高中数学(人教B版必修4)同步练习:2.3.3向量数量积的坐标运算与度量公式(含答案解析)
高中数学人教B版必修4课时作业:2.3.3 向量数量积的坐标运算与度量公式 Word版含解析

2.3.3 向量数量积的坐标运算与度量公式【选题明细表】1.向量a=(2,-4),与b=(-1,2)的夹角的大小为( D )(A)零角(B)直角(C)钝角(D)平角解析:a·b=2×(-1)+(-4)×故<a,b>=180°.故选D.2.已知向量a=(1,-1),b=(2,x).若a·b=1,则x等于( D )(D)1解析:因为a·b=2-x=1,所以x=1.故选D.3.设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|等于( B )(B) (D)10解析:因为a⊥b,所以有x-2=0,解得x=2,所以a=(2,1),所以故选B.4.设m,n是两个非零向量,且m=(x1,y1),n=(x2,y2),则以下等式中与m ⊥n等价的个数是( D )①m·n=0,②x1x2=-y1y2,③|m+n|=|m-n|,④|m+n|=(A)1 (B)2 (C)3 (D)4解析:由两非零向量垂直的条件可知①②正确,由模的计算公式与向量垂直的条件可知,③④正确,故选D.5.已知向量a=(1,3),b=(sin α,cos α),a⊥b,则tan α的值为( B )(A)3解析:因为a⊥b,所以sin α+3cos α=0,所以sin α=-3cos α,所以tan α=-3.选B.6.已知a=(1,-1),b=(-2,1),c=λa+b,d=a-λb,且c⊥d,则实数λ= .解析:因为c=λa+b=λ(1,-1)+(-2,1)=(λ-2,-λ+1),d=a-λb=(1,-1)-λ(-2,1)=(1+2λ,-1-λ)又因为c⊥d,所以c·d=0,即(λ-2)(1+2λ)+(λ-1)(λ+1)=0,所以λ2-λ-1=0,解得λ.答案7.在四边形ABCD中则该四边形的面积为( C )(B)2 (C)5 (D)10解析:·(-4,2)=1×(-4)+2×2=0,所以且|=所以S四边形ABCD||故选C.8.(2017·长春外国语学校月考)设x,y∈R,向量a=(x,1),b=(1,y), c=(2,-4),且a⊥c,b∥c,则|a+b|等于( B )(B) (D)10解析:因为a⊥c,所以a·c=2x-4=0,所以x=2,又b∥c,所以2y=-4,所以y=-2,所以a=(2,1),b=(1,-2),所以a+b=(3,-1),所以选B.9.已知向量a=(1,0),b=(1,1),则向量b-3a与向量a夹角的余弦值为.解析:由a=(1,0),b=(1,1),得b-3a=(-2,1).设向量b-3a与向量a的夹角为θ,则cos θ答案10.(2017·诸城一中高一下期中)已知a、b、c是同一平面内的三个向量,其中a=(1,2).(1)若且c∥a,求c的坐标;(2)若且a+2b与2a-b垂直,求a与b的夹角θ.解:(1)设c=(x,y),由得,即x2+y2=20,因为c∥a,a=(1,2),所以2x-y=0,所以y=2x,由所以或所以c=(2,4)或c=(-2,-4).(2)因为(a+2b)⊥(2a-b),所以(a+2b)·(2a-b)=0,所以(a+2b)·(2a-b)=2|a|2+3a·b-2|b|2=0,(*)将|a|2=5,|b|2=(2(*)中,所以2×5+3a·b-2所以a·因为|a|=所以cos θ因为θ∈[0,π],所以θ=π.11.已知向量u=(x,y)与向量v=(y,2y-x)的对应关系可以用v=f(u) 表示.(1)证明对于任意a,b及常数m,n,恒有f(ma+nb)=mf(a)+nf(b)成立;(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;(3)求使f(c)=(p,q)(p、q为常数)的向量c的坐标.解:(1)设a=(a1,a2),b=(b1,b2),则ma+nb=(ma1+nb1,ma2+nb2),所以f(ma+nb)=(ma2+nb2,2ma2+2nb2-ma1-nb1),mf(a)+nf(b)=m(a2,2a2-a1)+n(b2,2b2-b1)=(ma2+nb2,2ma2+2nb2-ma1-nb1),所以f(ma+nb)=mf(a)+nf(b)成立.(2)f(a)=f[(1,1)]=(1,2×1-1)=(1,1), f(b)=f[(1,0)]=(0,2×0-1)=(0,-1). (3)设c=(x,y),则f(c)=(y,2y-x)=(p,q),所以y=p,2y-x=q,所以x=2p-q,故向量c=(2p-q,p).。
人教B版高中数学必修四2.3.3 向量数量积的坐标运算与度量公式

2.3.3 向量数量积的坐标运算与度量公式课时目标1.掌握数量积的坐标表示,会进行平面向量数量积的坐标运算.2.能运用数量积的坐标表示求两个向量的夹角,会用数量积的坐标表示判断两个平面向量的垂直关系,会用数量的坐标表示求向量的模.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a ·b =_______________________________________. 即两个向量的数量积等于相应坐标乘积的和. 2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a ⊥b ⇔______________. 3.平面向量的模(1)向量模公式:设a =(x 1,y 1),则|a |=_____________________________________. (2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2), 则|AB →|=__________________________. 4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=____ _______=__________________________.一、选择题1.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1B .2C .2D .42.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A .3B .23C .4D .12 3.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( )A .865B .-865C .1665D .-16654.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A .⎝ ⎛⎭⎪⎫79,73B .⎝ ⎛⎭⎪⎫-73,-79C .⎝ ⎛⎭⎪⎫73,79D .⎝ ⎛⎭⎪⎫-79,-735.已知向量a =(2,1),a ·b =10,|a +b |=52,则|b |等于( )A .5B .10C .5D .256.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( )A .-17B .17C .-16D .16二、填空题7.已知a =(3,3),b =(1,0),则(a -2b )·b =_______________________________. 8.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=45,则b =________. 9.若a =(2,3),b =(-4,7),则a 在b 方向上的射影为______.10.已知a =(-2,-1),b =(λ,1),若a 与b 的夹角α为钝角,则λ的取值范围为________.三、解答题11.已知a 与b 同向,b =(1,2),a ·b =10. (1)求a 的坐标;(2)若c=(2,-1),求a(b·c)及(a·b)c.12.已知三个点A(2,1),B(3,2),D(-1,4),(1)求证:AB⊥AD;(2)要使四边形ABCD为矩形,求点C的坐标并求矩形ABCD两对角线所成的锐角的余弦值.能力提升13.已知向量a =(1,1),b =(1,a ),其中a 为实数,O 为原点,当此两向量夹角在⎝ ⎛⎭⎪⎫0,π12变动时,a 的范围是( )A .(0,1)B .⎝ ⎛⎭⎪⎫33,3C .⎝⎛⎭⎪⎫33,1∪(1,3)D .(1,3) 14.若等边△ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题提供了完美的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.2.3.3 向量数量积的坐标运算与度量公式答案知识梳理1.x 1x 2+y 1y 2 2.x 1x 2+y 1y 2=0 3.(1)x 21+y 21(2)(x 2-x 1)2+(y 2-y 1)24.a ·b |a||b | x 1x 2+y 1y 2x 21+y 21x 22+y 22 作业设计1.C [由(2a -b )·b =0,则2a ·b -|b |2=0,∴2(n 2-1)-(1+n 2)=0,n 2=3.∴|a |=1+n 2=2.故选C.] 2.B [a =(2,0),|b |=1,∴|a |=2,a ·b =2×1×cos60°=1.∴|a +2b |=a 2+4×a ·b +4b 2=2 3.]3.C [∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16.又|a |=5,|b |=13,∴cos 〈a ,b 〉=165×13=1665.]4.D [设c =(x ,y ),由(c +a )∥b 有-3(x +1)-2(y +2)=0,① 由c ⊥(a +b )有3x -y =0,②联立①②有x =-79,y =-73,则c =(-79,-73),故选D.]5.C [∵|a +b |=52,∴|a +b |2=a 2+2a ·b +b 2=5+2×10+b 2=(52)2, ∴|b |=5.]6.A [由a =(-3,2),b =(-1,0),知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b )·(a -2b )=0,∴3λ+1+4λ=0,∴λ=-17.]7.1解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1. 8.(-4,8)解析 由题意可设b =λa =(λ,-2λ),λ<0,则|b |2=λ2+4λ2=5λ2=80,∴λ=-4, ∴b =-4a =(-4,8).9.655解析 设a 、b 的夹角为θ,则cos θ=2×(-4)+3×722+32(-4)2+72=55, 故a 在b 方向上的射影为|a |cos θ=13×55=655.10.⎝ ⎛⎭⎪⎫-12,2∪(2,+∞)解析 由题意cos α=a ·b |a||b |=-2λ-15·λ2+1, ∵90°<α<180°,∴-1<cos α<0,∴-1<-2λ-15·λ2+1<0, ∴⎩⎨⎧-2λ-1<0,-2λ-1>-5λ2+5,即⎩⎪⎨⎪⎧λ>-12,(2λ+1)2<5λ2+5,即⎩⎪⎨⎪⎧λ>-12,λ≠2,∴λ的取值范围是⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).11.解 (1)设a =λb =(λ,2λ)(λ>0),则有a ·b =λ+4λ=10, ∴λ=2,∴a =(2,4).(2)∵b ·c =1×2-2×1=0,a ·b =10, ∴a (b ·c )=0a =0,(a ·b )c =10×(2,-1)=(20,-10).12.(1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3),又∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)解 ∵AB →⊥AD →,四边形ABCD 为矩形, ∴AB →=DC →.设C 点坐标为(x ,y ), 则AB →=(1,1),DC →=(x +1,y -4), ∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5. ∴C 点坐标为(0,5).由于AC →=(-2,4),BD →=(-4,2),所以AC →·BD →=8+8=16, |AC →|=25,|BD →|=2 5. 设AC →与BD →夹角为θ,则cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0,∴矩形的两条对角线所成的锐角的余弦值为45.13.C[已知OA →=(1,1),即A (1,1)如图所示,当点B 位于B 1和B 2时,a 与b 夹角为π12,即∠AOB 1=∠AOB 2=π12,此时,∠B 1Ox =π4-π12=π6,∠B 2Ox =π4+π12=π3,故B 1⎝ ⎛⎭⎪⎫1,33,B 2(1,3),又a 与b 夹角不为零, 故a ≠1,由图易知a 的范围是⎝ ⎛⎭⎪⎫33,1∪(1,3).] 14.-2解析 建立如图所示的直角坐标系,根据题设条件即可知A (0,3),B (-3,0),M (0,2), ∴MA →=(0,1), MB →=(-3,-2). ∴MA →·MB →=-2.。
【成才之路】高一数学人教B版必修4 同步精练:2.3.3 向量数量积的坐标运算与度量公式 Word版含解析[ 高考]
![【成才之路】高一数学人教B版必修4 同步精练:2.3.3 向量数量积的坐标运算与度量公式 Word版含解析[ 高考]](https://img.taocdn.com/s3/m/93bf510e4b35eefdc8d3339f.png)
第二章 2.3 2.3.3一、选择题1.已知a =(-2,-3)、b =(32,-1),则向量a 与b 的夹角为( )A .π6B .π4C .π3D .π2[答案] D[解析] 由a ·b =-2×32+(-3)×(-1)=0,∴a ⊥b .2.(2015·河南南阳高一期末测试)设向量a =(2,0)、b =(1,1),则下列结论中正确的是( )A .|a |=|b |B .a ·b =12C .(a -b )⊥bD .a ∥b[答案] C[解析] |a |=2,b =2,∴|a |≠|b |; a ·b =2×1+0×1=2;a -b =(1,-1),(a -b )·b =1×1+(-1)×1=0, ∴(a -b )⊥b ,故选C .3.已知A 、B 、C 是坐标平面上的三点,其坐标分别为A (1,2)、B (4,1)、C (0,-1),则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不正确[答案] C[解析] AB →=(3,-1),AC →=(-1,-3), AB →·AC →=3×(-1)+(-1)×(-3)=0,且|AB →|=|AC →|=10.∴△ABC 为等腰直角三角形.4.已知a =(-3,2)、b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A .-17B .17C .-16D .16[答案] A[解析] ∵a =(-3,2),b =(-1,0), ∴λa +b =(-3λ-1,2λ)a -2b =(-3,2)-2(-1,0)=(-1,2), 由(λa +b )⊥(a -2b ), 得4λ+3λ+1=0,∴λ=-17.5.(2015·新课标Ⅱ,4)向量a =(1,-1)、b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2[答案] C[解析] 由题意可得a 2=2,a ·b =-3,所以(2a +b )·a =2a 2+a·b =4-3=1.故选C . 6.(2014·重庆理,4)已知向量a =(k,3)、b =(1,4)、c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3D .152[答案] C[解析] 本题考查了平面向量的坐标运算与向量的垂直,因为2a -3b =(2k -3,-6),又因为(2a -3b )⊥c ,所以,(2a -3b )·c =0,即(2k -3,-6)·(2,1)=0,∴4k -6-6=0,解得k =3,本题根据条件也可以转化为2a ·c -3b ·c =0化简求解.二、填空题7.(2015·广州高一期末测试)已知向量a =(1,2)、b =(x,2),且a ⊥b ,则实数x 的值为________.[答案] -4[解析] ∵a ⊥b ,∴a ·b =0, ∴x +4=0,∴x =-4.8.已知向量a =(-4,3)、b =(-3,4),b 在a 方向上的投影是________. [答案]245[解析] b 在a 方向上的投影为|b |cos 〈b ,a 〉=a ·b |a |=(-4)×(-3)+3×45=245.三、解答题9.(2015·河南新乡高一期末测试)已知向量a =(1,0)、b =(1,2)、c =(0,1). (1)求实数λ和μ,使c =λa +μb ;(2)若AB →=-a +3c ,AC →=4a -2c ,求向量AB →与AC →的夹角θ. [解析] (1)c =λa +μb =(λ+μ,2μ),∴⎩⎪⎨⎪⎧λ+μ=02μ=1,∴⎩⎨⎧λ=-12μ=12.(2)AB →=(-1,3),AC →=(4,-2), ∴cos θ=AB →·AC →|AB →||AC →|=-4-610×20=-22.又∵0≤θ≤π,∴θ=3π4.10. (2015·广东理,16)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22、n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.[解析] (1)解法一:∵m ⊥n ,∴m ·n =0,即22sin x -22cos x =0,∴tan x =1. 解法二:∵m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),且m ⊥n , m ·n =⎝⎛⎭⎫22,-22·(sin x ,cos x ) =22sin x -22cos x =sin ⎝⎛⎭⎫x -π4, 又x ∈⎝⎛⎭⎫0,π2,∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=0,即x =π4,∴tan x =tan π4=1.(2)由题意知cos π3=m ·n |m |·|n |=sin ⎝⎛⎭⎫x -π4⎝⎛⎭⎫222+⎝ ⎛⎭⎪⎫-222·sin 2x +cos 2x =sin ⎝⎛⎭⎫x -π4, ∴sin ⎝⎛⎭⎫x -π4=12,又x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=π6,即x =5π12.一、选择题1.(2014·山东文,7)已知向量a =(1,3)、b =(3,m ),若向量a 、b 的夹角为π6,则实数m =( )A .2 3B . 3C .0D .- 3[答案] B[解析] 本题考查向量的坐标运算及数量积. a ·b =3+3m =|a |·|b |·cos π6=2×9+m 2×32.解得,m = 3. 2.(2015·福建文,7)设a =(1,2)、b =(1,1),c =a +k b ,若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C .53D .32[答案] A[解析] 由已知得c =(1,2)+k (1,1)=(k +1,k +2),因为b ⊥c ,则b·c =0,因此k +1+k +2=0,解得k =-32,故选A .3.若向量a =(1,2)、b =(1,-1),则2a +b 与a -b 的夹角等于( ) A .-π4B .π6C .π4D .3π4[答案] C[解析] 本题考查了向量的坐标运算.∵a =(1,2),b =(1,-1),则2a +b =(3,3),a -b =(0,3),则cos<2a +b ,a -b >=3×0+932·3=22,∴a +b ,a -b =π4.4.已知a =(2,4),则与a 垂直的单位向量的坐标是( ) A .⎝⎛⎭⎫55,-255或⎝⎛⎭⎫-55,-255 B .⎝⎛⎭⎫55,-255或⎝⎛⎭⎫-55,255 C .⎝⎛⎫255,-55或⎝⎛⎭⎫-255,-55 D .⎝⎛⎭⎫-255,55或⎝⎛⎭⎫255,-55 [答案] D[解析] 设与a 垂直的单位向量的坐标是(x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=12x +4y =0,解得⎩⎨⎧x =-255y =55,或⎩⎨⎧x =255y =-55.二、填空题5.(2014·湖北理,11)设向量a =(3,3)、b =(1,-1),若(a +λb )⊥(a -λb ),则实数λ=________.[答案] ±3[解析] 因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.6.(2014·四川文,14)平面向量a =(1,2)、b =(4,2)、c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.[答案] 2[解析] 本题考查了平面向量的坐标运算、数量积等基础知识c =m a +b =(m +4,2m +2),由题意有:a·c |a||c |=b·c|b||c|即:a·c |a|=b·c|b|,代入得:m +4+4m +45=4m +16+4m +420,解得m =2. 三、解答题7.(2015·山东临沂高一期末测试)在平面直角坐标系xOy 中,点A (-1,-2)、B (2,3)、C (-2,-1).(1)求AB →·AC →;(2)若实数t 满足(AB →-tOC →)·OB →=0,求t 的值. [解析] (1)AB →=(3,5),AC →=(-1,1), ∴AB →·AC →=3×(-1)+5×1=2. (2)∵OB →=(2,3),OC →=(-2,-1), ∴AB →-tOC →=(3+2t,5+t ). 又∵(AB →-tOC →)·OB →=0, ∴2×(3+2t )+3×(5+t )=0, ∴t =-3.8.已知a =(3,4)、b =(4,3),求x 、y 的值使(x a +y b )⊥a ,且|x a +y b |=1. [解析] ∵a =(3,4),b =(4,3),∴x a +y b =(3x +4y,4x +3y ). 又(x a +y b )⊥a ,∴(x a +y b )·a =0, ∴3(3x +4y )+4(4x +3y )=0, 即25x +24y =0,①又|x a +y b |=1,∴|x a +y b |2=1, ∴(3x +4y )2+(4x +3y )2=1. 整理得25x 2+48xy +25y 2=1, 即x (25x +24y )+24xy +25y 2=1.② 由①②有24xy +25y 2=1,③ 将①变形代入③可得y =±57.当y =57时,x =-2435,当y =-57时,x =2435.所以⎩⎨⎧x =2435y =-57或⎩⎨⎧x =-2435y =57.9. 设a =(4,-3)、b =(2,1),若a +t b 与b 的夹角为45°,求实数t 的值. [解析] a +t b =(4,-3)+t (2,1)=(4+2t ,t -3), (a +t b )·b =(4+2t ,t -3)·(2,1)=5t +5, |a +t b |=(4+2t )2+(t -3)2=5(t +1)2+20,由(a +t b )·b =|a +t b ||b |cos45°, 得5t +5=522(t +1)2+4,即t 2+2t -3=0,解得t =-3或t =1.经检验知t =-3不符合题意,舍去.所以t =1.。
人教版高中必修4(B版)2.3.3向量数量积的坐标运算与度量公式教学设计

人教版高中必修4(B版)2.3.3向量数量积的坐标运算与度量公式教学设计一、教学目标1.掌握向量数量积的定义,并能够利用坐标运算求解向量数量积。
2.掌握向量数量积的度量公式,并能够灵活应用。
3.能够在实际问题中运用向量数量积解决几何问题。
二、教学重点和难点1.教学重点:向量数量积的坐标运算和度量公式的应用。
2.教学难点:向量数量积的概念和度量公式的证明。
三、教学方法与手段1.探究式教学:通过让学生自己发现向量数量积的性质和应用方法,激发其学习兴趣和求知欲。
2.讲授式教学:通过教师讲解向量数量积的定义、性质和应用,使学生全面理解该知识点。
3.互动式教学:通过师生互动,让学生积极参与讨论,提高教学效果。
4.录屏演示:通过PPT和教学软件,演示向量数量积的坐标运算和度量公式的应用,加深学生对知识点的理解。
四、教学内容和步骤第一步:向量数量积的概念和坐标运算公式1.讲解向量数量积的定义和性质,并给出两个向量的数量积的向量形式和标量形式。
2.教师以矢量坐标运算符 $ \cdot $ 为例,讲解向量数量积的坐标运算公式和求解方法。
3.设计数学实例,让学生自己动手计算两个向量的数量积,加深其对该知识点的理解。
第二步:向量数量积的度量公式1.讲解向量数量积的度量公式和应用方法,包括向量夹角余弦公式和向量模长公式。
2.教师以例题和练习题为例,演示应用向量数量积的度量公式解决几何问题的过程。
3.让学生自己设计一个实际问题,通过向量数量积的度量公式解决问题,提高其应用能力。
第三步:练习和巩固1.给学生准备一些模拟测试题目,让他们在课后进行复习和练习,巩固所学知识。
2.班内进行一次小测验,检验学生对该知识点的掌握程度,及时纠正学生存在的问题。
五、教学评价与反思在教学过程中,教师应该注意引导学生积极参与课堂活动,并及时纠正学生存在的问题,以达到高效的教学效果。
并在教学评价中,关注学生对向量数量积知识点的掌握情况,及时评价和反馈学生的学习成果,以便教师更好的指导学生。
人教版B版高中数学必修4:2.3.3 向量数量积的坐标运算与度量公式

即(x-3,y-2)=λ(-6,-3).
∴
x-3=-6λ y-2=-3λ
.
又∴∵x-A3D=⊥2B(yC-,2∴),A→即D·B→x-C=2y0+,1=0.
①
即(x-2,y+1)·(-6,-3)=0,
∴-6(x-2)-3(y+1)=0.
即 2x+y-3=0.
②
由①②可得
x=1 y=1
,
即 D 点坐标为(1,1),A→D=(-1,2).
(2)∵a=(1,0),n·a=0,∴n=(0,-1). ∴n+b=(cosx,sinx-1). ∴|n+b|= cosx 2+ sinx-1 2 = 2-2sinx= 2· 1-sinx. ∵x∈R,-1≤sinx≤1, ∴0≤ 1-sinx≤ 2. ∴0≤|n+b→A=(-3,5),C→B=(1,-1), 所以|C→A|= 34,|C→B|= 2,C→A·C→B=-8. cos∠ACB=|CC→→AA|·|CC→→BB|=-4 1717.
课后案:4 已知向量 m=(1,1),向量 n 与向量 m 的夹角为
3π,且 4
m·n=-1.
(2)若 a⊥b,则13+sinxcosx=0,
∴sinxcosx=-1<0. 3
∵x∈(0,π),∴x∈(π,π), 2
∴sinx>0,cosx<0,
∴sinx-cosx= sinx-cosx 2
= 1-2sinxcosx=
1-2×
-1 3
=
315.
合作探究一:在△ABC 中,已知A→B=(2,3)、A→C=(1,k), 且△ABC 是直角三角形,求 k 的值.
部分题规范解答
5.已知向量 a=(1,cosx),b=(1,sinx),x∈(0,π). 3
2022-2021学年高二数学人教B版必修4学案:2.3.3 向量数量积的坐标运算与度量公式

2.3.3 向量数量积的坐标运算与度量公式明目标、知重点 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能依据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能依据向量的坐标求向量的夹角及判定两个向量垂直.1.平面对量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b=x 1x 2+y 1y 2. 即两个向量的数量积等于相应坐标乘积的和. 2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a ⊥b ⇔x 1x 2+y 1y 2=0. 3.平面对量的长度(1)向量长度公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[情境导学] 在平面直角坐标系中,平面对量可以用有序实数对来表示,两个平面对量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面对量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现?平面对量的数量积还会是一个有序实数对吗?同时,平面对量的模、夹角又该如何用坐标来表示?通过回顾两个向量的数量积的定义向向量的坐标表示,在此基础上推导、探究平面对量数量积的坐标表示. 探究点一 平面对量数量积的坐标表示思考1 已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a ·b? 答 ∵a =x 1i +y 1j ,b =x 2i +y 2j , ∴a ·b =(x 1i +y 1j )·(x 2i +y 2j ) =x 1x 2i 2+x 1y 2i ·j +x 2y 1j ·i +y 1y 2j 2.又∵i ·i =1,j ·j =1,i ·j =j ·i =0,∴a ·b =x 1x 2+y 1y 2.思考2 若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,这就是平面对量数量积的坐标表示.你能用文字描述这一结论吗?答 两个向量的数量积等于它们对应坐标的乘积的和. 例1 已知a 与b 同向,b =(1,2),a·b =10. (1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵b·c =1×2-2×1=0,a·b =1×2+2×4=10, ∴a (b·c )=0a =0,(a·b )c =10(2,-1)=(20,-10).反思与感悟 两个向量的数量积是实数,这和前面三种运算性质不同.同时本例进一步验证了平面对量的数量积不满足结合律.跟踪训练1 若a =(2,3),b =(-1,-2),c =(2,1),则(a·b )·c =____________;a·(b·c )=____________. 答案 (-16,-8) (-8,-12) 解析 ∵a·b =2×(-1)+3×(-2)=-8, ∴(a·b )·c =-8×(2,1)=(-16,-8). ∵b·c =(-1)×2+(-2)×1=-4, ∴a·(b·c )=(2,3)×(-4)=(-8,-12).探究点二 平面对量长度的坐标形式及两点间的距离公式思考1 若a =(x ,y ),如何计算向量的长度|a |? 答 ∵a =x i +y j ,∴a 2=(x i +y j )2=(x i )2+2xy i ·j +(y j )2 =x 2i 2+2xy i ·j +y 2j 2. 又∵i 2=1,j 2=1,i ·j =0, ∴a 2=x 2+y 2,∴|a |2=x 2+y 2, ∴|a |=x 2+y 2.思考2 若A (x 1,y 2),B (x 2,y 2),如何计算向量AB →的长度? 答 如图,∵AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1), ∴|AB →|=(x 2-x 1)2+(y 2-y 1)2.例2 已知在△ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标. 解 设点D 坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3), BD →=(x -3,y -2),∵D 在直线BC 上,即BD →与BC →共线, ∴存在实数λ,使BD →=λBC →, 即(x -3,y -2)=λ(-6,-3).∴⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ.∴x -3=2(y -2),即x -2y +1=0.① 又∵AD ⊥BC ,∴AD →·BC →=0, 即(x -2,y +1)·(-6,-3)=0, ∴-6(x -2)-3(y +1)=0. 即2x +y -3=0.②由①②可得⎩⎪⎨⎪⎧x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2). ∴|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).反思与感悟 在几何里利用垂直及长度来求解点的题型是一种常见题型,其处理方法:设出点的坐标,利用垂直及长度列出方程组进行求解.跟踪训练2 以原点和A (5,2)为两个顶点作等腰直角△OAB ,∠B =90°,求点B 和AB →的坐标. 解 设B (x ,y ),则|OB →|=x 2+y 2,∵B (x ,y ),A (5,2),∴|AB →|=(x -5)2+(y -2)2.又∵|AB →|=|OB →|,∴(x -5)2+(y -2)2=x 2+y 2.可得10x +4y =29,①又OB →=(x ,y ),AB →=(x -5,y -2),且OB →⊥AB →, ∴OB →·AB →=0,∴x (x -5)+y (y -2)=0, 即x 2-5x +y 2-2y =0,②由①②解得⎩⎨⎧x 1=32,y 1=72,或⎩⎨⎧x 2=72,y 2=-32.∴B ⎝⎛⎭⎫32,72或⎝⎛⎭⎫72,-32. ∴AB →=⎝⎛⎭⎫-72,32或AB →=⎝⎛⎭⎫-32,-72. 探究点三 平面对量夹角的坐标表示思考1 设向量a =(x 1,y 1),b =(x 2,y 2),若a ⊥b ,则x 1,y 1,x 2,y 2之间的关系如何?反之成立吗? 答 a ⊥b ⇔x 1x 2+y 1y 2=0.思考2 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示? 答 cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 例3 已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 解 设a 与b 的夹角为θ, 则a·b =(1,2)·(1,λ)=1+2λ.(1)由于a 与b 的夹角为直角,所以cos θ=0, 所以a·b =0,所以1+2λ=0,所以λ=-12.(2)由于a 与b 的夹角为钝角,所以cos θ<0且cos θ≠-1, 所以a·b <0且a 与b 不反向. 由a·b <0得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不行能反向.所以λ的取值范围为⎝⎛⎭⎫-∞,-12. (3)由于a 与b 的夹角为锐角,所以cos θ>0,且cos θ≠1, 所以a·b >0且a ,b 不同向.由a·b >0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为⎝⎛⎭⎫-12,2∪(2,+∞). 反思与感悟 由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a·b|a||b |来推断,可将θ分五种状况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.∵a ,b 的夹角α为钝角.∴⎩⎪⎨⎪⎧λ-1<0,21+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2 答案 B解析 ∵|a |=10,|b |=5,a ·b =5. ∴cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又∵a ,b 的夹角范围为[0,π]. ∴a 与b 的夹角为π4.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A.1 B. 2 C.2 D.4 答案 C解析 ∵(2a -b )·b =2a ·b -|b |2 =2(-1+n 2)-(1+n 2)=n 2-3=0, ∴n 2=3.∴|a |=12+n 2=2.3.在△ABC 中,∠C =90°,AB →=(k,1),AC →=(2,3),则k 的值为________. 答案 5解析 ∵BC →=AC →-AB →=(2,3)-(k,1)=(2-k,2), AC →=(2,3),∴BC →·AC →=2(2-k )+6=0,∴k =5.4.已知平面对量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 答案 82解析 ∵a =(2,4),b =(-1,2),∴a ·b =2×(-1)+4×2=6, ∴c =a -6b , ∴c 2=a 2-12a ·b +36b 2 =20-12×6+36×5=128. ∴|c |=8 2.[呈重点、现规律]1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题供应了完善的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的力气.3.留意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a =(x 1,y 1),b =(x 2,y 2).则a ∥b ⇔x 1y 2-x 2y 1=0,a⊥b ⇔x 1x 2+y 1y 2=0.一、基础过关1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.-3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , 又a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.2.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.-17B.17C.-16D.16答案 A解析 由a =(-3,2),b =(-1,0), 知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b )·(a -2b )=0, ∴3λ+1+4λ=0,∴λ=-17.3.平面对量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B.23 C.4 D.12 答案 B解析 ∵a =(2,0),|b |=1, ∴|a |=2,a ·b =2×1×cos 60°=1. ∴|a +2b |=a 2+4·a ·b +4b 2=2 3.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79 D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 由①②解得x =-79,y =-73.5.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A.-π4 B.π6 C.π4 D.3π4答案 C解析 2a +b =2(1,2)+(1,-1)=(3,3), a -b =(1,2)-(1,-1)=(0,3), (2a +b )·(a -b )=9, |2a +b |=32,|a -b |=3.设所求两向量夹角为α,则cos α=932×3=22,∵α∈[0,π],∴α=π4.6.设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是________. 解 ∵θ为钝角,∴cos θ=a ·b|a ||b |<0, 即a ·b =-8+5x <0,∴x <85.∵a ∥b 时有-4x -10=0,即x =-52,当x =-52时,a =(2,-52)=-12b ,∴a 与b 反向,即θ=π.故a 与b 的夹角为钝角时,x <85且x ≠-52.7.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦;(2)若(a -λb )⊥(2a +b ),求实数λ的值. 解 (1)∵a ·b =4×(-1)+3×2=2, |a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8), 又(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0, ∴λ=529.二、力气提升8.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B解析 由于m =(λ+1,1),n =(λ+2,2). 所以m +n =(2λ+3,3),m -n =(-1,-1). 由于(m +n )⊥(m -n ),所以(m +n )·(m -n )=0, 所以-(2λ+3)-3=0,解得λ=-3.9.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的正射影的数量为( ) A.322B.3152C. -322D.-3152答案 A解析 ∵AB →=(2,1),CD →=(5,5), ∴AB →在CD →方向上的正射影的数量为 AB →·CD →|CD →|=2×5+1×552+52=1552=322.10.平面对量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.答案 2解析 由于向量a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),所以a ·c =m +4+2(2m +2)=5m +8,b ·c =4(m +4)+2(2m +2)=8m +20. 由于c 与a 的夹角等于c 与b 的夹角, 所以a ·c |a ||c |=b ·c |b ||c |,即a ·c |a |=b ·c |b |,所以5m +85=8m +2025,解得m =2.11.在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0, ∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0, ∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.12.设a =(1,2),b =(-2,-3),又c =2a +b ,d =a +m b ,若c 与d 夹角为45°,求实数m 的值. 解 ∵a =(1,2),b =(-2,-3), ∴c =2a +b =2(1,2)+(-2,-3)=(0,1), d =a +m b =(1,2)+m (-2,-3)=(1-2m,2-3m ), ∴c ·d =0×(1-2m )+1×(2-3m )=2-3m . 又∵|c |=1,|d |=(1-2m )2+(2-3m )2,∴cos 45°=c ·d|c ||d |=2-3m(1-2m )2+(2-3m )2=22. 化简得5m 2-8m +3=0,解得m =1或m =35.三、探究与拓展13.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值. (1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3), 又∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)解 AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →. 设C 点坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5.∴C 点坐标为(0,5). 由于AC →=(-2,4),BD →=(-4,2), 所以AC →·BD →=8+8=16>0, |AC →|=2 5,|BD →|=2 5. 设AC →与BD →夹角为θ,则 cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0,∴矩形的两条对角线所成的锐角的余弦值为45.。
高中数学人教B版必修4作业:2.3.3 向量数量积的坐标运算与度量公式 Word版含解析

一、选择题1.a =(-4,3),b =(5,6),则3|a |2-4a ·b =( )A .23B .57C .63D .83【解析】 |a |2=a 2=a ·a =(-4)2+32=25,a ·b =(-4,3)·(5,6)=-20+18=-2.∴3|a |2-4a ·b =3×25-4×(-2)=83.【答案】 D2.(2019·宿州高一检测)若a =(2,1),b =(3,4),则向量a 在向量b 方向上的射影为( )A .25B .2 C.5 D .10【解析】 |a |cos θ=|a |a ·b |a ||b |=a ·b |b |=2×3+1×45=2. 【答案】 B3.已知a =(-1,3),b =(2,-1)且(k a +b )⊥(a -2b ),则k =( )A.43B .-43 C.34 D .-34【解析】 由题意知(k a +b )·(a -2b )=0,而k a +b =(2-k,3k -1),a -2b =(-5,5),故-5(2-k )+5(3k -1)=0,解得k =34.【答案】 C4.已知OA →=(-2,1),OB →=(0,2),且AC →∥OB →,BC →⊥AB →,则点C 的坐标是( )A .(2,6)B .(-2,-6)C .(2,6)D .(-2,6)【解析】 设C (x ,y ),则AC →=(x +2,y -1),BC →=(x ,y -2),AB →=(2,1).由AC →∥OB →,BC →⊥AB →,得⎩⎨⎧ -2(x +2)=0,2x +y -2=0,解得⎩⎨⎧x =-2,y =6.∴点C 的坐标为(-2,6).【答案】 D5.已知A 、B 、C 是坐标平面上的三点,其坐标分别为A (1,2)、B (4,1)、C (0,-1),则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不正确 【解析】AC →=(-1,-3),AB →=(3,-1).∵AC →·AB →=-3+3=0,∴AC ⊥AB .又∵|AC →|=10,|AB →|=10,∴AC =AB .∴∴ABC 为等腰直角三角形.【答案】 C二、填空题6.(2019·山东高考)在平面直角坐标系xOy 中,已知OA →=(-1,t ),OB →=(2,2).若∠ABO =90°,则实数t 的值为________.【解析】 ∵∠ABO =90°,∴AB →⊥OB →,∴OB →·AB →=0.又AB →=OB →-OA →=(2,2)-(-1,t )=(3,2-t ),∴(2,2)·(3,2-t )=6+2(2-t )=0.∴t =5.【答案】 57.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=45,则b =________.【解析】 由题意可设b =λa =(λ,-2λ),λ<0,则|b |2=λ2+4λ2=5λ2=80,∴λ=-4,∴b =-4a =(-4,8).【答案】 (-4,8)8.设平面向量a =(-2,1),b =(λ,-1)(λ∈R ),若a 与b 的夹角为钝角,则λ的取值范围是_________.【解析】 a·b <0⇒(-2,1)·(λ,-1)<0⇒λ>-12.又设b =t a (t <0),则(λ,-1)=(-2t ,t ),∴t =-1,λ=2,即λ=2时,a 和b 反向,且共线,此时,不满足题意.∴λ∈(-12,2)∪(2,+∞).【答案】 (-12,2)∪(2,+∞)三、解答题9.(2019·徐州高一检测)在平面直角坐标系内,已知三点A (1,0),B (0,1),C (2,5),求:(1)AB →,AC →的坐标;(2)|AB →-AC →|的值;(3)cos ∠BAC 的值.【解】 (1)AB →=(0,1)-(1,0)=(-1,1),AC →=(2,5)-(1,0)=(1,5).(2)因为AB →-AC →=(-1,1)-(1,5)=(-2,-4),所以|AB →-AC → |=(-2)2+(-4)2=2 5.(3)因为AB →·AC →=(-1,1)·(1,5)=4,|AB →|=2,|AC →|=26,cos ∠BAC =AB →·AC →|AB →||AC →|=42×26=21313. 10.在平面直角坐标系xOy 中,已知点A (-1,-2)、B (2,3)、C (-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;(2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.【解】 (1)由题设知AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4),所以|AB →+AC →|=210,|AB →-AC →|=4 2.故所求的两条对角线的长分别为210,4 2.(2)由题设知:OC →=(-2,-1),AB →-tOC →=(3+2t,5+t ).由(AB →-tOC →)·OC →=0,得(3+2t,5+t )·(-2,-1)=0,从而5t =-11,所以t =-115.11.已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,求点D 的坐标与|AD →|.【解】 设点D 的坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2).∵D 在直线BC 上,即BD →与BC →共线,∴-3(x -3)+6(y -2)=0.即x -2y +1=0.又AD ⊥BC ,∴AD →·BC →=0,即(x -2,y +1)·(-6,-3)=0,∴-6(x -2)-3(y +1)=0,即2x +y -3=0.联立方程组⎩⎨⎧ x -2y +1=0,2x +y -3=0,解得⎩⎨⎧x =1,y =1.∴点D 的坐标为(1,1),|AD →|=(1-2)2+(1+1)2= 5.。
2018-2019学年高二数学人教B版必修4学案:2.3.3 向量数量积的坐标运算与度量公式

2.3.3 向量数量积的坐标运算与度量公式明目标、知重点 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 即两个向量的数量积等于相应坐标乘积的和. 2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a ⊥b ⇔x 1x 2+y 1y 2=0. 3.平面向量的长度(1)向量长度公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[情境导学] 在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示?通过回顾两个向量的数量积的定义向向量的坐标表示,在此基础上推导、探索平面向量数量积的坐标表示. 探究点一 平面向量数量积的坐标表示思考1 已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a ·b? 答 ∵a =x 1i +y 1j ,b =x 2i +y 2j ,∴a ·b =(x 1i +y 1j )·(x 2i +y 2j ) =x 1x 2i 2+x 1y 2i ·j +x 2y 1j ·i +y 1y 2j 2. 又∵i ·i =1,j ·j =1,i ·j =j ·i =0, ∴a ·b =x 1x 2+y 1y 2.思考2 若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,这就是平面向量数量积的坐标表示.你能用文字描述这一结论吗?答 两个向量的数量积等于它们对应坐标的乘积的和. 例1 已知a 与b 同向,b =(1,2),a·b =10. (1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵b·c =1×2-2×1=0,a·b =1×2+2×4=10, ∴a (b·c )=0a =0,(a·b )c =10(2,-1)=(20,-10).反思与感悟 两个向量的数量积是实数,这和前面三种运算性质不同.同时本例进一步验证了平面向量的数量积不满足结合律.跟踪训练1 若a =(2,3),b =(-1,-2),c =(2,1),则(a·b )·c =____________;a·(b·c )=____________.答案 (-16,-8) (-8,-12) 解析 ∵a·b =2×(-1)+3×(-2)=-8, ∴(a·b )·c =-8×(2,1)=(-16,-8). ∵b·c =(-1)×2+(-2)×1=-4, ∴a·(b·c )=(2,3)×(-4)=(-8,-12).探究点二 平面向量长度的坐标形式及两点间的距离公式 思考1 若a =(x ,y ),如何计算向量的长度|a |? 答 ∵a =x i +y j ,∴a 2=(x i +y j )2=(x i )2+2xy i ·j +(y j )2 =x 2i 2+2xy i ·j +y 2j 2. 又∵i 2=1,j 2=1,i ·j =0, ∴a 2=x 2+y 2,∴|a |2=x 2+y 2, ∴|a |=x 2+y 2.思考2 若A (x 1,y 2),B (x 2,y 2),如何计算向量AB →的长度?答 如图,∵AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1) =(x 2-x 1,y 2-y 1), ∴|AB →|=(x 2-x 1)2+(y 2-y 1)2.例2 已知在△ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解 设点D 坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3), BD →=(x -3,y -2),∵D 在直线BC 上,即BD →与BC →共线, ∴存在实数λ,使BD →=λBC →, 即(x -3,y -2)=λ(-6,-3).∴⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ.∴x -3=2(y -2),即x -2y +1=0.① 又∵AD ⊥BC ,∴AD →·BC →=0, 即(x -2,y +1)·(-6,-3)=0, ∴-6(x -2)-3(y +1)=0. 即2x +y -3=0.②由①②可得⎩⎪⎨⎪⎧x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2). ∴|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).反思与感悟 在几何里利用垂直及长度来求解点的题型是一种常见题型,其处理方法:设出点的坐标,利用垂直及长度列出方程组进行求解.跟踪训练2 以原点和A (5,2)为两个顶点作等腰直角△OAB ,∠B =90°,求点B 和AB →的坐标. 解 设B (x ,y ),则|OB →|=x 2+y 2,∵B (x ,y ),A (5,2),∴|AB →|=(x -5)2+(y -2)2.又∵|AB →|=|OB →|,∴(x -5)2+(y -2)2=x 2+y 2.可得10x +4y =29,①又OB →=(x ,y ),AB →=(x -5,y -2),且OB →⊥AB →, ∴OB →·AB →=0,∴x (x -5)+y (y -2)=0, 即x 2-5x +y 2-2y =0,②由①②解得⎩⎨⎧x 1=32,y 1=72,或⎩⎨⎧x 2=72,y 2=-32.∴B ⎝⎛⎭⎫32,72或⎝⎛⎭⎫72,-32. ∴AB →=⎝⎛⎭⎫-72,32或AB →=⎝⎛⎭⎫-32,-72. 探究点三 平面向量夹角的坐标表示思考1 设向量a =(x 1,y 1),b =(x 2,y 2),若a ⊥b ,则x 1,y 1,x 2,y 2之间的关系如何?反之成立吗?答 a ⊥b ⇔x 1x 2+y 1y 2=0.思考2 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示?答 cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 例3 已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 解 设a 与b 的夹角为θ, 则a·b =(1,2)·(1,λ)=1+2λ.(1)因为a 与b 的夹角为直角,所以cos θ=0,所以a·b =0,所以1+2λ=0,所以λ=-12.(2)因为a 与b 的夹角为钝角,所以cos θ<0且cos θ≠-1, 所以a·b <0且a 与b 不反向. 由a·b <0得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不可能反向. 所以λ的取值范围为⎝⎛⎭⎫-∞,-12. (3)因为a 与b 的夹角为锐角,所以cos θ>0,且cos θ≠1, 所以a·b >0且a ,b 不同向.由a·b >0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为⎝⎛⎭⎫-12,2∪(2,+∞). 反思与感悟 由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a·b|a||b |来判断,可将θ分五种情况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.∵a ,b 的夹角α为钝角.∴⎩⎪⎨⎪⎧λ-1<0,21+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2 答案 B解析 ∵|a |=10,|b |=5,a ·b =5. ∴cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又∵a ,b 的夹角范围为[0,π]. ∴a 与b 的夹角为π4.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A.1 B. 2 C.2 D.4 答案 C解析 ∵(2a -b )·b =2a ·b -|b |2 =2(-1+n 2)-(1+n 2)=n 2-3=0, ∴n 2=3.∴|a |=12+n 2=2.3.在△ABC 中,∠C =90°,AB →=(k,1),AC →=(2,3),则k 的值为________. 答案 5解析 ∵BC →=AC →-AB →=(2,3)-(k,1)=(2-k,2), AC →=(2,3),∴BC →·AC →=2(2-k )+6=0,∴k =5.4.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 答案 8 2解析 ∵a =(2,4),b =(-1,2), ∴a ·b =2×(-1)+4×2=6, ∴c =a -6b , ∴c 2=a 2-12a ·b +36b 2 =20-12×6+36×5=128. ∴|c |=8 2. [呈重点、现规律]1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题提供了完美的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a =(x 1,y 1),b =(x 2,y 2).则a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0.一、基础过关1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , 又a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.2.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.-17B.17 C.-16D.16答案 A解析 由a =(-3,2),b =(-1,0), 知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b )·(a -2b )=0, ∴3λ+1+4λ=0,∴λ=-17.3.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3B.2 3C.4D.12答案 B解析 ∵a =(2,0),|b |=1, ∴|a |=2,a ·b =2×1×cos 60°=1. ∴|a +2b |=a 2+4·a ·b +4b 2=2 3.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79 D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 由①②解得x =-79,y =-73.5.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A.-π4 B.π6 C.π4 D.3π4答案 C解析 2a +b =2(1,2)+(1,-1)=(3,3), a -b =(1,2)-(1,-1)=(0,3), (2a +b )·(a -b )=9, |2a +b |=32,|a -b |=3.设所求两向量夹角为α,则cos α=932×3=22,∵α∈[0,π],∴α=π4.6.设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是________. 解 ∵θ为钝角,∴cos θ=a ·b|a ||b |<0, 即a ·b =-8+5x <0,∴x <85.∵a ∥b 时有-4x -10=0,即x =-52,当x =-52时,a =(2,-52)=-12b ,∴a 与b 反向,即θ=π.故a 与b 的夹角为钝角时,x <85且x ≠-52.7.已知a =(4,3),b =(-1,2). (1)求a 与b 的夹角的余弦;(2)若(a -λb )⊥(2a +b ),求实数λ的值. 解 (1)∵a ·b =4×(-1)+3×2=2, |a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8), 又(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0, ∴λ=529.二、能力提升8.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B解析 因为m =(λ+1,1),n =(λ+2,2). 所以m +n =(2λ+3,3),m -n =(-1,-1). 因为(m +n )⊥(m -n ),所以(m +n )·(m -n )=0, 所以-(2λ+3)-3=0,解得λ=-3.9.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的正射影的数量为( ) A.322B.3152C. -322D.-3152答案 A解析 ∵AB →=(2,1),CD →=(5,5),∴AB →在CD →方向上的正射影的数量为 AB →·CD →|CD →|=2×5+1×552+52=1552=322.10.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________. 答案 2解析 因为向量a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),所以a ·c =m +4+2(2m +2)=5m +8,b ·c =4(m +4)+2(2m +2)=8m +20. 因为c 与a 的夹角等于c 与b 的夹角, 所以a ·c |a ||c |=b ·c |b ||c |,即a ·c |a |=b ·c|b |,所以5m +85=8m +2025,解得m =2.11.在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0, ∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0, ∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132. 12.设a =(1,2),b =(-2,-3),又c =2a +b ,d =a +m b ,若c 与d 夹角为45°,求实数m 的值.解 ∵a =(1,2),b =(-2,-3),∴c =2a +b =2(1,2)+(-2,-3)=(0,1),d =a +m b =(1,2)+m (-2,-3)=(1-2m,2-3m ),∴c ·d =0×(1-2m )+1×(2-3m )=2-3m .又∵|c |=1,|d |=(1-2m )2+(2-3m )2, ∴cos 45°=c ·d |c ||d |=2-3m (1-2m )2+(2-3m )2=22. 化简得5m 2-8m +3=0,解得m =1或m =35. 三、探究与拓展13.已知三个点A (2,1),B (3,2),D (-1,4).(1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值.(1)证明 ∵A (2,1),B (3,2),D (-1,4),∴AB →=(1,1),AD →=(-3,3),又∵AB →·AD →=1×(-3)+1×3=0,∴AB →⊥AD →,即AB ⊥AD .(2)解 AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →.设C 点坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5.∴C 点坐标为(0,5). 由于AC →=(-2,4),BD →=(-4,2),所以AC →·BD →=8+8=16>0,|AC →|=2 5,|BD →|=2 5.设AC →与BD →夹角为θ,则cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0, ∴矩形的两条对角线所成的锐角的余弦值为45.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.3 向量数量积的坐标运算与度量公式课时目标 1.掌握数量积的坐标表示, 会进行平面向量数量积的坐标运算.2.能运用数量积的坐标表示求两个向量的夹角,会用数量积的坐标表示判断两个平面向量的垂直关系,会用数量的坐标表示求向量的模.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b=_______________________________________. 即两个向量的数量积等于相应坐标乘积的和. 2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a⊥b ⇔______________. 3.平面向量的模(1)向量模公式:设a =(x 1,y 1),则|a|=_____________________________________. (2)两点间距离公式:若A(x 1,y 1),B(x 2,y 2), 则|AB →|=__________________________. 4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=____ _______=__________________________.一、选择题1.已知向量a =(1,n),b =(-1,n),若2a -b 与b 垂直,则|a|等于( ) A .1 B . 2 C .2 D .42.平面向量a 与b 的夹角为60°,a =(2,0),|b|=1,则|a +2b|等于( ) A . 3 B .2 3 C .4 D .123.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A .865 B .-865 C .1665 D .-16654.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a)∥b ,c ⊥(a +b),则c 等于( )A .⎝ ⎛⎭⎪⎫79,73B .⎝ ⎛⎭⎪⎫-73,-79C .⎝ ⎛⎭⎪⎫73,79D .⎝ ⎛⎭⎪⎫-79,-735.已知向量a =(2,1),a·b=10,|a +b|=52,则|b|等于( )A . 5B .10C .5D .256.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A .-17 B .17 C .-16 D .16二、填空题7.已知a =(3,3),b =(1,0),则(a -2b)·b=_______________________________. 8.若平面向量a =(1,-2)与b 的夹角是180°,且|b|=45,则b =________. 9.若a =(2,3),b =(-4,7),则a 在b 方向上的射影为______.10.已知a =(-2,-1),b =(λ,1),若a 与b 的夹角α为钝角,则λ的取值范围为________.三、解答题11.已知a 与b 同向,b =(1,2),a·b=10. (1)求a 的坐标;(2)若c =(2,-1),求a(b·c)及(a·b)c.12.已知三个点A(2,1),B(3,2),D(-1,4), (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值.能力提升13.已知向量a =(1,1),b =(1,a),其中a 为实数,O 为原点,当此两向量夹角在⎝ ⎛⎭⎪⎫0,π12变动时,a 的范围是( )A .(0,1)B .⎝ ⎛⎭⎪⎫33,3 C .⎝⎛⎭⎪⎫33,1∪(1,3) D .(1,3) 14.若等边△ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题提供了完美的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.2.3.3 向量数量积的坐标运算与度量公式 答案 知识梳理1.x 1x 2+y 1y 2 2.x 1x 2+y 1y 2=0 3.(1)x 21+y 21 (2)2-x 12+2-y 124.a·b |a||b|x 1x 2+y 1y 2x 21+y 21x 22+y 22作业设计1.C [由(2a -b)·b=0,则2a·b-|b|2=0, ∴2(n 2-1)-(1+n 2)=0,n 2=3. ∴|a|=1+n 2=2.故选C.] 2.B [a =(2,0),|b|=1,∴|a|=2,a·b=2×1×cos 60°=1. ∴|a +2b|=a 2+4×a·b+4b 2=2 3.]3.C [∵a=(4,3),∴2a =(8,6).又2a +b =(3,18),∴b =(-5,12),∴a·b=-20+36=16.又|a|=5,|b|=13,∴cos 〈a ,b 〉=165×13=1665.] 4.D [设c =(x ,y),由(c +a)∥b 有-3(x +1)-2(y +2)=0,① 由c ⊥(a +b)有3x -y =0,②联立①②有x =-79,y =-73,则c =(-79,-73),故选D.]5.C [∵|a +b|=52,∴|a +b|2=a 2+2a·b+b 2=5+2×10+b 2=(52)2,∴|b|=5.]6.A [由a =(-3,2),b =(-1,0),知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b)·(a-2b)=0,∴3λ+1+4λ=0,∴λ=-17.]7.1解析 a -2b =(1,3), (a -2b)·b=1×1+3×0=1. 8.(-4,8)解析 由题意可设b =λa =(λ,-2λ),λ<0, 则|b|2=λ2+4λ2=5λ2=80,∴λ=-4, ∴b =-4a =(-4,8). 9.655解析 设a 、b 的夹角为θ, 则cos θ=-+3×722+32-2+72=55, 故a 在b 方向上的射影为 |a|cos θ=13×55=655. 10.⎝ ⎛⎭⎪⎫-12,2∪(2,+∞)解析 由题意cos α=a·b |a||b|=-2λ-15·λ2+1, ∵90°<α<180°,∴-1<cos α<0, ∴-1<-2λ-15·λ2+1<0, ∴⎩⎨⎧-2λ-1<0,-2λ-1>-5λ2+5,即⎩⎪⎨⎪⎧ λ>-12,λ+2<5λ2+5,即⎩⎪⎨⎪⎧λ>-12,λ≠2,∴λ的取值范围是⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).11.解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b=λ+4λ=10, ∴λ=2,∴a =(2,4).(2)∵b·c=1×2-2×1=0,a·b=10, ∴a(b·c)=0a =0,(a·b)c=10×(2,-1)=(20,-10). 12.(1)证明 ∵A(2,1),B(3,2),D(-1,4), ∴AB →=(1,1),AD →=(-3,3), 又∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD.(2)解 ∵AB →⊥AD →,四边形ABCD 为矩形, ∴AB →=DC →.设C 点坐标为(x ,y),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧x +1=1,y -4=1,得⎩⎪⎨⎪⎧x =0,y =5.∴C 点坐标为(0,5).由于AC →=(-2,4),BD →=(-4,2), 所以AC →·BD →=8+8=16, |AC →|=2 5,|BD →|=2 5. 设AC →与BD →夹角为θ,则cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0,∴矩形的两条对角线所成的锐角的余弦值为45.13.C[已知OA →=(1,1),即A(1,1)如图所示,当点B 位于B 1和B 2时,a 与b 夹角为π12,即∠AOB 1=∠AOB 2=π12,此时,∠B 1Ox =π4-π12=π6,∠B 2Ox =π4+π12=π3,故B 1⎝ ⎛⎭⎪⎫1,33,B 2(1,3),又a 与b 夹角不为零,故a≠1,由图易知a 的范围是⎝ ⎛⎭⎪⎫33,1∪(1,3).] 14.-2解析 建立如图所示的直角坐标系,根据题设条件即可知A(0,3),B(-3,0),M(0,2), ∴MA →=(0,1), MB →=(-3,-2). ∴MA →·MB →=-2.。