22.碰撞练习2
多次碰撞模型(解析版)-动量守恒的十种模型

动量守恒的十种模型多次碰撞模型模型解读所谓多次碰撞模型是指,两个物体或多个物体发生多次碰撞,且这些碰撞满足某种规律。
【典例精析】1(2024湖南长沙高三适应性考试)如图,将火车停在足够长的平直铁轨上。
(1)若整列火车质量为M,所受阻力恒为F0,当整列火车速度为v时,发动机的功率为P0,求此时火车的加速度;(2)若整列火车所受阻力恒为F0,某次测试时整列火车的运动分为两个阶段。
第一阶段火车受到大小为kF0的恒定牵引力由静止启动,位移为x时,发动机的实际功率正好等于额定功率,然后进入第二阶段;第二阶段发动机保持额定功率继续前进,已知两个阶段用时相等,第二阶段的末速度为初速度2倍。
求第二阶段火车的位移;(3)若整列火车由1节动力车头和23节无动力车厢组成,动力车头质量为2m,每节无动力车厢质量均为m。
火车在启动前,车头会先向后退一段距离,使得各相邻车厢之间的连接挂钩松弛,车厢无间距紧挨着,然后车头从静止开始启动,逐节带动各节车厢直至最后一节车厢启动。
启动过程中车头牵引力恒为F,忽略一切阻力。
为了研究方便,将车头及相邻车厢之间的连接挂钩简化为不可伸长的长度为l的轻绳,绳子绷直的瞬间相连的物体间可看做发生完全非弹性碰撞,碰撞时间忽略不计。
整个启动过程中,带动第几节无动力车厢前,车头的速度达到最大?【参考答案】(1)P0-F0vMv;(2)(k+1)x;(3)3【名师解析】(1)根据P0=F1v 可知F1=P0 v根据牛顿第二定律F1-F0=Ma 解得a=P0-F0v Mv(2)设火车第一阶段运动时间为t,末速度为v2,第二阶段的位移为x2由动能定理得k-1F0x=12Mv22再由动量定理得(k-1)F0t=Mv2发动机的额定功率P m=kF0v2由上可知,第二阶段的初速度为v2,末速度为2v2,由动能定理得P m t-F0x2=12M2v22-v22解得x2=(k+1)x(3)设拖动第n节车厢前,车头的速度为u n,绳子绷直后车头的速度为u′n,拖动第一节车厢前,对车头由动能定理得12⋅2mu21=Fl绳子绷直,对车头和第一节车厢由动量守恒定律得2mu1=(2m+m)u′1同理,拖动第n节车厢前,对于车头和前(n-1)节车厢由动能定理得1 22m+n-1mu2n=122m+n-1mu 2n-1+Fl绳子绷直,对于车头和前n节车厢由动量守恒定律得[2m+(n-1)m]u n=(2m+nm)u′n 由上式得u n=n+1n+2u n可推出u n-1=nn+1u n-1联立有n+12u2n=n2u2n-1+2n+1Fl m令a n=(n+1)2u n2,得到a n=a n-1+n+12Fl ma n-1=a n-2+n2Flm a n-2=a n-3+n-12Fl m⋯⋯a2=a1+32Flm 其中a1=4Flm上几式相加得到a n=a1+n+4n-1Fl m则n +122u n =n 2+3nFl m解得u 2n=n 2+3nn +1 2⋅Fl m =n +1 2+n +1 -2n +1 2⋅Fl m =1+1n +1-2(n +1)2 ⋅Fl m 当1n +1=14,即n =3时有最大值。
专题16 类碰撞模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题16 类碰撞模型一、与弹簧有关的类碰撞模型1.如图所示,两光滑且平行的固定水平杆位于同一竖直平面内,两静止小球m 1、m 2分别穿在两杆上,两球间连接一个保持原长的竖直轻弹簧,现给小球m 2一个水平向右的初速度v 0.如果两杆足够长,则在此后的运动过程中( )A .m 1、m 2组成的系统动量守恒B .m 1、m 2组成的系统机械能守恒C .弹簧最长时,其弹性势能为12m 2v 02 D .当m 1速度达到最大时,m 2速度最小 【答案】A【详解】由于两球竖直方向上受力平衡,水平方向所受的弹力的弹力大小相等,方向相反,所以两球组成的系统所受的合外力为零,系统的动量守恒,A 正确;对于弹簧、12m m 、组成的系统,只有弹力做功,系统的机械能守恒,由于弹性势能是变化的,所以12m m 、组成的系统机械能不守恒,B 错误;当两球的速度相等时,弹簧最长,弹簧的弹性势能最大,以向右为正方向,由动量守恒定律得()2012m v m m v =+,解得2012m v v m m =+,由系统的机械能守恒得()2220121122P m v m m v E =++,解得()2120122Pm m v E m m =+,C 错误;若12m m >,当弹簧伸长时,1m 一直在加速,当弹簧再次恢复原长时1m 速度达到最大.弹簧伸长时2m 先减速后,速度减至零向左加速,最小速度为零.所以1m 速度达到最大时,2m 速度不是最小,D 错误. 2.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的水平杆上,三个球的质量分别为ma =1kg ,mb =3kg ,mc =1kg , 初始状态三个球均静止,B 、C 球之间连着一根轻质弹簧,弹簧处于原长状态。
现给A 一个向左的初速度v 0= 10m/s ,之后A 与B 发生弹性碰撞。
球A 和B 碰后,下列说法正确的是( )A .球A 的速度变为向右的5m/sB .弹簧恢复原长时球C 的速度为5m/s C .球B 的最小速度为2. 5m/sD .弹簧的最大弹性势能为9. 375J【答案】ACD【详解】A .A 与B 发生弹性碰撞,动量守恒得012A A B m v m v m v =+机械能守恒得222012111222A AB m v m v m v =+ 解得15m/s v =−;25m/s v =,A 正确;D .碰后B 向左运动,因为弹簧弹力的作用,B 向左减速,C 向右加速,当B 、C 速度相等时弹簧最长,弹簧的弹性势能最大,由23()B B C m m m =+v v ;22p 2311()22B BC E m m m =−+v v 解得p 9.375J E =,D 正确;BC .接下来B 继续减速,C 继续加速,C 的速度大于B 的速度,弹簧开始缩短,当弹簧恢复原长时球B 的速度最小,由245B B C m m m =+v v v ;222245111222B BC m m m =+v v v 解得4 2.5m/s =v ;57.5m/s =v ,B 错误C 正确。
滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。
【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。
薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。
已知物块与薄板的质量相等。
它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。
求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。
(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。
高中物理常见“碰撞”模型及其性质分析

“碰撞”作为高中物理中重要的模型之一,在每年的高考物理题中都会出现,除了会出现在选择题中,还会出现在压轴题中。
而且在很多情况下,其背景较为隐蔽,学生难以准确发掘,因此解答问题也就较为困难。
为了帮助学生快速解答常见的碰撞类问题,笔者结合实际问题,系统性地总结常见题型,分析常见问题。
一、弹性碰撞(一)一动碰一静弹性碰撞是物体碰撞后能够恢复到碰撞前的状态,即碰撞前后满足动量守恒。
如图1所示,两小球质量为m1、m2,小球m1以速度v1与静止小球m2发生弹性碰撞,两小球同时进行运动时,由动量守恒和机械能守恒定律有m1v1=m1v'1+m2v'2,12m1v21=12m1v'21+12m2v'22,则进一步可得v'1=m1-m2m1+m2v1,v'2=2m1m1+m2v1。
学生应当牢记这一结果,以便在计算过程中灵活运用,从而提高解题效率。
图1[例1]如图2所示,速度为v0的中子与静止的氢核和氮核发生弹性碰撞,碰撞后氢核和氮核速度分别为v1和v2,则下列说法正确的是( )。
A.碰撞后,氮核的动量小于氢核B.碰撞后,氮核的动能小于氢核C. v2>v1D. v2>v0图2解析:由题意可知,在碰撞过程中中子、氢核和氮核满足动量守恒和机械能守恒。
设中子的质量为m,氢核的质量为m,氮核的质量为14m,设中子与氢核碰撞后中子的速度为v3,由动量守恒定律和能量守恒定律可得mv0=mv1+mv3,12mv20=12mv21+12mv23,联立即得v1=v0。
设中子与氮核碰撞后中子的速度为v4,由动量守恒定律和能量守恒定律可得mv0=14mv2+mv4,12mv20=12×14mv22+12mv24,联立解得v2=215v0,则v1=v0>v2。
碰撞后,氢核的动量为p H=mv1=mv0,氮核的动量为p N=14mv2=28mv015,可得p N>p H。
专题强化八 碰撞类的四类模型

专题强化八碰撞类的四类模型【专题解读 1.本专题主要研究碰撞过程的特点和满足的物理规律,并对碰撞模型进行拓展分析。
2.会分析物体的正碰模型、“滑块—弹簧”、“滑块—斜面”、“滑块—木板”碰撞模型的特点,并会应用相应规律解决问题。
3.用到的知识、规律和方法有:牛顿运动定律和匀变速直线运动规律,动量守恒定律,动能定理和能量守恒定律。
模型一“物体与物体”正碰模型1.碰撞问题遵守的三条原则(1)动量守恒:p1+p2=p1′+p2′。
(2)动能不增加:E k1+E k2≥E k1′+E k2′。
(3)速度要符合实际情况①碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
2.弹性碰撞的结论(1)m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2v1′=(m1-m2)v1+2m2v2m1+m2v2′=(m2-m1)v2+2m1v1m1+m2(2)若v2=0时,v1′=m1-m2m1+m2v1v2′=2m1m1+m2v1讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);②若m1>m2,则v1′>0,v2′>0(碰后,两物体沿同一方向运动);③若m1≫m2,则v1′≈v1,v2′≈2v1;④若m1<m2,则v1′<0,v2′>0(碰后,两物体沿相反方向运动);⑤若m1≪m2,则v1′≈-v1,v2′≈0。
3.非弹性碰撞碰撞结束后,动能有部分损失。
m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2+ΔE k损4.完全非弹性碰撞碰撞结束后,两物体合二为一,以同一速度运动,动能损失最大。
m1v1+m2v2=(m1+m2)v12m1v 21+12m2v22=12(m1+m2)v2+ΔE k损max【真题示例1(2020·全国Ⅲ卷,15)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图1中实线所示。
人教版选修3-5课堂同步精选练习题:第十六章 第4节 碰撞(含解析)

人教版选修3-5课堂同步精选练习第十六章 第4节 碰撞(含解析)1、下列对于碰撞的理解正确的是( )A .碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B .在碰撞现象中,一般内力都远大于外力,所以可以认为碰撞时系统的动能守恒C .如果碰撞过程中机械能守恒,这样的碰撞叫做非弹性碰撞D .微观粒子的相互作用由于不发生直接接触,所以不能称其为碰撞解析:碰撞是十分普遍的现象,它是相对运动的物体相遇时发生的一种现象,一般内力远大于外力.如果碰撞中机械能守恒,这样的碰撞是弹性碰撞.微观粒子的相互作用同样具有短时间内发生强大内力作用的特点,所以仍然是碰撞.【答案】A2.如图所示在足够长的光滑水平面上有一静止的质量为M 的斜面,斜面表面光滑、高度为h 、倾角为θ.一质量为m (m <M )的小物块以一定的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固定,则小物块恰能冲到斜面的顶端.如果斜面不固定,则小物块冲上斜面后能达到的最大高度为( )A .h B.mh m +M C.mh M D.Mh m +M解析:斜面固定时,由动能定理得-mgh =0-12mv 20,所以v 0=2gh ;斜面不固定时,由水平方向动量守恒得mv 0=(M +m )v ,由机械能守恒得12mv 20=12(M +m )v 2+mgh ′,解得h ′=M M +mh ,故选D. 【答案】D3、在光滑的水平面上有三个完全相同的小球,它们在一条直线上,2、3小球静止,并靠在一起,1小球以速度v 0撞向它们,如图所示.设碰撞中不损失机械能,则碰后三个小球的速度的可能值是( )A .v 1=v 2=v 3=13v 0B .v 1=0,v 2=v 3=12v 0 C .v 1=0,v 2=v 3=12v 0 D .v 1=v 2=0,v 3=v 0 解析:两个质量相等的小球发生弹性正碰,碰撞过程中动量守恒、机械能守恒,碰撞后将交换速度,故D 项正确.【答案】D4、(多选)质量为m ,速度为v 的A 球跟质量为3m 的静止的B 球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此碰撞后B 球的速度可能值为( )A .0.6vB .0.4vC .0.2vD .0.3v解析:如果碰撞是弹性的,由动量守恒和能量守恒得mv =mv 1+3mv 2,12mv 2=12mv 21+123mv 22,v 2=0.5v ,此过程B 获得速度最大;如果碰撞是非弹性的,粘在一起时B 获得速度最小,由mv =4mv 3,v 3=0.25v ,则B 的速度可能值为v 3≤v B ≤v 2,即0.25v ≤v B ≤0.5v ,B 、D 正确.【答案】BD5、(多选)如图所示,用两根长度都等于L 的细绳,分别把质量相等、大小相同的a 、b 两球悬于同一高度,静止时两球恰好相接触.现把a 球拉到细绳处于水平位置,然后无初速释放,当a 球摆动到最低位置与b 球相碰后,b 球可能升高的高度为( )A .L B.4L 5 C.L 4 D.L 8解析:若a 、b 两球发生完全弹性碰撞,易知b 球上摆的高度可达L ;若a 、b 两球发生完全非弹性碰撞(即碰后两球速度相同),则根据mv =2mv ′和12·2mv ′2=2mgh ′,可知其上摆的高度为L 4.考虑到完全非弹性碰撞中动能的损失最多,故b 球上摆的高度应满足L 4≤h ≤L . 【答案】ABC6、(多选)如图(a)所示,光滑平台上,物体A 以初速度v 0滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计;(b)图为物体A 与小车B 的v - t 图象,由此可知( )A .小车上表面长度B .物体A 与小车B 的质量之比C .物体A 与小车B 上表面的动摩擦因数D .小车B 获得的动能解析:由图象可知,物体A 与小车B 最终以共同速度v 1匀速运动,不能确定小车上表面的长度,故A 错误;由动量守恒定律得m A v 0=(m A +m B )v 1,解得m A m B =v 1v 0-v 1,可以确定物体A 与小车B 的质量之比,故B 正确;由图象可以知道,物体A 相对小车B 的位移Δx =12v 0t 1,根据能量守恒得μm A g Δx =12m A v 20-12(m A +m B )v 21,根据求得的物体A 与小车B 的质量关系,可以解出物体A 与小车B 上表面的动摩擦因数,故C 正确;由于小车B 的质量不可知,故不能确定小车B 获得的动能,故D 错误.故选B 、C.【答案】BC7、(多选)质量为m 的小球A 在光滑的水平面上以速度v 与静止在光滑水平面上的质量为2m 的小球B 发生正碰,碰撞后,A 球的动能变为原来的19,那么碰撞后B 球的速度大小可能是( ) A.13v B.23v C.49v D.89v 解析:设A 球碰后的速度为v A ,由题意有12mv 2A =19×12mv 2,则|v A |=13v ,碰后A 的速度有两种可能,因此由动量守恒定律有mv =m ×13v +2mv B 或mv =-m ×13v +2mv B ,解得v B =13v 或23v . 【答案】AB8、(多选)如图所示,光滑曲面下端与光滑水平面相切,一质量为m 的弹性小球P 沿曲面由静止开始下滑,与一质量为km (k 为大于0的正整数)且静止在水平地面上的弹性小球Q 发生弹性正碰.为使二者只能发生一次碰撞,下列关于k 的取值可能正确的是( )A .1B .2C . 3D .4解析:设碰前的速度为v 0,碰撞满足动量守恒定律和机械能守恒定律,则有mv 0=mv 1+kmv 2,12mv 20=12mv 21+12kmv 22,联立解得v 1=1-k 1+k v 0,v 2=21+k v 0,为使二者只能发生一次碰撞,所以必须满足|v 1|≤|v 2|,又k 为大于0的正整数,所以0<k ≤3,即k 的取值可能为1、2、3,选项A 、B 、C 正确,D 错误.【答案】ABC9、(多选)在光滑的水平面上,有A 、B 两球沿同一直线向右运动,如图所示.已知碰撞前两球的动量分别为p A =12 kg·m/s ,p B =13 kg·m/s.碰撞后它们的动量变化Δp A 、Δp B 有可能是( )A .Δp A =-3 kg·m/s ,ΔpB =3 kg·m/s B .Δp A =4 kg·m/s ,Δp B =-4 kg·m/sC .Δp A =-5 kg·m/s ,Δp B =5 kg·m/sD .Δp A =-24 kg·m/s ,Δp B =24 kg·m/s解析:四个选项均遵守动量守恒定律,即有Δp A +Δp B =0,由于本题是追赶碰撞,物理情景可行性必有v A >v B ,v B ′>v B ,所以有Δp B >0,因而Δp A <0,可将B 选项排除,再由碰后动能不增加得:12m A v 2A +12m B v 2B ≥12m A v ′2A +12m B v ′2B ①12m B v 2B <12m B v ′2B ② 联立①②解得12m A v ′2A <12m A v 2A 而D 选项中12m A v ′2A =12m A v 2A ③ 故排除D 选项,检验选项A 、C ,可知同时满足碰撞的三个原则,故本题的答案应为A 、C.【答案】AC能力达标10、A 、B 两物体在光滑水平面上相向运动,其中物体A 的质量为m A =4 kg ,两物体发生相互作用前后的运动情况如图所示.则:(1)由图可知,A 、B 两物体在________时刻发生碰撞,B 物体的质量为m B =________kg.(2)碰撞过程中,系统的机械能损失多少?【答案】(1)2 s 6 (2)30 J解析:(1)由图象知,在t =2 s 时刻A 、B 相撞,碰撞前后,A 、B 的速度:v A =Δx A t =-42 m/s =-2 m/s v B =Δx B t =62m/s =3 m/s v AB =Δx AB t =22 m/s =1 m/s 由动量守恒定律有:m A v A +m B v B =(m A +m B )v AB解得m B =6 kg.(2)碰撞过程损失的机械能:ΔE =12m A v 2A +12m B v 2B -12(m A +m B )v 2AB =30 J. 11、如图所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、B 静置于光滑水平轨道上,A 、B 的质量分别为1.5 kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2.求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小;(2)A 、B 滑上圆弧轨道的最大高度.【答案】(1)50 N (2)0.45 m解析:(1)设水平向右为正方向,当A 与墙壁碰撞时,根据动量定理有 F t =m A v ′1-m A (-v 1)解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有m A v ′1=(m A +m B )vA 、B 在光滑圆弧轨道上滑动时机械能守恒,由机械能守恒定律得12(m A+m B )v 2=(m A +m B )gh 解得h =0.45 m.12、如图所示,质量为m 的炮弹运动到水平地面O 点正上方时速度沿水平方向,离地面的高度为h ,动能为E ,此时发生爆炸,分解为质量相等的两部分,两部分的动能之和为2E ,速度方向仍沿水平方向,爆炸时间极短,重力加速度为g ,不计空气阻力和火药的质量,求炮弹的两部分落地点之间的距离.【答案】4Eh mg解析:爆炸之前E =12mv 20爆炸过程动量守恒,有mv 0=12mv 1+12mv 2 12(m 2)v 21+12(m 2)v 22=2E 联立解得v 1=0,v 2=2v 0即爆炸后一部分做自由落体运动,另一部分做平抛运动,有h =12gt 2 x =2v 0t解得炮弹的两部分落地点之间的距离为x =4Eh mg. 13、如图所示,ABD 为竖直平面内的轨道,其中AB 段水平粗糙,BD 段为半径R =0.08 m 的半圆光滑轨道,两段轨道相切于B 点.小球甲以v 0=5 m/s 的速度从C 点出发,沿水平轨道向右运动,与静止在B 点的小球乙发生弹性正碰,碰后小球乙恰好能到达圆轨道最高点D .已知小球甲与AB 段间的动摩擦因数μ=0.4,CB 的距离s =2 m ,g 取10 m/s 2,甲、乙两球可视为质点.求:(1)碰撞前瞬间,小球甲的速度大小v 甲;(2)小球甲和小球乙的质量之比.【答案】(1)3 m/s (2)12解析:(1)对甲在CB 段,由动能定理得μm 甲gs =12m 甲v 20-12m 甲v 2甲 解得v 甲=3 m/s. (2)碰后,乙恰好能到达圆轨道最高点D ,由牛顿第二定律得m 乙g =m 乙v 2D R从B 点到D 点,由机械能守恒定律得12m 乙v 2D +2m 乙gR =12m 乙v 2B 解得v B =5gR =2 m/s在B 位置,甲、乙碰撞过程中甲、乙组成的系统动量守恒,以水平向右为正方向,由动量守恒定律得 m 甲v 甲=m 甲v ′甲+m 乙v B由机械能守恒定律得12m 甲v 2甲=12m 甲v ′2甲+12m 乙v 2B所以m 甲m 乙=12. 14、如图所示,滑块A 、C 质量均为m ,滑块B 质量为32m .开始时A 、B 分别以v 1、v 2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C 无初速度地放在A 上,并与A 粘合不再分开,此时A 与B 相距较近,B 与挡板相距足够远.若B 与挡板碰撞将以原速率反弹,A 与B 碰撞后将粘合在一起.为使B 能与挡板碰撞两次,v 1、v 2应满足什么关系?【答案】1.5v 2<v 1≤2v 2或12v 1≤v 2<23v 1 解析:设向右为正方向,A 与C 粘合在一起的共同速度为v ′,由动量守恒定律得mv 1=2mv ′①为保证B 碰挡板前A 未能追上B ,应满足v ′≤v 2②设A 、B 碰后的共同速度为v ″,由动量守恒定律得2mv ′-32mv 2=72mv ″③ 为使B 能与挡板再次相碰应满足v ″>0④联立①②③④式解得1.5v 2<v 1≤2v 2或12v 1≤v 2<23v 1。
高中物理-第一篇 专题二 高考新动向1 数学归纳法和图象法解决多次碰撞问题

(3)B与C第一次碰后到最终停止运动,B运动的总路程. 答案 5.062 5 m
12
设B与C第一次碰后向左运动的最大距离为 s1,对长木板,由动能定理 -μm1gs1=0-12m2v02 解得 s1=2μmm21gv02=2.25 m 第二次碰后由动量守恒定律有 m1v1-m2v1=(m1+m2)v2
12
(1)若v0=1.25 m/s,求第1、2个滑环间的细线刚刚绷紧瞬间第2个滑环的 速度大小;
答案 0.375 m/s
12
设第1、2个滑环间的细线刚刚绷紧前第1个滑环的速度为v1,由动能 定理得 -μmgl=12mv12-12mv02 解得v1=0.75 m/s 设第1、2个滑环间的细线刚刚绷紧瞬间两个滑环的速度变为v2,由动量 守恒定律得 mv1=2mv2 解得v2=0.375 m/s
设靶盒滑上长木板时的速度大小为v1,由动能 定理有 -μ(m1+m0)gs=12(m1+m0)v12-Ek, 解得v1=3 m/s, 设之后靶盒与木板达到共同速度v1′,(m1+m0)v1=(m1+m0+m2)v1′, 解得v1′=2 m/s,该过程中木板的位移为s1, 木板的加速度为a,μ(m1+m0)g=m2a, 根据v1′2=2as1, 解得s1=0.5 m<d-l,
专题二 能量与动量
高考新动向1 数学归纳法和图象法 解决多次碰撞问题
当两个物体之间或物体与挡板之间发生多次碰撞时,因碰撞次数较多, 过程复杂,在求解多次碰撞问题时,通常可用到以下两种方法:
先利用所学知识把前几次碰撞过程理顺,分析透彻,根据前几 数学
次数据,利用数学归纳法,可写出以后碰撞过程中对应规律或 归纳法
说明木板与墙壁碰撞之前已经与靶盒达到共同 速度,木板第一次与墙壁碰撞之后向左减速, 经位移大小s1速度减为0,再向右加速,设与靶盒达到共同速度v2, 以向右为正方向(下同),有(m1+m0)v1′-m2v1′=(m1+m0+m2)v2, 可得 v2=13v1′, 木板第二次与墙壁碰撞之后向左减速,经位移大小s2速度减为0,再向 右加速v22=2as2,设第二次与墙壁碰撞之后,靶盒与木板达到共同 速度v3,
碰撞练习题

动方向相反.将碰撞后球1的动能和动量的大小分
别记为E1、p1,球2的动能和动量的大小分别记为
E2、p2,则必有( )
A.E1<E0
B.p1<p0
C.E2>E0
D.p2>p0
1
2
1
2
两球A、B在光滑水平面上沿同一直线,向相同 方向运动,mA=1kg,mB=2kg,vA=6m/s,vB=2m/s。 当A追上B并发生碰撞后,两球A、B速度的可能
值是( )
A.vA′=5 m/s, vB′=2.5 m/s B.vA′=2 m/s, vB′=4 m/s C.vA′=-4 m/s,vB′=7 m/s D.vA′=7 m/s, vB′=1.5 m/s
AB
质量相等的A、B两球在光滑水平面上沿一直线向同
一方向运动,A球的动量为PA=7kg·m/s,B球的动量为
如图所示,轻弹簧的一端固定,另一端与滑块B相连,B 静止在水平导轨上的O点,此时弹簧处于原长.另一质 量当与A滑B相过同距的离滑l时块,A从与导B相轨碰上.的碰P点撞以时初间速极度短v,0向碰B后滑A行、,B
粘在一起运动.设滑块A和B均可视为质点,与导轨的动
摩擦பைடு நூலகம்数均为μ.重力加速度为g.求:
(1)碰后瞬间,A、B共同的速度大小; (2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧 的最大压缩量.
PB =5kg·m/s,当A球追上B球发生碰撞,则碰撞后A、B
两球的动量可能为(
)
A.pA’=6kg/s B.pA’=3kg/s C.pA’=2kg/s D.pA’=4kg/s
pB’=6kg/s pB’=9kg/s pB’=14kg/s pB’=17kg/s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碰 撞 练习题2
1.如图,在光滑水平面上有三个完全相同的小球排成一条直线,2,3小球静止,并靠拢在一 起,球1以速度0v 射向它们,设碰撞中不损失机械能,则碰后三个小球的速度的可能值是 : A ;31.0321v v v v === B. 03212
1,0v v v v ===; C. 0;2
13201===v v v v ; D. 0321;0v v v v ===; 2. 甲乙两小球放在光滑水平面上,它们用细线相连,开始时细线处于松弛状态,现使两球 反向运动,如图所示,当细线拉紧时,突然崩断,这以后两球的运动情况可能是:
3. 如图,B,C,D,E,F 五个球并排放置在光滑水平面上,B,C,D,E 四个球质量相等,F 与A 质 量相等,小于B 的质量,A 球以0v 向B 运动,发生碰撞为弹性碰撞,则碰后:
A.五个小球静止,一个运动,
B. 四个静止,二个运动,
C. 三个静止,三个运动,
D. 六个小球都运动,
4. 如图所示,质量相等的五个物体在光滑的水平面上间隔一定距离排成一直线,具有初动 能0E 的物块1向其它四个静止物块运动,依次发生碰撞,每次碰撞后不再分开,最后5 个物块粘成一个整体,这个整体的动能等于:
A. 0E ;
B. 054E ;
C. 051E ;
D. 0251E ;
5. 如同所示,小球A 和B 质量相同,球B 置于光滑水平面上,当A 球从高为h 处由静止 摆下,到达最低点时恰好与B 相碰,并粘合在一起继续摆动,它们能上升的最大高度为:
A. h;
B.
h 2
1; C. h 41; D. h 81;
A B C D E F
v
0 V
2 3 4 5
1
6. 甲乙两球在光滑水平轨道上同向运动,已知它们的动量分别是s m kg p /5∙=甲,
s m kg p /7∙=乙,甲追上乙并发生碰撞,碰后乙球的动量s m kg p /10∙='乙
,则两球的质 量m 甲与m 乙的关系可能是:
A. m 乙=m 甲;
B. m 乙=2m 甲;
C. m 乙=4m 甲;
D. m 乙=6m 甲
7. 在光滑水平面上,动能为E 0、动量大小为P 0的小钢球1与静止小钢球2发生碰撞,碰撞 前后球1的运动方向相反,将碰撞后球1的动能和动量的大小记为E 1、P 1,球2的动能 和动量的大小记为E 2、P 2,则必有( )
A 、E 1<E0
B 、P1<P0
C 、E2>E0
D 、P2>P0
8.半径相等的两个小球甲和乙,在光滑的水平面上沿同一直线相向运动,若甲球的质量大 于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是( )
A.甲球的速度为零而乙球的速度不为零
B.乙球的速度为零而甲球的速度不为零
C.两球的速度均不为零
D.两球的速度方向均与原来方向相反,两球的动能仍相等
9. 质量相同的两个小球在光滑水平面上沿连心线同向运动,球1的动量为7 kg·m/s,球2的动 量为5 kg·m/s ,当球1追上球2时发生碰撞,则碰撞后两球动量变化的可能值是( )
A.Δp 1= -1 kg·m/s ,Δp 2=1 kg·m/s
B.Δp 1= -1 kg·m/s ,Δp 2=4 kg·m/s
C.Δp 1= -9 kg·m/s ,Δp 2=9 kg·m/s
D.Δp 1= -12 kg·m/s ,Δp 2=10 kg·m/s
10. 在高速公路上发生一起交通事故,一辆质量为1 500 kg 向南行驶的长途客车迎面撞上了 一辆质量为3 000 kg 向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停 止.根据测速仪的测定,长途客车碰前以20 m/s 的速度行驶,由此可判断卡车碰前的行驶 速率为( )
A.小于10 m/s
B.大于10 m/s 小于20 m/s
C.大于20 m/s 小于30 m/s
D.大于30 m/s 小于40 m/s
11. 如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为 m B =2m A .规定向右为正方向,A 、B 两球的动量大小均为6 kg·m/s ,运动中两球发生碰撞, 碰撞后A 球的动量增量为-4 kg·m/s ,则( )
A.左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5
B.左方是A 球,碰撞后A 、B 两球速度大小之比为1∶10
C.右方是A 球,碰撞后A 、B 两球速度大小之比为2∶5
D.右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10
12. 如图所示,长l 为0.8 m 的细绳,一端固定于O 点,另一端系一个质量m 1为0.2 kg 的球. 将球提起使细绳处于水平位置时无初速释放.当球摆至最低点时,恰与放在光滑水平桌 面边缘的质量m 2为0.2 kg 的铁块发生弹性正碰,碰后小球静止.若光滑桌面距地面高度 h 为1.25 m ,铁块落地点距桌边的水平距离多大?(g 取10 m/s 2)
碰撞练习参考答案
1 2 3 4 5 6 7 8 9 10 11
A A A D A
B
C C C C ABD
AC
12.解析:球下落过程中机械能守恒,由于两球发生弹性正碰,动能守恒,可对全过程利用能量守恒进行计算.碰后铁块做平抛运动,利用平抛运动公式计算.
由于两球发生弹性正碰,动能守恒,所以m2v22=m1gl-0,解得v2=4 m/s.
由平抛射程公式可求得铁块的水平射程:s=v2=4×m=2 m.。