=logax
a>1
0<a<1
图象
定义域
(1)_(0_,__+__∞__)
值域
(2)_R__
(3)过定点 (1,0) ,即x=1时,y=0
若f(x)的值域为R,则实数a的取值
1+log2x,x≥1,
范围是 (1,2] .
解析 当x≥1时,f(x)=1+log2x≥1, 当x<1时,f(x)=(a-1)x+4-2a必须是增函数, 且最大值大于或等于1才能满足f(x)的值域为R,
a-1>0,
可得
解得 a∈(1,2].
a-1+4-2a≥1,
第二章 函数概念与基本初等函数Ⅰ
§2.6 对数与对数函数
内容索引
NEIRONGSUOYIN
基础知识 自主学习 题型分类 深度剖析 课时作业
1 基础知识 自主学习
PART ONE
知识梳理
ZHISHISHULI
1.对数的概念
一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作_x_=__
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6节 对数与对数函数课时作业 A 组——基础对点练1.函数y =1log 2x -的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)解析:要使函数有意义应满足⎩⎪⎨⎪⎧x -2>0,log 2x -,即⎩⎪⎨⎪⎧x >2,x -2≠1,解得x >2且x ≠3.故选C.答案:C2.设x =30.5,y =log 32, =cos 2,则( ) A . <x <y B .y < <x C . <y <xD .x < <y解析:由指数函数y =3x的图像和性质可知30.5>1,由对数函数y =log 3x 的单调性可知log 32<log 33=1,又cos 2<0,所以30.5>1>log 32>0>cos 2,故选C. 答案:C3.(2016·高考全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC . y =2xD .y =1x解析:函数y =10lg x的定义域为(0,+∞),又当x >0时,y =10lg x=x ,故函数的值域为(0,+∞).只有D 选项符合. 答案:D4.函数y =⎩⎪⎨⎪⎧3x,x ∈-∞,,log 2x ,x ∈[1,+的值域为( )A .(0,3)B .[0,3]C .(-∞,3]D .[0,+∞)解析:当x <1时,0<3x<3;当x ≥1时,log 2x ≥log 21=0,所以函数的值域为[0,+∞). 答案:D5.若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图像大致是( )解析:若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的大致图像如图所示. 故选B. 答案:B6.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图,则下列结论成立的是( ) A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由对数函数的性质得0<a <1,因为函数y =log a (x +c )的图像在c >0时是由函数y =log a x 的图像向左平移c 个单位得到的,所以根据题中图像可知0<c <1. 答案:D7.(2018·吉安模拟)如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析:因为y =log 12x 在(0,+∞)上为减函数,所以x >y >1.答案:D8.函数y =x 2ln|x ||x |的图像大致是( )解析:易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图像可知D 正确,故选D. 答案:D9.已知f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f (lg 13)= ( )A.13 B .-13C .5D .8解析:∵f (x )=a sin x +b 3x +4, ∴f (x )+f (-x )=8, ∵lg 13=-lg 3,f (lg 3)=3,∴f (lg 3)+f (lg 13)=8,∴f (lg 13)=5.答案:C10.已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 124),c =f (log 25),则a , b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:函数y =f (x )是定义在R 上的偶函数, 当x ∈(-∞,0]时,f (x )为减函数, ∴f (x )在[0,+∞)上为增函数, ∵b =f (log 124)=f (-2)=f (2),又1<20.3<2<log 25,∴c >b >a .故选B. 答案:B11.已知b >0,log 5b =a ,lg b =c,5d=10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =adD .d =a +c解析:由已知得5a=b,10c=b ,∴5a=10c ,∵5d=10,∴5dc=10c,则5dc=5a,∴dc =a ,故选B. 答案:B12.已知函数f (x )=ln(1+4x 2-2x )+3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=( )A .0B .-3C .3D .6解析:由函数解析式,得f (x )-3=ln(1+4x 2-2x ),所以f (-x )-3=ln(1+4x 2+2x )=ln11+4x 2-2x=-ln(1+4x 2-2x )=-[f (x )-3],所以函数f (x )-3为奇函数,则f (x )+f (-x )=6,于是f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=f (lg2)+f (-lg 2)=6.故选D. 答案:D13.已知4a=2,lg x =a ,则x =________. 解析:∵4a =2,∴a =12,又lg x =a ,x =10a=10.答案:1014.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=log 2x -1,则f ⎝ ⎛⎭⎪⎫-22=________. 解析:因为f (x )是定义在R 上的奇函数,所以f ⎝ ⎛⎭⎪⎫-22=-f ⎝ ⎛⎭⎪⎫22=-⎝ ⎛⎭⎪⎫log 222-1=32. 答案:3215.函数f (x )=log 2(-x 2+22)的值域为________.解析:由题意知0<-x 2+22≤22=232,结合对数函数图像(图略),知f (x )∈⎝ ⎛⎦⎥⎤-∞,32,故答案为⎝ ⎛⎦⎥⎤-∞,32.答案:⎝⎛⎦⎥⎤-∞,3216.若log 2a 1+a21+a <0,则a 的取值范围是________.解析:当2a >1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a>1. ∵1+a >0,∴1+a 2>1+a .∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1.答案:⎝ ⎛⎭⎪⎫12,1 B 组——能力提升练1.(2018·甘肃诊断考试)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4f x +,x <4,则f (1+log 25)的值为( )A.14B.⎝ ⎛⎭⎪⎫121+log 25 C.12D.120解析:∵2<log 25<3,∴3<1+log 25<4,则4<2+log 25<5,f (1+log 25)=f (1+1+log 25)=f (2+log 25)=⎝ ⎛⎭⎪⎫122+log 25=14×⎝ ⎛⎭⎪⎫12log 25=14×15=120,故选D.答案:D2.(2018·四川双流中学模拟)已知a =log 29-log 23,b =1+log 27,c =12+log 213,则( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a解析:a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 是增函数,且27>33>26,所以b >a >c ,故选B. 答案:B 3.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞) 解析:∵f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,∴对定义域内的x 值,有f (0)=0, 由此可得a =-1,∴f (x )=lg 1+x1-x ,根据对数函数单调性,由f (x )<0,得0<1+x1-x <1,∴x ∈(-1,0).答案:A4.当0<x <1时,f (x )=x ln x ,则下列大小关系正确的是( ) A .[f (x )]2<f (x 2)<2f (x ) B .f (x 2)<[f (x )]2<2f (x ) C .2f (x )<f (x 2)<[f (x )]2D .f (x 2)<2f (x )<[f (x )]2解析:当0<x <1时,f (x )=x ln x <0,2f (x )=2x ln x <0,f (x 2)=x 2ln x 2<0,[f (x )]2=(x ln x )2>0.又2f (x )-f (x 2)=2x ln x -x 2ln x 2=2x ln x -2x 2ln x =2x (1-x )ln x <0,所以2f (x )<f (x 2)<[f (x )]2.故选C.答案:C5.已知函数f (x )是定义在(-∞,+∞)上的奇函数,若对于任意的实数x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (2 014)+f (-2 015)+f (2 016)的值为( ) A .-1 B .-2 C .2D .1解析:∵当x ≥0时,f (x +2)=f (x ),∴f (2 014)=f (2 016)=f (0)=log 21=0,∵f (x )为R 上的奇函数,∴f (-2 015)=-f (2 015)=-f (1)=-1.∴f (2 014)+f (-2 015)+f (2 016)=0-1+0=-1.故选A. 答案:A6.已知y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2)D .[2,+∞)解析:因为y =log a (2-ax )在 [0,1]上单调递减,u =2-ax (a >0)在[0,1]上是减函数,所以y =log a u 是增函数,所以a >1,又2-a >0,所以1<a <2. 答案:C7.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1100,1B.⎝ ⎛⎭⎪⎫0,1100∪(1,+∞)C.⎝⎛⎭⎪⎫1100,100D .(0,1)∪(100,+∞)解析:不等式可化为⎩⎪⎨⎪⎧lg x ≥0lg x <2或⎩⎪⎨⎪⎧lg x <0-lg x <2,解得1≤x <100或1100<x <1.∴1100<x <100.故选C. 答案:C8.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)解析:由f (x )=| log 12x |,m <n ,f (m )=f (n )可知,log 12m =-log 12n >0,从而0<m =1n <1,m +3n =m +3m (0<m <1),若直接利用基本不等式,则m +3m ≥23(当且仅当m =3m=3时取得最小值,但这与0<m <1矛盾),利用函数g (x )=x+3x的单调性(定义或导数)判断当0<x <1时g (x )单调递减,故g (x )>g (1)=4,可知选D.答案:D9.已知函数y =f (x )(x ∈D ),若存在常数c ,对于任意x 1∈D ,存在唯一x 2∈D ,使得f x 1+f x 22=c ,则称函数f (x )在D 上的均值为c .若f (x )=lg x ,x ∈[10,100],则函数f (x )在[10,100]上的均值为( ) A .10 B.34 C.710D.32解析:因为f (x )=lg x (10≤x ≤100),则f x 1+f x 22=lg x 1x 22等于常数c ,即x 1x 2为定值,又f (x )=lg x (10≤x ≤100)是增函数,所以取x 1=10时,必有x 2=100,从而c 为定值32.选D.答案:D10.已知函数f (x )=(e x -e -x)x ,f (log 5x )+f (log 15x )≤2f (1),则x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5]C.⎣⎢⎡⎦⎥⎤15,5 D.⎝⎛⎦⎥⎤-∞,15∪[5,+∞) 解析:∵f (x )=(e x -e -x)x ,∴f (-x )=-x (e -x-e x )=(e x -e -x)x =f (x )(x ∈R),∴函数f (x )是偶函数. ∵f ′(x )=(e x-e -x )+x (e x +e -x)>0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15x )≤2f (1),∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.答案:C11.设方程log 2x -⎝ ⎛⎭⎪⎫12x=0与log 14x -⎝ ⎛⎭⎪⎫14x =0的根分别为x 1,x 2,则( )A .0<x 1x 2<1B .x 1x 2=1C .1<x 1x 2<2D .x 1x 2≥2解析:方程log 2x -⎝ ⎛⎭⎪⎫12x =0与log 14x -⎝ ⎛⎭⎪⎫14x =0的根分别为x 1,x 2,所以log 2x 1=⎝ ⎛⎭⎪⎫12x 1,log 14x 2=⎝ ⎛⎭⎪⎫14x 2,可得x 2=12,令f (x )=log 2x -⎝ ⎛⎭⎪⎫12x,则f (2)f (1)<0,所以1<x 1<2,所以12<x 1x 2<1,即0<x 1x 2<1.故选A.答案:A12.已知函数f (x )=ln e x e -x ,若f ⎝ ⎛⎭⎪⎫e 2 013+f ⎝ ⎛⎭⎪⎫2e 2 013+…+f ⎝ ⎛⎭⎪⎫2 012e 2 013=503(a +b ),则a 2+b 2的最小值为( ) A .6 B .8 C .9D .12 解析:∵f (x )+f (e -x )=lne xe -x+ln -xx=ln e 2=2,∴503(a +b )=f ⎝⎛⎭⎪⎫e 2 013+f ⎝ ⎛⎭⎪⎫2e 2 013+…+f ⎝ ⎛⎭⎪⎫2 012e 2 013=12⎣⎢⎡f ⎝ ⎛⎭⎪⎫e 2 013+f ⎝ ⎛⎭⎪⎫2 012e 2 013+f ⎝ ⎛⎭⎪⎫2e 2 013+f ⎝ ⎛⎭⎪⎫2 011e 2 013+…+f ⎝⎛⎭⎪⎫2 012e 2 013+f⎦⎥⎤⎝ ⎛⎭⎪⎫e 2 013=12×(2×2 012)=2 012, ∴a +b =4,∴a 2+b 2≥a +b22=422=8,当且仅当a =b =2时取等号. ∴a 2+b 2的最小值为8. 答案:B13.若函数f (x )=⎩⎪⎨⎪⎧log a x , x >2,-x 2+2x -2, x ≤2(a >0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是________. 解析:x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1, f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1,又f (x )的值域是(-∞,-1],∴当x >2时, log a x ≤-1,故0<a <1,且log a 2≤-1, ∴12≤a <1. 答案:⎣⎢⎡⎭⎪⎫12,1 14.(2018·湘潭模拟)已知函数f (x )=ln x1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________.解析:由题意可知ln a 1-a +ln b1-b =0,即ln ⎝⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14,又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14.答案:⎝ ⎛⎭⎪⎫0,14 15.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由于f (x )>1恒成立,所以f (x )min =log a (8-2a )>1,故1<a <83.当0<a <1时,f (x )=log a (8-ax )在[1,2]上是增函数,由于f (x )>1恒成立, 所以f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4, 故这样的a 不存在. ∴1<a <83.答案:⎝ ⎛⎭⎪⎫1,83。