2018年高考数学二轮复习第2部分八大难点突破难点3以构建函数模型解三角形动点轨迹为背景的实际问题学案

合集下载

(江苏专版)18年高考数学二轮复习第2部分八大难点突破难点7函数零点、单调性、极值等综合问题学案

(江苏专版)18年高考数学二轮复习第2部分八大难点突破难点7函数零点、单调性、极值等综合问题学案

难点七 函数零点、单调性、极值等综合问题(对应学生用书第73页)函数零点、单调性、极值都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与导数是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数思想的运用是我们解决问题的重要手段,而导数是我们解决问题的一个行之有效的工具. 1.函数零点函数零点问题主要是研究函数与方程问题,方程f (x )=0的解就是函数y =f (x )的图象与x 轴的交点的横坐标,即零点.函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的. 许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.在高考中重点考查函数零点个数、零点范围以及与零点有关的范围问题,有时添加函数性质进去会使得此类问题难度加大.【例1】 (2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.【导学号:56394108】[解] (1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0.又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .(3)由(1)知,f (x )的极值点是x 1,x 2, 且x 1+x 2=-23a ,x 21+x 22=4a 2-6b9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab 9+2=0.记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].【例2】 已知函数f (x )=a x -1x2-b +ln x (a ,b ∈R ).(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围; (2)若a =3,函数f (x )有3个零点,求实数b 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=-a x2+2x3+1x.由题意可得f ′(x )≥0在(0,+∞)上恒成立,即-a x2+2x3+1x≥0,所以a x2≤2x3+1x,因为x >0,所以x 2>0,故a ≤2x+x .由基本不等式可得2x +x ≥22(当且仅当2x=x ,即x =2时等号成立),故实数a 的取值范围为(-∞,22].(2)当a =3时,f (x )=3x -1x2-b +ln x ,函数f (x )的定义域为(0,+∞),f ′(x )=-3x 2+2x 3+1x =x 2-3x +2x3=x -x -x3.由f ′(x )=0,解得x 1=1,x 2=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:极小值为f (2)=32-122-b +ln 2=54-b +ln 2.要使函数f (x )有3个零点,则⎩⎪⎨⎪⎧2-b >0,54-b +ln 2<0,解得54+ln 2<b <2.故实数b 的取值范围为⎝ ⎛⎭⎪⎫54+ln 2,2. 2.利用函数的单调区间和极值点研究函数零点函数f (x )的零点,即f (x )=0的根,亦即函数f (x )的图象与x 轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题).【例3】 (2016-2017学年度江苏苏州市高三期中调研考试)已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f x ,f xg x ,gx ,f x <g x ,(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数. [解] (1)∵函数f (x )=ax 3-3x 2+1, ∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∵a >0,∴x 1<x 2,列表如下:∴f (x )的极大值为f (0)=1,极小值为f ⎝ ⎛⎭⎪⎫a=a2-a 2+1=1-a2.(2)g (x )=xf ′(x )=3ax 3-6x 2,∵存在x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x在x ∈[1,2]上有解,设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∵y ′=-3x 2-3x4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x 在x ∈[1,2]上单调递减,∴当x =1时,y =1x 3+3x的最大值为4,∴2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫2a=1-4a2,①当1-4a2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∴h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.②当1-4a2=0即a =2时,f (x )min =f (1)=0,又g (1)=0,∴h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点.③当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1),∵φ′(x )=3ax 2-6x -1x <6x (x -1)-1x<0,∴φ(x )在(0,1)上单调递减,又φ(1)=a -2<0,φ⎝ ⎛⎭⎪⎫1e =a e 3+2e 2-3e 2>0,∴存在唯一的x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得φ(x 0)=0,Ⅰ.当0<x ≤x 0时,∵φ(x )=f (x )-g (x )≥φ(x 0)=0,∴h (x )=f (x )且h (x )为减函数,又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0,f (0)=1>0,∴h (x )在(0,x 0)上有一个零点;Ⅱ.当x >x 0时,∵φ(x )=f (x )-g (x )<φ(x 0)=0, ∴h (x )=g (x )且h (x )为增函数,∵g (1)=0, ∴h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(x 0,+∞)上有两个零点, 综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点;当a >2时,h (x )无零点.【例4】 (2017·江苏省南京市迎一模模拟)已知函数f (x )=12ax 2+ln x ,g (x )=-bx ,其中a ,b ∈R ,设h (x )=f (x )-g (x ). (1)若f (x )在x =22处取得极值,且f ′(1)=g (-1)-2,求函数h (x )的单调区间; (2)若a =0时,函数h (x )有两个不同的零点x 1,x 2. ①求b 的取值范围; ②求证:x 1x 2e2>1.【导学号:56394109】[解] (1)由已知得f ′(x )=ax +1x(x >0),所以f ′⎝⎛⎭⎪⎫22=22a +2=0,所以a =-2. 由f ′(1)=g (-1)-2, 得a +1=b -2, 所以b =1.所以h (x )=-x 2+ln x +x (x >0).则h ′(x )=-2x +1x +1=2⎝ ⎛⎭⎪⎫x +12x --x(x >0),由h ′(x )>0得0<x <1,h ′(x )<0得x >1. 所以h (x )的减区间为(1,+∞),增区间为(0,1). (2)①由已知h (x )=ln x +bx (x >0). 所以h ′(x )=1x+b (x >0),当b ≥0时,显然h ′(x )>0恒成立,此时函数h (x )在定义域内递增,h (x )至多有一个零点,不合题意.当b <0时,令h ′(x )=0得x =-1b >0,令h ′(x )>0得0<x <-1b;令h ′(x )<0得x >-1b.所以h (x )极大=h ⎝ ⎛⎭⎪⎫-1b =-ln(-b )-1>0,解得-1e <b <0. 且x →0时,ln x <0,x →+∞时,ln x >0.所以当b ∈⎝ ⎛⎭⎪⎫-1e ,0时,h (x )有两个零点.②证明:由题意得⎩⎪⎨⎪⎧ln x 1+bx 1=0,ln x 2+bx 2=0,即⎩⎪⎨⎪⎧e -bx 1=x 1, ①e -bx 2=x 2, ②①×②得e -b (x 1+x 2)=x 1x 2. 因为x 1,x 2>0, 所以-b (x 1+x 2)>0, 所以e -b (x 1+x 2)=x 1x 2>1. 因为0<-b <1e ,所以e -b<1,所以x 1x 2>e -2b x 1x 2>e2x 1x 2>e 2,所以x 1x 2e2>1.【例5】 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. (2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.[解] (1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x -x +x-x -xx +2=x 2e xx +2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0. (2)证明:g ′(x )=x -x+a x +x3=x +2x 3(f (x )+a ). 由(1)知,f (x )+a 单调递增.对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈(0,2],使得f (x a )+a =0, 即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为于是h (a )=e x ax a +2. 由⎝ ⎛⎭⎪⎫e x x +2′=x +xx +2>0,得y =exx +2单调递增, 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 【例6】 设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. [解] (1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f=2e +2,f =e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞). [方法总结] ①函数性质与方程综合时,要先将函数性质剖析清楚,尤其是单调性和对称性,然后再研究函数零点问题;②函数与不等式综合时,重点是要学会构造函数,利用函数单调性、最值进行研究;③函数、方程与不等式综合在一起时,要注意利用导数这个有利工具进行解答.。

2018届高中数学高考二轮复习三角函数及解三角形教案含答案(全国通用)

2018届高中数学高考二轮复习三角函数及解三角形教案含答案(全国通用)

教学过程 一、考纲解读在复习该部分内容时要有整体意识,抓住角的变换主线解决相关问题,其中三角函数的图形和性质是核心内容,相对于其它模块而言,三角函数的考查的点分散得比较细,这也要引起重视,复习一定要全面,常见的思想方法有化归转化,数形结合等.三角函数模块在高考试卷中通常有1大1小两个问题,总分值在25分左右,小题难度中等,大题属简单题,无论是全国卷还是省市卷大都放在第一个解答题位置,是考生得分的关键点之一.(1)任意角的概念、弧度制 (2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义. ② 能利用单位圆中的三角函数线推导出απ±2,απ±的正弦、余弦、正切的诱导公式,能画出x y x y x y tan ,cos ,sin ===的图像,了解三角函数的周期性.③ 理解正弦函数、余弦函数在区间[]π2,0的性质(如单调性、最大和最小值以及与x 轴交点等).理解正切函数在区间⎪⎭⎫⎝⎛-2,2ππ的单调性. ④ 理解同角三角函数的基本关系式:x xxx x tan cos sin ,1cos sin 22==+ ⑤ 了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图像,了解参数ϕω,,A 对函数图像变化的影响.⑥ 会用三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(3)两角和与差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式. ② 会用两角差的余弦公式导出两角差的正弦、正切公式.③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(4)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(5)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (6) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 二、复习预习复习相关概念:三角函数基本概念、诱导公式、同角三角函数关系、三角函数图像和性质、两角和与差的计算及二倍角公式以及三角函数的实际应用,正余弦定理等.在复习该部分内容时要有整体意识,抓住角的变换主线解决相关问题,其中三角函数的图形和性质是核心内容,相对于其它模块而言,三角函数的考查的点分散得比较细,这也要引起重视,复习一定要全面,常见的思想方法有化归转化,数形结合等. 三、知识讲解考点1 三角函数的定义及性质(1)任意角的概念、弧度制.扇形相关内容,如弧长,面积,圆锥侧面等 (2)三角函数①任意角三角函数(正弦、余弦、正切)的定义.②正弦、余弦、正切的诱导公式, x y x y x y tan ,cos ,sin ===的图像,三角函数的周期性. ③正弦函数、余弦函数在区间[]π2,0的性质(如单调性、最大和最小值以及与x 轴交点等).正切函数在区间⎪⎭⎫⎝⎛-2,2ππ的单调性.④ 理解同角三角函数的基本关系式:x xxx x tan cos sin ,1cos sin 22==+ ⑤ 了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图像,了解参数ϕω,,A 对函数图像变化的影响.⑥ 会用三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.考点2 三角恒等变形(1)两角和与差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式. ② 会用两角差的余弦公式导出两角差的正弦、正切公式.③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. (2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 考点3 解三角形 (1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.四、例题精析例1 [2014全国1卷]设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 ( )A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【规范解答】解法1.选B (演绎推理) ∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=解法2.选B (特殊角) 取6πβ=代入1sin tan cos βαβ+=,可得3tan =α,所以3πα=,通过四个选项验证,只有选项B 符合。

高考数学二轮复习第2部分八大难点突破难点3以构建函数模型解三角形动点轨迹为背景的实际问题课件

高考数学二轮复习第2部分八大难点突破难点3以构建函数模型解三角形动点轨迹为背景的实际问题课件

1, 10
又∵∠AOB=π-α,
∴sin∠AOB=sin(π-α)=
2 5.
在△AOB
中,AO=15,由正弦定理可得:sin∠ABAOB=sin∠AOABO,即A2B=
15 1

5 10
∴解得 AB=30 2,即铁路 AB 段的长为 30 2 km.
[点评] 解三角形应用题常有以下两种情形:(1)实际问题经抽象概括后,已知 量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际 问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需 作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设 出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.
[解] (1)由 PO1=2 知 O1O=4PO1=8. 因为 A1B1=AB=6, 所以正四棱锥 P-A1B1C1D1 的体积 V 锥=13·A1B21·PO1=13×62×2=24(m3); 正四棱柱 ABCD-A1B1C1D1 的体积 V 柱=AB2·O1O=62×8=288(m3). 所以仓库的容积 V=V 锥+V 柱=24+288=312(m3).
[解] (1)在△AOM 中,AO=15,∠AOM=β,且 cos β= 313,OM=3 13, 由余弦定理可 得: AM2=OA2+OM2-2OA·OM·cos∠AOM=(3 13)2+152- 2×3 13×15× 313=72. 所以可得:AM=6 2,大学 M 与 A 站的距离 AM 为 6 2 km.
(2)设 A1B1=a m,PO1=h m, 则 0<h<6,O1O=4h.连接 O1B1. 因为在 Rt△PO1B1 中, O1B21+PO21=PB21, 所以 22a2+h2=36, 即 a2=2(36-h2).

(新)江苏专版2018年高考数学二轮复习第2部分八大难点突破专项限时集训1与三角变换平面向量综合的三角形问

(新)江苏专版2018年高考数学二轮复习第2部分八大难点突破专项限时集训1与三角变换平面向量综合的三角形问

专项限时集训(一) 与三角变换、平面向量综合的三角形问题(对应学生用书第113页)(限时:60分钟)1.(本小题满分14分)(2015·江苏高考)在△ABC 中,已知AB =2,AC =3,A =60˚.(1)求BC 的长; (2)求sin 2C 的值.[解] (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.4分(2)由正弦定理知,AB sin C =BCsin A,所以sin C =AB BC ·sin A =2sin 60˚7=217.因为AB <BC ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 14分2.(本小题满分14分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c . (1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.[解] (1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C . 可得cos C =12,所以C =π3.6分(2)由已知,12ab sin C =332.又C =π3,所以ab =6.10分由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7. 14分3.(本小题满分14分)(江苏省南通市如东高中2017届高三上学期第二次调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos C =310.(1)若CA →·CB →=92,求△ABC 的面积;(2)设向量x =(2sin B ,-3),y =⎝⎛⎭⎪⎫cos 2B ,1-2sin 2B 2,且x ∥y ,求角B 的值.【导学号:56394091】[解] (1)根据题意,∵CB →·CA →=92,∴ab cos C =92,∴ab =15,又∵cos C =310,C ∈(0,π),sin C =9110.所以S △ABC =12ab sin C =3914.6分(2)根据题意,∵x ∥y ,∴2sin B ⎝ ⎛⎭⎪⎫1-2sin 2B 2-(-3)·cos 2B =0,即2sin B ⎝⎛⎭⎪⎫1-2sin 2B 2+3cos 2B =0,2sin B cos B +3cos 2B =0,即sin 2B +3cos 2B =0,显然cos 2B ≠0, 所以tan 2B =-3,10分 所以2B =2π3或5π3,即B =π3或5π6,因为cos C =310<32,所以C >π6,所以B =5π6(舍去),即B =π3.14分 4.(本小题满分16分)已知向量a =⎝ ⎛⎭⎪⎫k sin x3,cos 2x 3,b =⎝ ⎛⎭⎪⎫cos x3,-k ,实数k 为大于零的常数,函数f (x )=a ·b ,x ∈R ,且函数f (x )的最大值为2-12. (1)求k 的值;(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若π2<A <π,f (A )=0,且a=210,求AB →·AC →的最小值.[解] (1)由已知f (x )=a ·b =⎝ ⎛⎭⎪⎫k sin x3,cos 2x 3·⎝ ⎛⎭⎪⎫cos x3,-k=k sin x 3cos x 3-k cos 2x 3=12k sin 2x 3-k ·1+cos2x 32=k 2⎝ ⎛⎭⎪⎫sin 2x3-cos 2x 3-k 2=2k 2⎝ ⎛⎭⎪⎫22sin 2x 3-22cos 2x 3-k 2 =2k 2sin ⎝ ⎛⎭⎪⎫2x 3-π4-k 2. 5分因为x ∈R ,所以f (x )的最大值为2-1k2=2-12, 则k =1.7分(2)由(1)知,f (x )=22sin ⎝ ⎛⎭⎪⎫2x 3-π4-12, 所以f (A )=22sin ⎝ ⎛⎭⎪⎫2A 3-π4-12=0, 化简得sin ⎝⎛⎭⎪⎫2A 3-π4=22.9分因为π2<A <π,所以π12<2A 3-π4<5π12.则2A 3-π4=π4,解得A =3π4. 因为cos A =-22=b 2+c 2-a 22bc =b 2+c 2-402bc ,所以b 2+c 2+2bc =40,则b 2+c 2+2bc =40≥2bc +2bc , 所以bc ≤402+2=20(2-2).14分则AB →·AC →=|AB →||AC →|cos 3π4=-22bc ≥20(1-2).所以AB →·AC →的最小值为20(1-2).16分5.(本小题满分16分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cosB .(1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.[解] (1)证明:由正弦定理得sin B +sin C =2sin A cos B , 故2sin A cos B =sin B +sin(A +B ) =sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . 8分(2)由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B .因为sin B ≠0,所以sin C =cos B . 12分 又B ,C ∈(0,π),所以C =π2±B . 当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.16分6.(本小题满分16分)(江苏省苏州市2017届高三上学期期中)如图2,有一块平行四边形绿地ABCD ,经测量BC =2百米,CD =1百米,∠BCD =120°,拟过线段BC 上一点E 设计一条直路EF (点F 在四边形ABCD 的边上,不计路的宽度),将绿地分为面积之比为1∶3的左右两部分,分别种植不同的花卉,设EC =x 百米,EF =y 百米.图2(1)当点F 与点D 重合时,试确定点E 的位置; (2)试求x 的值,使路EF 的长度y 最短.[解] (1)∵S 平行四边形ABCD =2×12×1×2sin 120°=3,当点F 与点D 重合时,由已知S △CDE =14S 平行四边形ABCD =34,又∵S △CDE =12CE ·CD ·sin 120°=34x =34⇒x =1,E 是BC 的中点.6分(2)①当点F 在CD 上,即1≤x ≤2时,利用面积关系可得CF =1x,再由余弦定理可得y =x 2+1x2+1≥3;当且仅当x =1时取等号.②当点F 在DA 上时,即0≤x <1时,利用面积关系可得DF =1-x ,10分(ⅰ)当CE <DF 时,过E 作EG ∥CD 交DA 于G (图略),在△EGF 中,EG =1,GF =1-2x ,∠EGF =60°,利用余弦定理得y =4x 2-2x +1.(ⅱ)同理当CE ≥DF ,过E 作EG ∥CD 交DA 于G (图略),在△EGF 中,EG =1,GF =2x -1,∠EGF =120°,利用余弦定理得y =4x 2-2x +1.由(ⅰ)、(ⅱ)可得y =4x 2-2x +1,0≤x <1, ∴y =4x 2-2x +1=4⎝ ⎛⎭⎪⎫x -142+34, ∵0≤x <1,∴y min =32,当且仅当x =14时取等号, 由①②可知当x =14时,路EF 的长度最短为32.16分。

(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点8函数最值、恒成立及存在性问题学案

(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点8函数最值、恒成立及存在性问题学案

难点八 函数最值、恒成立及存在性问题(对应学生用书第75页)恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理. F (x )>a :⎩⎪⎨⎪⎧恒成立⇔f x min >a 有解⇔f x max >a无解⇔f x max ≤a具体方法为将已知恒成立或存在性的不等式或等式由等价原理把参数和变量分离开,转化为一元已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则.参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.【例1】 (2017·盐城市滨海县八滩中学二模)设f (x )=e x-a (x +1).(1)若a >0,f (x )≥0对一切x ∈R 恒成立,求a 的最大值;(2)设g (x )=f (x )+ae x ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围;(3)是否存在正整数a ,使得1n +3n +…+(2n -1)n <e e -1(an )n对一切正整数n 都成立?若存在,求a 的最小值;若不存在,请说明理由.【导学号:56394112】[解] (1)∵f (x )=e x-a (x +1),∴f ′(x )=e x-a , ∵a >0,f ′(x )=e x -a =0的解为x =ln a . ∴f (x )min =f (ln a )=a -a (ln a +1)=-a ln a .∵f (x )≥0对一切x ∈R 恒成立,∴-a ln a ≥0,∴a ln a ≤0,∴a max =1. (2)∵f (x )=e x-a (x +1), ∴g (x )=f (x )+ae x =e x+ae x -ax -a .∵a ≤-1,直线AB 的斜率恒大于常数m , ∴g ′(x )=e x-aex -a ≥2e x·⎝ ⎛⎭⎪⎫-a e x -a=-a +2-a =m (a ≤-1),解得m ≤3,∴实数m 的取值范围是(-∞,3].(3)设t (x )=e x-x -1,则t ′(x )=e x-1,令t ′(x )=0得:x =0. 在x <0时t ′(x )<0,f (x )递减;在x >0时t ′(x )>0,f (x )递增. ∴t (x )最小值为t (0)=0,故e x≥x +1,取x =-i 2n ,i =1,3,…,2n -1,得1-i 2n ≤e-i 2n ,即⎝ ⎛⎭⎪⎫2n -i 2n n ≤e-i 2,累加得⎝ ⎛⎭⎪⎫12n n +⎝ ⎛⎭⎪⎫32n n +…+⎝ ⎛⎭⎪⎫2n -12n n <e -2n -12+e -2n -32+…+e -12=e -121-e-n1-e -1<ee -1. ∴1n+3n+…+(2n -1)n<e e -1·(2n )n, 故存在正整数a =2.使得1n+3n+…+(2n -1)n<e e -1·(an )n. 【例2】 (2017·江苏省无锡市高考数学一模)已知函数f (x )=(x +1)ln x -ax +a (a 为正实数,且为常数).(1)若f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若不等式(x -1)f (x )≥0恒成立,求a 的取值范围.[解] (1)f (x )=(x +1)ln x -ax +a ,f ′(x )=ln x +1x+1-a ,若f (x )在(0,+∞)上单调递增,则a ≤ln x +1x+1在(0,+∞)恒成立(a >0),令g (x )=ln x +1x +1(x >0),g ′(x )=x -1x2,令g ′(x )>0,解得:x >1,令g ′(x )<0,解得:0<x <1, 故g (x )在(0,1)递减,在(1,+∞)递增, 故g (x )min =g (1)=2, 故0<a ≤2;(2)若不等式(x -1)f (x )≥0恒成立,即(x -1)[(x +1)ln x -ax +a ]≥0恒成立, ①x ≥1时,只需a ≤(x +1)ln x 恒成立, 令m (x )=(x +1)ln x (x ≥1), 则m ′(x )=ln x +1x+1,由(1)得:m ′(x )≥2,故m (x )在[1,+∞)递增,m (x )≥m (1)=0,故a ≤0,而a 为正实数,故a ≤0不合题意; ②0<x <1时,只需a ≥(x +1)ln x , 令n (x )=(x +1)ln x (0<x <1),则n ′(x )=ln x +1x+1,由(1)知n ′(x )在(0,1)递减,故n ′(x )>n ′(1)=2,故n (x )在(0,1)递增,故n (x )<n (1)=0, 故a ≥0,而a 为正实数,故a >0.【例3】 (2017·江苏省淮安市高考数学二模)已知函数f (x )=1e x ,g (x )=ln x ,其中e为自然对数的底数.(1)求函数y =f (x )g (x )在x =1处的切线方程;(2)若存在x 1,x 2(x 1≠x 2),使得g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)]成立,其中λ为常数,求证:λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立,求实数a 的取值范围.【导学号:56394113】[解] (1)y =f (x )g (x )=ln xe x ,y ′=1x -ln xex, x =1时,y =0,y ′=1e,故切线方程是:y =1e x -1e;(2)证明:由g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)], 得:g (x 1)+λf (x 1)=g (x 2)+λf (x 2), 令h (x )=g (x )+λf (x )=ln x +λe x (x >0),h ′(x )=e x-λxx e x,令ω(x )=e x-λx ,则ω′(x )=e x-λ, 由x >0,得e x >1,①λ≤1时,ω′(x )>0,ω(x )递增, 故h ′(x )>0,h (x )递增,不成立;②λ>1时,令ω′(x )=0,解得:x =ln λ, 故ω(x )在(0,ln λ)递减,在(ln λ,+∞)递增, ∴ω(x )≥ω(ln λ)=λ-λln λ,令m (λ)=λ-λln λ(λ>1), 则m ′(λ)=-ln λ<0,故m (λ)递减, 又m (e)=0,若λ≤e,则m (λ)≥0,ω(x )≥0,h (x )递增,不成立, 若λ>e ,则m (λ)<0,函数h (x )有增有减,满足题意, 故λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立, 即ln xex -a (x -1)≤0在(0,1]恒成立, 令F (x )=ln xe x -a (x -1),x ∈(0,1],F (1)=0,F ′(x )=1x -ln x e x-a ,F ′(1)=1e-a , ①F ′(1)≤0时,a ≥1e,F ′(x )≤1x -ln x -ex -1ex递减,而F ′(1)=0,故F ′(x )≥0,F (x )递增,F (x )≤F (1)=0,成立,②F ′(1)>0时,则必存在x 0,使得F ′(x )>0,F (x )递增,F (x )<F (1)=0不成立,故a ≥1e.【例4】 设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).[解] (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=ex -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0, 即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.[点评] 综合构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.。

2018届高考数学(全国通用)二轮复习中档大题精品讲义 第2讲 解三角形

2018届高考数学(全国通用)二轮复习中档大题精品讲义 第2讲 解三角形

第2讲 解三角形[明考情]高考中主要考查正弦定理、余弦定理在解三角形中的应用.求三角形的面积问题一般在解答题的17题位置. [知考向]1.利用正弦、余弦定理解三角形.2.三角形的面积.3.解三角形的综合问题.考点一 利用正弦、余弦定理解三角形方法技巧 (1)公式法解三角形:直接利用正弦定理或余弦定理,其实质是将几何问题转化为代数问题,适用于求三角形的边或角.(2)边角互化法解三角形:合理转化已知条件中的边角关系,适用于已知条件是边角混和式的解三角形问题.1.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2). (1)求cos A 的值; (2)求sin(2B -A )的值. 解 (1)由a sin A =4b sin B 及a sin A =bsin B,得a =2b . 由ac =5(a 2-b 2-c 2)及余弦定理,得 cos A =b 2+c 2-a22bc=-55ac ac =-55. (2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55.由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos 2B sin A =45×⎝⎛⎭⎫-55-35×255=-255.2.如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .解 (1)由已知得∠PBC =60°,∠PBA =30°.在△PBA 中,由余弦定理,得P A 2=3+14-2×3×12cos 30°=74,∴P A =72. (2)设∠PBA =α,由已知得PB =sin α,在△PBA 中,由正弦定理得3sin 150°=sin αsin (30°-α),化简得3cos α=4sin α,故tan α=34,即tan ∠PBA =34. 3.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且1a +b +1a +c =3a +b +c .(1)求角A 的大小;(2)若c b =12+3,a =15,求b 的值.解 (1)由题意,可得a +b +c a +b +a +b +c a +c =3,即c a +b +ba +c =1,整理得b 2+c 2-a 2=bc ,由余弦定理知,cos A =b 2+c 2-a 22bc =12,因为0<A <π,所以A =π3.(2)根据正弦定理,得c b =sin C sin B =sin (A +B )sin B =sin A cos B +cos A sin B sin B =sin A tan B +cos A =32tan B +12=12+3, 解得tan B =12,所以sin B =55.由正弦定理得,b =a sin Bsin A=15×5532=2.4.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)∵b sin A =3a cos B ,由正弦定理得sin B sin A =3sin A cos B . 在△ABC 中,sin A ≠0, 即得tan B = 3. ∵B ∈(0,π),∴B =π3.(2)∵sin C =2sin A ,由正弦定理得c =2a , 由余弦定理b 2=a 2+c 2-2ac cos B , 即9=a 2+4a 2-2a ·2a cos π3,解得a =3,∴c =2a =2 3. 考点二 三角形的面积方法技巧 三角形面积的求解策略(1)若所求面积的图形为不规则图形,可通过作辅助线或其他途径构造三角形,转化为三角形的面积.(2)若所给条件为边角关系,则运用正弦、余弦定理求出其两边及其夹角,再利用三角形面积公式求解.5.(2016·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求角C 的大小;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .因为0<C <π,所以cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C=7,故a 2+b 2=13,从而(a +b )2=25,可得a +b =5.所以△ABC 的周长为5+7. 6.在△ABC 中,已知C =π6,向量m =(sin A ,1),n =(1,cos B ),且m ⊥n .(1)求A 的大小;(2)若点D 在边BC 上,且3BD →=BC →,AD =13,求△ABC 的面积. 解 (1)由题意知m ·n =sin A +cos B =0,又C =π6,A +B +C =π,所以sin A +cos ⎝⎛⎭⎫5π6-A =0. 所以sin A -32cos A +12sin A =0,即sin ⎝⎛⎭⎫A -π6=0. 又0<A <5π6,所以A -π6∈⎝⎛⎭⎫-π6,2π3, 所以A -π6=0,即A =π6.(2)设|BD →|=x ,由3BD →=BC →,得|BC →|=3x , 由(1)知,A =C =π6,所以|BA →|=3x ,B =2π3.在△ABD 中,由余弦定理,得(13)2=(3x )2+x 2-2·3x ·x cos 2π3,解得x =1,所以AB =BC =3,所以S △ABC =12BA ·BC ·sin B =12·3·3·sin 2π3=934.7.(2017·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B 的值;(2)若a +c =6,△ABC 面积为2,求b .解 (1)由题设及A +B +C =π,得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去)或cos B =1517.故cos B =1517.(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6, 得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2.8.(2017·延边州一模)已知函数f (x )=sin 2ωx -sin 2⎝⎛⎭⎫ωx -π6⎝⎛⎭⎫x ∈R ,ω为常数且12<ω<1,函数f (x )的图象关于直线x =π对称. (1)求函数f (x )的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,f ⎝⎛⎭⎫35A =14,求△ABC 面积的最大值.解 (1)f (x )=12-12cos 2ωx -⎣⎡⎦⎤12-12cos ⎝⎛⎭⎫2ωx -π3=12cos ⎝⎛⎭⎫2ωx -π3-12cos2ωx =-14cos2ωx +34sin2ωx =12sin ⎝⎛⎭⎫2ωx -π6. 令2ωx -π6=π2+k π,解得x =π3ω+k π2ω,k ∈Z .∴f (x )的对称轴为x =π3ω+k π2ω,k ∈Z .令π3ω+k π2ω=π, 解得ω=2+3k6,k ∈Z .∵12<ω<1, ∴当k =1时,ω=56,∴f (x )=12sin ⎝⎛⎭⎫53x -π6. ∴f (x )的最小正周期T =2π53=6π5.(2)∵f ⎝⎛⎭⎫35A =12sin ⎝⎛⎭⎫A -π6=14, ∴sin ⎝⎛⎭⎫A -π6=12. ∴A =π3.由余弦定理得,cos A =b 2+c 2-a 22bc =b 2+c 2-12bc =12,∴b 2+c 2=bc +1≥2bc , ∴bc ≤1.∴S △ABC =12bc sin A =34bc ≤34,∴△ABC 面积的最大值是34.考点三 解三角形的综合问题方法技巧 (1)题中的关系式可以先利用三角变换进行化简.(2)和三角形有关的最值问题,可以转化为三角函数的最值问题,要注意其中角的取值. (3)和平面几何有关的问题,不仅要利用三角函数和正弦、余弦定理,还要和三角形、平行四边形的一些性质结合起来.9.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝⎛⎭⎫2A +π4的值. 解 (1)在△ABC 中,因为a >b , 所以由sin B =35,得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =bsin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.所以sin ⎝⎛⎭⎫2A +π4=sin 2A cos π4+cos 2A sin π4=7226. 10.△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c ,1+tan A tan B =2c3b .(1)求角A 的大小;(2)若△ABC 为锐角三角形,求函数y =2sin 2B -2sin B cos C 的取值范围.解 (1)因为1+tan A tan B =2c 3b ,所以由正弦定理,得1+sin A cos B cos A sin B =sin (A +B )cos A sin B =2sin C3sin B .因为A +B +C =π,所以sin(A +B )=sin C , 所以sin C cos A sin B =2sin C3sin B ,因为sin C ≠0,sin B ≠0,所以cos A =32,故A =π6.(2)因为A +B +C =π,A =π6,所以B +C =5π6.所以y =2sin 2B -2sin B cos C =1-cos 2B -2sin B cos ⎝⎛⎭⎫5π6-B =1-cos 2B +3sin B cos B -sin 2B =1-cos 2B +32sin 2B -12+12cos 2B =12+32sin 2B -12cos 2B =sin ⎝⎛⎭⎫2B -π6+12. 又△ABC 为锐角三角形, 所以π3<B <π2⇒π2<2B -π6<5π6,所以y =sin ⎝⎛⎭⎫2B -π6+12∈⎝⎛⎭⎫1,32. 故函数y =2sin 2B -2sin B cos C 的取值范围是⎝⎛⎭⎫1,32. 11.(2017·咸阳二模)设函数f (x )=sin x cos x -sin 2⎝⎛⎭⎫x -π4(x ∈R ), (1)求函数f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝⎛⎭⎫C 2=0,c =2,求△ABC 面积的最大值.解 (1)函数f (x )=sin x cos x -sin 2⎝⎛⎭⎫x -π4(x ∈R ). 化简可得f (x )=12sin 2x -12⎣⎡⎦⎤1-cos ⎝⎛⎭⎫2x -π2=sin 2x -12. 令2k π-π2≤2x ≤2k π+π2(k ∈Z ),则k π-π4≤x ≤k π+π4(k ∈Z ),即f (x )的递增区间为⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z ). 令2k π+π2≤2x ≤2k π+3π2(k ∈Z ),则k π+π4≤x ≤k π+3π4(k ∈Z ),即f (x )的递减区间为⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ). (2)由f ⎝⎛⎭⎫C 2=0,得sin C =12, 又因为△ABC 是锐角三角形, 所以C =π6.由余弦定理得c 2=a 2+b 2-2ab cos C ,将c =2,C =π6代入得4=a 2+b 2-3ab ,由基本不等式得a 2+b 2=4+3ab ≥2ab ,即ab ≤4(2+3), 所以S △ABC =12ab sin C ≤12·4(2+3)·12=2+3,即△ABC 面积的最大值为2+ 3.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2a -c ,cos C ),n =(b ,cos B ),m ∥n .(1)求角B 的大小;(2)若b =1,当△ABC 的面积取得最大值时,求△ABC 内切圆的半径.解 (1)由已知可得(2a -c )cos B =b cos C ,结合正弦定理可得(2sin A -sin C )cos B =sin B cos C ,即2sin A cos B =sin(B +C ),又sin A =sin(B +C )>0,所以cos B =12,所以B =π3.(2)由(1)得B =π3,又b =1,在△ABC 中,b 2=a 2+c 2-2ac cos B ,所以12=a 2+c 2-ac ,即1+3ac =(a +c )2. 又(a +c )2≥4ac ,所以1+3ac ≥4ac , 即ac ≤1,当且仅当a =c =1时取等号.从而S △ABC =12ac sin B =34ac ≤34,当且仅当a =c =1时,S △ABC 取得最大值34.设△ABC 内切圆的半径为r ,由S △ABC =12(a +b +c )r ,得r =36.例 (12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(a +b ,sin A -sin C ),向量n =(c ,sin A -sin B ),且m ∥n . (1)求角B 的大小;(2)设BC 的中点为D ,且AD =3,求a +2c 的最大值及此时△ABC 的面积. 审题路线图向量m ∥n ―→边角关系式――――→利用正弦定理转化△ABC 三边关系式――――→余弦定理求得角B ――――→引进变量(设角θ)用θ表示a +2c (目标函数)―→辅助角公式求最值―→求S △ABC规范解答·评分标准 解 (1)因为m ∥n ,所以(a +b )(sin A -sin B )-c (sin A -sin C )=0,………………………………………………………………………………………………1分 由正弦定理,可得(a +b )(a -b )-c (a -c )=0,即a 2+c 2-b 2=ac .……………………3分 由余弦定理可知,cos B =a 2+c 2-b 22ac =ac 2ac =12.因为B ∈(0,π),所以B =π3.…………5分(2)设∠BAD =θ,则在△BAD 中,由B =π3可知,θ∈⎝⎛⎭⎫0,2π3. 由正弦定理及AD =3,有BD sin θ=AB sin ⎝⎛⎭⎫2π3-θ=3sin π3=2,所以BD =2sin θ,AB =2sin ⎝⎛⎭⎫2π3-θ=3cos θ+sin θ,所以a =2BD =4sin θ,c =AB =3cos θ+sin θ,………………………………………8分 从而a +2c =23cos θ+6sin θ=43sin ⎝⎛⎭⎫θ+π6. 由θ∈⎝⎛⎭⎫0,2π3可知,θ+π6∈⎝⎛⎭⎫π6,5π6, 所以当θ+π6=π2,即当θ=π3时,a +2c 取得最大值4 3.………………………………11分此时a =23,c =3,所以S △ABC =12ac sin B =332.………………………………………………………………………………………………12分 构建答题模板[第一步] 找条件:分析寻找三角形中的边角关系.[第二步] 巧转化:根据已知条件,选择使用的定理或公式,确定转化方向,实现边角互化. [第三步] 得结论:利用三角恒等变换进行变形,得出结论. [第四步] 再反思:审视转化过程的合理性.1.(2016·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan Acos B +tan Bcos A. (1)证明:a +b =2c ; (2)求cos C 的最小值.(1)证明 由题意知,2⎝⎛⎭⎫sin A cos A +sin B cos B =sin A cos A cos B +sin Bcos A cos B .化简得2(sin A cos B +sin B cos A )=sin A +sin B , 即2sin(A +B )=sin A +sin B ,因为A +B +C =π, 所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C ,由正弦定理得a +b =2c .(2)解 由(1)知c =a +b 2,所以cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎫a +b 222ab =38⎝⎛⎭⎫a b +b a -14≥12,当且仅当a =b 时,等号成立,故cos C 的最小值为12.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,A 为锐角,向量m =(2sin A ,-3),n =⎝⎛⎭⎫cos 2A ,2cos 2A2-1,且m ∥n . (1)求A 的大小;(2)如果a =2,求△ABC 面积的最大值.解 (1)由m ∥n ,可得2sin A ·⎝⎛⎭⎫2cos 2A 2-1+3cos 2A =0,即2sin A ·cos A +3cos 2A =0, 所以sin 2A =-3cos 2A ,即tan 2A =- 3. 因为A 为锐角,故0°<2A <180°, 所以2A =120°,A =60°.(2)如果a =2,在△ABC 中,由余弦定理a 2=b 2+c 2-2bc cos A , 可得4=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤4, 所以S =12bc sin A ≤12×4×32=3,故△ABC 面积的最大值为 3.3.在海岸A 处,发现北偏东45°方向距A 为3-1海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间.(注:6≈2.449)解 设缉私船追上走私船所需时间为t 小时,如图所示,则CD =103t 海里,BD =10t 海里.在△ABC 中,因为AB =(3-1)海里,AC =2海里,∠BAC =45°+75°=120°,根据余弦定理,可得BC =(3-1)2+22-2·2·(3-1)cos 120°=6(海里).根据正弦定理,可得sin ∠ABC =AC ·sin 120°BC =2·326=22. 所以∠ABC =45°,易知CB 方向与正北方向垂直,从而∠CBD =90°+30°=120°.在△BCD 中,根据正弦定理,可得sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin 120°103t=12, 所以∠BCD =30°,∠BDC =30°,所以DB =BC =6海里.则有10t =6,t =610≈0.245(小时)=14.7(分钟). 故缉私船沿北偏东60°方向,最快需约14.7分钟才能追上走私船.4.(2017·济南一模)已知f (x )=23sin x cos x -cos(π+2x ).(1)求f (x )的单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,c =3,a +b =23,求△ABC 的面积.解 (1)f (x )=23sin x cos x -cos(π+2x ).化简可得f (x )=3sin2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 得-π3+k π≤x ≤π6+k π,k ∈Z . ∴f (x )的单调增区间为⎣⎡⎦⎤-π3+k π,π6+k π,k ∈Z . (2)由(1)可知,f (x )=2sin ⎝⎛⎭⎫2x +π6. ∵f (C )=1,即2sin ⎝⎛⎭⎫2C +π6=1, 0<C <π,可得2C +π6=5π6,∴C =π3. 由a +b =23,可得a 2+b 2=12-2ab .∵c =3,根据余弦定理cos C =a 2+b 2-c 22ab, 可得12-2ab -c 22ab =12,解得ab =3. 故△ABC 的面积S =12ab sin C =12×3×32=334.5.已知向量a =⎝⎛⎭⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝⎛⎭⎫2A +π6⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π3的取值范围. 解 (1)因为a ∥b , 所以34cos x +sin x =0,所以tan x =-34. cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22, 所以A =π4或A =3π4,因为b >a ,所以A =π4, f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12. 因为x ∈⎣⎡⎦⎤0,π3,所以2x +π4∈⎣⎡⎦⎤π4,11π12, 所以32-1≤f (x )+4cos ⎝⎛⎭⎫2A +π6≤2-12. 所以所求取值范围是⎣⎡⎦⎤32-1,2-12.。

高考数学二轮复习第2部分八大难点突破难点2立体几何中的探索性与存在性问题学案(2021学年)

高考数学二轮复习第2部分八大难点突破难点2立体几何中的探索性与存在性问题学案(2021学年)

(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案的全部内容。

难点二立体几何中的探索性与存在性问题(对应学生用书第65页)数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查.探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.1.对命题条件的探索探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法:(1)先猜后证,即先观察与尝试给出条件再给出证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件.【例1】如图1,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=错误!AD,E 为棱AD的中点,异面直线PA与CD所成的角为90°。

在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由.【导学号:56394092】图1[解] 在梯形ABCD中,AB与CD不平行.如图,延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,知BC∥ED,且BC=ED,所以四边形BCDE是平行四边形,从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE。

2018年江苏高考数学二轮复习教师用书:第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题

2018年江苏高考数学二轮复习教师用书:第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题

难点一与三角变换、平面向量综合的三角形问题(对应学生用书第62页)高考数学命题注重知识的整体性和综合性,重视在知识的交汇处考察,对三角形问题的考察重点在于三角变换、向量综合,它们之间互相联系、互相交叉,不仅考察三角变换,同时深化了向量的运算,体现了向量的工具作用,试题综合性较高,所以要求学生有综合处理问题的能力,纵观最近几年高考,试题难度不大,但是如果某一知识点掌握不到位,必会影响到整个解题过程 ,本文从以下几个方面阐述解题思路,以达到抛砖引玉的目的. 1.向量运算与三角形问题的综合运用解答这类题,首先向量的基本概念和运算必须熟练,要很好的掌握正弦定理、余弦定理的应用条件,其次要注意把题目中的向量用三角中边和角表示,体现向量的工具作用. 【例1】 (镇江市2017届高三上学期期末)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos 2α的值;(2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的值.[解] 法一(1)由m ⊥n 得,2cos α-sin α=0,sin α=2cos α, 代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝⎛⎭⎪⎫0,π2,则cos α=55,sin α=255, 则cos 2α=2cos 2α-1=2×⎝⎛⎭⎪⎫552-1=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得,α-β∈⎝ ⎛⎭⎪⎫-π2,π2.因sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22, 因β∈⎝⎛⎭⎪⎫0,π2,则β=π4.法二(1)由m ⊥n 得,2cos α-sin α=0,tan α=2,故cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,则sin α=255,cos α=55,由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得,α-β∈⎝ ⎛⎭⎪⎫-π2,π2. 因sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22,因β∈⎝ ⎛⎭⎪⎫0,π2,则β=π4.2.三角函数与三角形问题的结合三角函数的起源是三角形,所以经常会联系到三角形,这类型题是在三角形这个载体上的三角变换,第一:既然是三角形问题,就会用到三角形内角和定理和正、余弦定理以及相关三角形理论,及时边角转换,可以帮助发现问题解决思路;第二:它也是一种三角变换,只不过角的范围缩小了,因此常见的三角变换方法和原则都是适用的.【例2】 (2017·江苏省无锡市高考数学一模)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.若a cos B =3,b cos A =1,且A -B =π6.(1)求边c 的长; (2)求角B 的大小.【导学号:56394089】[解] (1)∵a cos B =3,b cos A =1,∴a ×a 2+c 2-b 22ac =3,b ×b 2+c 2-a 22bc=1,化为:a 2+c 2-b 2=6c ,b 2+c 2-a 2=2c . 相加可得:2c 2=8c ,解得c =4. (2)由(1)可得:a 2-b 2=8.由正弦定理可得:a sin A =b sin B =4sin C,又A -B =π6,∴A =B +π6,C =π-(A +B )=π-⎝ ⎛⎭⎪⎫2B +π6,可得sin C =sin ⎝⎛⎭⎪⎫2B +π6. ∴a =4sin ⎝⎛⎭⎪⎫B +π6sin ⎝ ⎛⎭⎪⎫2B +π6,b =4sin B sin ⎝⎛⎭⎪⎫2B +π6.∴16sin 2⎝ ⎛⎭⎪⎫B +π6-16sin 2B =8sin 2⎝⎛⎭⎪⎫2B +π6,∴1-cos ⎝ ⎛⎭⎪⎫2B +π3-(1-cos 2B )=sin 2⎝ ⎛⎭⎪⎫2B +π6,即cos 2B -cos ⎝ ⎛⎭⎪⎫2B +π3=sin 2⎝ ⎛⎭⎪⎫2B +π6, ∴-2sin ⎝ ⎛⎭⎪⎫2B +π6sin ⎝ ⎛⎭⎪⎫-π6=sin 2⎝ ⎛⎭⎪⎫2B +π6, ∴sin ⎝ ⎛⎭⎪⎫2B +π6=0或sin ⎝ ⎛⎭⎪⎫2B +π6=1,B ∈⎝ ⎛⎭⎪⎫0,5π12. 解得:B =π6.3.三角变换、向量、三角形问题的综合高考会将几方面结合起来命题,三角函数主要考察它的图象、常见性质;三角形主要考察正弦定理、余弦定理以及有关的三角形性质;向量主要考察向量的运算、向量的模、向量的夹角、向量的垂直以及向量的共线,体现向量的工具作用,三角变换主要考察求值、化简、变形.【例3】 (扬州市2017届高三上学期期中)在△ABC 中,AB =6,AC =32,AB →·AC →=-18.(1)求BC 的长; (2)求tan 2B 的值.[解] (1)因为AB →·AC →=AB ×AC ×cos A =-18,且AB =6,AC =32,BC =AB 2+AC 2-2AB ×AC ×cos A=62+22--=310.(2)法一:在△ABC 中,AB =6,AC =32,BC =310,cos B =BA 2+BC 2-AC 22BA ×BC=62+102-222×6×310=31010,又B ∈(0,π),所以sin B =1-cos 2B =1010, 所以tan B =sin B cos B =13,所以tan 2B =2tan B1-tan 2B=231-⎝ ⎛⎭⎪⎫132=34. 法二:由AB =6,AC =32,AB →·AC →=AB ×AC ×cos A =-18可得cos A =-22,又A ∈(0,π),所以A =3π4.在△ABC 中,BC sin A =ACsin B,所以sin B =AC ×sin A BC =32×22310=1010, 又B ∈⎝⎛⎭⎪⎫0,π4,所以cos B =1-sin 2B =31010,所以tan B =sin B cos B =13,所以tan 2B =2tan B1-tan 2B=231-⎝ ⎛⎭⎪⎫132=34. 4.实际应用中的三角形问题在实际生活中往往会遇到关于距离、角度、高度的测量问题,可以借助平面图形,将上述量放在一个三角形中,借助解三角形知识达到解决问题的目的.【例4】 (2017·江苏省淮安市高考数学二模)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击,已知缉私艇的最大航速是走私船最大航速的3倍,假设缉私艇和走私船均按直线方向以最大航速航行.图1(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin 17°≈36,33≈5.744 6) (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由. [解] (1)设缉私艇在C 处与走私船相遇(如图),则AC =3BC .△ABC 中,由正弦定理可得sin ∠BAC =sin 120°3=36,∴∠BAC =17°,∴缉私艇应向北偏东47°方向追击,△ABC 中,由余弦定理可得cos 120°=16+BC 2-AC28BC,∴BC ≈1.686 15.B 到边界线l 的距离为3.8-4sin 30°=1.8,∵1.686 15<1.8,∴能用最短时间在领海内拦截成功.(2)以A 为原点,建立如图所示的坐标系,则B (2,23),设缉私艇在P (x ,y )处与走私船相遇,则PA =3PB ,即x 2+y 2=9[(x -2)2+(y -23)2],即⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y -9432=94,∴P 的轨迹是以⎝ ⎛⎭⎪⎫94,943为圆心,32为半径的圆, ∵圆心到边界线l :x =3.8的距离为1.55,大于圆的半径, ∴无论走私船沿何方向逃跑,缉私艇总能在领海内成功拦截.5.综合上述几个方面的阐述,解三角形问题不是孤立的,而是跟其他相关知识紧密联系在一起,通过向量的工具作用,将条件集中到三角形中,然后利用三角恒等变换、正弦定理和余弦定理及其相关知识解题,是常见的解题思路,为此,熟练掌握向量的基本概念和向量的运算,熟练进行三角变换和熟练运用正弦定理以及余弦定理是解题的关键. 6.向量与三角形问题的结合向量具有“双重身份”,既可以像数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换,同时向量加、减法的几何运算遵循三角形法则和平行四边形法则,这为向量和三角形问题的结合,提供了很好的几何背景. 6.1 向量与三角形谈“心”内心(三角形内切圆圆心 ):三角形三条内角平分线的交点; 外心(三角形外接圆的圆心):三角形各边中垂线的交点; 垂心:三角形各边上高的交点; 重心:三角形各边中线的交点, 用向量形式可表示为如下形式:若P 是△ABC 内的一点,⎩⎪⎨⎪⎧AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ>0BP →=t ⎝ ⎛⎭⎪⎫BA →|BA →|+BC →|BC →|,t >0⇒P 是△ABC 的内心;若D 、E 两点分别是△ABC 的边BC 、CA 上的中点,且⎩⎨⎧DP →·PB →=DP →·PC →EP →·PC →=EP →·PA→⇒P 是△ABC 的外心;若GA →+GB →+GC →=0,则G 是△ABC 的重心;若P 是△ABC 所在平面内的一点,且PA →·PB →=PA →·PC →=PC →·PB →,则P 是△ABC 的垂心. 【例5】 (2017·江苏省泰州市高考数学一模)在△ABC 中,若BC →·BA →+2AC →·AB →=CA →·CB →,则sin Asin C 的值为________.【导学号:56394090】[解析] 在△ABC 中,设三条边分别为a 、b 、c ,三角分别为A 、B 、C , 由BC →·BA →+2AC →·AB →=CA →·CB →,得ac ·cos B +2bc ·cos A =ba ·cos C ,由余弦定理得:12(a 2+c 2-b 2)+(b 2+c 2-a 2)=12(b 2+a 2-c 2),化简得a 2c 2=2,∴a c =2,由正弦定理得sin A sin C =ac= 2.故答案为: 2. [答案]26.2 判断三角形形状三角形的边可以看做向量的模长,三角形的内角可以看做向量的夹角,所以可利用向量的数量积和夹角公式或者其他线性运算,结合平面几何知识来判断三角形的形状【例6】 △ABC 的三个内角A 、B 、C 成等差数列,(BA →+BC →)·AC →=0,则△ABC 一定是________三角形.[解析] △ABC 的三个内角A 、B 、C 成等差数列,则有2B =A +C ,所以B =π3,设D 是AC边的中点,则BA →+BC →=2BD →,所以2BD →·AC →=0,BD →⊥AC →,所以△ABC 一定是等边三角形. [答案] 等边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点三 以构建函数模型、解三角形、动点轨迹为背景的实际问题
(对应学生用书第66页)
高考实际应用题一直是高考当中的重点与难点,虽有较为清晰的数学概念分析,但是如果学生对应用题当中的数学公式的基本应用没有一个较为清晰的理解,往往会陷入到应用的“陷阱”当中.因此良好的解题思路,以及正确的解题方式,是高考数学应用解题的重点.高考实际应用问题常常在函数、三角函数和三角形、解析法中体现.因此对于高考数学应用题的解题方向来看,我们应当从构建具体的思维应用模式出发. 1.与函数相关的实际应用问题
【例1】 (2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图1所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.
(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?
(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?
图1
[解] (1)由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,
所以正四棱锥P -A 1B 1C 1D 1的体积
V 锥=1
3·A 1B 21·PO 1=13
×62×2=24(m 3);
正四棱柱ABCD -A 1B 1C 1D 1的体积
V 柱=AB 2·O 1O =62×8=288(m 3).
所以仓库的容积V =V 锥+V 柱=24+288=312(m 3
).
(2)设A 1B 1=a m ,PO 1=h m , 则0<h <6,O 1O =4h .连接O 1B 1. 因为在Rt △PO 1B 1中,
O 1B 21+PO 21=PB 2
1,
所以⎝
⎛⎭
⎪⎫2a 22+h 2
=36, 即a 2
=2(36-h 2
).
于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3
),0<h <6,
从而V ′=263
(36-3h 2)=26(12-h 2
).
令V′=0,得h=23或h=-23(舍).
当0<h<23时,V′>0,V是单调增函数;
当23<h<6时,V′<0,V是单调减函数.
故当h=23时,V取得极大值,也是最大值.
因此,当PO1=2 3 m时,仓库的容积最大.
[点评] 实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定注意函数的定义域.
2.与解三角形相关的实际应用问题
三角函数既是解决生产实际问题的工具,又是进一步学习的基础,高考中常会考察与三角函数有关的实际问题,需要建立三角函数模型将实际问题转化为数学问题.解决三角实际问题的关键有三点:一是仔细审题,准确理解题意,分析条件和结论,明确问题的实际背景,理清问题中各个量之间的数量关系;二是合理选取参变量,设定变元,寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系;三是建立与求解相应的三角函数模型.将文字语言、图形语言、符号语言转化为数学语言,利用数学知识建立相应的数学模型,求解数学模型,得出数学结论.
【例2】(2017·江苏省南京市迎一模模拟)如图2,某城市有一条公路正西方AO通过市中心O后转向北偏东α角方向的OB,位于该市的某大学M与市中心O的距离OM=313 km,且∠AOM=β,现要修筑一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB
部分为直线段,且经过大学M,其中tan α=2,cos β=3
13
,AO=15 km.
(1)求大学M与A站的距离AM;
(2)求铁路AB段的长.
图2
[解](1)在△AOM中,AO=15,∠AOM=β,且cos β=3
13
,OM=313,
由余弦定理可得:AM2=OA2+OM2-2OA·OM·cos∠AOM=(313)2+152-2×313
×15×3
13
=72.
所以可得:AM=62,大学M与A站的距离AM为6 2 km.
(2)∵cos β=3
13
,且β为锐角,∴sin β=
2
13

在△AOM 中,由正弦定理可得:AM sin β=OM sin ∠MAO ,即62213
=313
sin ∠MAO

∴sin ∠MAO =
22,∴∠MAO =π4,∴∠ABO =α-π
4
, ∵tan α=2,∴sin α=
25
,cos α=
15

∴sin ∠ABO =sin ⎝ ⎛⎭⎪⎫α-π4=110, 又∵∠AOB =π-α, ∴sin ∠AOB =sin(π-α)=
25.
在△AOB 中,AO =15,由正弦定理可得:AB sin ∠AOB =AO sin ∠ABO ,即AB 25
=15
1
10

∴解得AB =302,即铁路AB 段的长为30 2 km.
[点评] 解三角形应用题常有以下两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 3.以动点轨迹为背景的实际应用问题
近年江苏高考将直线与圆的位置关系隐含到实际问题中进行考查,利用解析几何中最值与范围问题的解法求实际问题中的最值与范围问题,这是一个高考新方向,也是高考的一个热点.解析几何中的最值与范围问题往往需建立求解目标函数,通过函数的最值研究几何中的最值与范围.
【例3】 (南京市、盐城市2017届高三第一次模拟)如图3所示,某街道居委会拟在EF 地段的居民楼正南方向的空白地段AE 上建一个活动中心,其中AE =30米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形ABCD ,上部分是以DC 为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE 不超过2.5米,其中该太阳光线与水平线的夹角θ满足tan θ=3
4
.
图3
(1)若设计AB =18米,AD =6米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计AB 与AD 的长度,可使得活动中心的截面面积最大?(注:计算中π取3)
[解] 如图所示,以点A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系.
(1)因为AB =18,AD =6,所以半圆的圆心为H (9,6), 半径R =9.设太阳光线所在直线方程为y =-3
4x +b ,
即3x +4y -4b =0, 则由|27+24-4b |32+42
=9, 解得b =24或b =3
2
(舍).
故太阳光线所在直线方程为y =-3
4x +24,
令x =30,得EG =1.5米<2.5米. 所以此时能保证上述采光要求.
(2)设AD =h 米,AB =2r 米,则半圆的圆心为H (r ,h ),半径为r . 法一:设太阳光线所在直线方程为y =-3
4x +b ,
即3x +4y -4b =0,由|3r +4h -4b |
32+42
=r , 解得b =h +2r 或b =h -r
2
(舍).
故太阳光线所在直线方程为y =-3
4
x +h +2r ,
令x =30,得EG =2r +h -452,由EG ≤5
2,得h ≤25-2r .
所以S =2rh +12πr 2=2rh +3 2×r 2≤2r (25-2r )+32×r 2
=-52r 2+50r =-52(r -10)2
+250≤250.
当且仅当r =10时取等号.
所以当AB =20米且AD =5米时,可使得活动中心的截面面积最大.
法二:欲使活动中心截面面积尽可能大,则影长EG 恰为2.5米,则此时点G 为(30,2.5), 设过点G 的上述太阳光线为l 1,则l 1所在直线方程为y -52=-3
4(x -30),
即3x +4y -100=0.
由直线l 1与半圆H 相切,得
r =
|3r +4h -100|
5
.
而点H (r ,h )在直线l 1的下方,则3r +4h -100<0, 即r =-3r +4h -100
5
,从而h =25-2r .
又S =2rh +12πr 2=2r (25-2r )+32×r 2=-52r 2+50r =-52(r -10)2
+250≤250.
当且仅当r =10时取等号.
所以当AB =20米且AD =5米时,可使得活动中心的截面面积最大.
[点评] 解与动点轨迹为背景的实际应用问题常需建立恰当的直角坐标系,将实际问题转化为对应直线与圆位置关系问题,再结合解几何方法求最值与范围.。

相关文档
最新文档