高一必修4平面向量的数量积及平面向量的应用
平面向量的数量积及平面向量的应用

三基能力强化
1.(2009年高考重庆卷改编)已知 |a|=1,|b|=6,(a+2b)· (b-a)=68, 则向量a与b的夹角是( ) π π A. B. 6 4 π π C. D. 3 2 答案:C
三基能力强化
2.已知a=(1,-3),b=(4,6),c= (2,3),则a· c)等于( (b· ) A.(26,-78) B.(-28,-42) C.-52 D.-78 答案:A
规律方法总结
1.对数量积概念的理解 (1)两个向量的数量积是一个数 量,它的值为两个向量的模与两向量 夹角的余弦的乘积,结果可正、可 负、可为零,其符号由夹角的余弦值 确定.计算数量积的关键是正确确定 两向量的夹角,条件是两向量的始点 必须重合,否则要通过平移,使两向 量符合以上条件.
规律方法总结
课堂互动讲练
例1 已知|a|=4,|b|=3,(2a- 3b)(2a+b)=61. (1)求a与b的夹角θ; (2)求|a+b|.
课堂互动讲练
【思路点拨】
平面向量数 量积的定义
夹角公式
求模公式
课堂互动讲练
【解】 (1)∵(2a-3b)· (2a+b)=61, ∴4|a|2-4a· b-3|b|2=61. 又|a|=4,|b|=3, ∴64-4a· b-27=61, ∴a· b=-6. -6 a· b 1 ∴cosθ= = =- . 2 |a||b| 4×3 2π 又 0≤θ≤π,∴θ= . 3
课堂互动讲练
(2)|a + b| = (a+b)2 = |a|2+2a· b+|b|2 = 16+2×(-6)+9= 13.
【点评】正确地进行数量积的运 算,避免错用公式,如a2=|a|2是正确 的,而a· b=|a||b|和|a· b|=|a||b|都是错 误的.
平面向量的数量积PPT课件

运算律
向量与标量乘法结合律
对于任意向量$mathbf{a}$和标量$k$,有$kmathbf{a} cdot mathbf{b} = (kmathbf{a}) cdot mathbf{b} = k(mathbf{a} cdot mathbf{b})$。
向量与标量乘法交换律
对于任意向量$mathbf{a}$和标量$k$,有$mathbf{a} cdot kmathbf{b} = k(mathbf{a} cdot mathbf{b}) = (kmathbf{b}) cdot mathbf{a}$。
向量数量积的性质
向量数量积满足交换律和结合 律,即a·b=b·a和 (a+b)·c=a·c+b·c。
向量数量积满足分配律,即 (a+b)·c=a·c+b·c。
向量数量积满足正弦律,即 a·b=|a||b|sinθ,其中θ为向量a 和b之间的夹角。
02 平面向量的数量积的运算
计算公式
定义
平面向量$mathbf{a}$和$mathbf{b}$的数量积定义为 $mathbf{a} cdot mathbf{b} = |mathbf{a}| times |mathbf{b}| times cos theta$,其中$theta$是向量 $mathbf{a}$和$mathbf{b}$之间的夹角。
交换律
平面向量的数量积满足交换律,即$mathbf{a} cdot mathbf{b} = mathbf{b} cdot mathbf{a}$。
分配律
平面向量的数量积满足分配律,即$(mathbf{a} + mathbf{b}) cdot mathbf{c} = mathbf{a} cdot mathbf{c} + mathbf{b} cdot mathbf{c}$。
高中数学基础之平面向量的数量积及应用

高中数学基础之平面向量的数量积及应用平面向量的数量积定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为0.平面向量数量积的几何意义:设a ,b 是两个非零向量,AB→=a ,CD →=b ,它们的夹角是θ,e 是与b 方向相同的单位向量,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影,A 1B 1→叫做向量a 在向量b 上的投影向量.记为|a |cos θ e . 一、平面向量数量积的运算例1 已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则BC→·AF →的值为( ) A .-58 B .18 C .14 D .118答案 B解析 如图,由条件可知BC→=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·⎝ ⎛⎭⎪⎫12AB →+34AC →=34AC →2-14AB →·AC →-12AB →2.因为△ABC 是边长为1的等边三角形,所以|AC→|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18.例2 在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC →=2AB →·AD →,则AD →·AC →=________.答案 12解析 如图,建立平面直角坐标系xAy .依题意,可设点D (m ,m ),C (m +2,m ),B (n,0),其中m >0,n >0,则由AB→·AC →=2AB →·AD →,得(n,0)·(m +2,m )=2(n,0)·(m ,m ),所以n (m +2)=2nm ,化简得m =2.故AD→·AC →=(m ,m )·(m +2,m )=2m 2+2m =12.例3 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE→=23BC →,DF →=16DC →,则AE →·AF →的值为________.答案 2918解析 在等腰梯形ABCD 中,AB ∥DC ,AB =2,BC =1,∠ABC =60°,∴CD =1,AE →=AB →+BE →=AB →+23BC →,AF →=AD →+DF →=AD →+16DC →,∴AE →·AF →=⎝ ⎛⎭⎪⎫AB →+23BC →·⎝ ⎛⎭⎪⎫AD →+16DC →=AB →·AD→+AB →·16DC →+23BC →·AD →+23BC →·16DC →=2×1×cos60°+2×16+23×12×cos60°+23×16×12×cos120°=2918.方法:解决涉及几何图形的向量的数量积运算常用两种方法:一是定义法,二是坐标法.定义法可先利用向量的加、减运算或数量积的运算律化简后再运算,但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补;坐标法要建立合适的坐标系.(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.二、平面向量数量积的应用.例4 已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1B .12C .34D .32答案 D解析 ∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R ),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32.故选D.例5 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.答案223解析 因为a 2=(3e 1-2e 2)2=9-2×3×2×12×cos α+4=9,所以|a |=3,因为b 2=(3e 1-e 2)2=9-2×3×1×12×cos α+1=8,所以|b |=22,又a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a ·b |a ||b |=83×22=223.例6 若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3解析 ∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,∴4k -6-6<0,∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.例7 已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案 712解析 因为AP →⊥BC →,所以AP →·BC →=0.又AP →=λAB →+AC →,BC →=AC →-AB →,所以(λAB→+AC →)·(AC →-AB→)=0,即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|·cos120°-9λ+4=0,即(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0,解得λ=712.例8 已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 的中点,则|AD→|等于( )A .2B .4C .6D .8答案 A解析 因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2a ·b +b 2)=4×⎝⎛⎭⎪⎫3-2×3×2×cos π6+4=4,则|AD →|=2.故选A. 例9 已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB →的夹角为60°,且OC →⊥AB→,则实数m n的值为( ) A.16 B .14 C .6 D .4答案 A解析 因为向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,OA →与OB →的夹角为60°,所以OA →·OB →=3×2×cos60°=3,所以AB→·OC →=(OB →-OA →)·(mOA →+nOB →)=(m -n )OA →·OB →-m |OA →|2+n |OB →|2=3(m -n )-9m +4n =-6m +n =0,所以m n =16.故选A.例10 已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB→|的最小值为________.答案 5解析 建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ),则P A →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ).所以|P A →+3PB →|=25+(3b -4y )2(0≤y ≤b ).当y =34b 时,|P A →+3PB →|min=5.例11 设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b 等于( ) A .1 B .2 C .3 D .5答案 A解析 a ·b =14[(a +b )2-(a -b )2]=14×(10-6)=1.故选A.例12 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C .2D .22 答案 C解析 设OA→⊥OB →,且OA →=a ,OB →=b ,OC →=c ,D 为线段AB 的中点,因为|a |=|b |=1,所以AB =2,AD =22,(a -c )·(b -c )=CA →·CB →=|CD →|2-|DA →|2=|CD →|2-12=0,所以|CD→|=22,上式表明,DC→是有固定起点,固定模长的动向量,点C 的轨迹是以22为半径的圆,因此|c |的最大值就是该轨迹圆的直径 2.故选C.例13 如图所示,正方形ABCD 的边长为1,A ,D 分别在x 轴、y 轴的正半轴(含原点)上滑动,则OC→·OB →的最大值是________.答案 2解析 如图,取BC 的中点M ,AD 的中点N ,连接MN ,ON ,则OC→·OB →=OM →2-14.因为OM ≤ON +NM =12AD +AB =32,当且仅当O ,N ,M 三点共线时取等号,所以OC →·OB →的最大值为2.极化恒等式(1)极化恒等式:设a ,b 为两个平面向量,则a ·b =14[(a +b )2-(a -b )2].极化恒等式表示平面向量的数量积运算可以转化为平面向量线性运算的模,如果将平面向量换成实数,那么上述公式也叫“广义平方差”公式.(2) 极化恒等式的几何意义:平面向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14,即a ·b =14(|AC →|2-|BD →|2).(3) 极化恒等式的三角形模式:在△ABC 中,若M 是BC 的中点,则AB→·AC →=AM →2-14BC →2.可以利用极化恒等式来求数量积、求最值、求模长.平面向量有“数”与“形”双重身份,它沟通了代数与几何的关系,所以平面向量的应用非常广泛,主要体现在平面向量与平面几何、函数、不等式、三角函数、解析几何等方面,解决此类问题的关键是将其转化为向量的数量积、模、夹角等问题,进而利用向量方法求解.。
平面向量的数量积及其应用

突破点(一) 平面向量的数量积1.向量的夹角;21.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可.2.根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.[典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12(2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且u u u r BE =23u u u r BC ,u u u r DF =16u u u r DC ,则u u u r AE ·u u u r AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =⎝ ⎛⎭⎪⎫-12,1,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. (2)取u u u r BA ,u u u r BC 为一组基底,则u u u r AE =u u u r BE -u u u r BA =23u u u r BC -u u u r BA ,u u u r AF =u u u r AB +u u u r BC +u u u r CF =-u u u r BA +u u u r BC +512u u u r BA =-712u u u r BA +u u u r BC ,∴u u u r AE ·u u u r AF =⎝ ⎛⎭⎪⎫23 u u u r BC -u u u r BA ·⎝ ⎛⎭⎪⎫-712 u u u r BA +u u u r BC =712|u u u r BA |2-2518u u u r BA ·u u u r BC +23|u u u r BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918[易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”.突破点(二) 平面向量数量积的应用 的关系1.第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足u u u r AB =2a ,u u u r AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥u u u r BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 [解析] (1)在△ABC 中,由u u u r BC =u u u r AC -u u u r AB =2a +b -2a =b ,得|b |=2,A 错误.又u u u r AB =2a 且|u u u r AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·u u u r BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥u u u r BC ,D 正确,故选D.(2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6).∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C[易错提醒]x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法:(1)a 2=a ·a =|a |2; (2)|a ±b |=a ±b 2=a 2±2a ·b +b 2.[例2] (1)(2017·衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( ) A .2 B .6 C .2 3 D .12(2)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. [解析] (1)|4a -b |2=16a 2+b 2-8a ·b =16×1+4-8×1×2×cos π3=12.∴|4a -b |=2 3. (2)∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°.由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.[答案] (1)C (2)233 [方法技巧] 求向量模的常用方法(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.平面向量的夹角问题第一步 由坐标运算或定义计算出这两个向量的数量积第二步 分别求出这两个向量的模第三步 根据公式cos 〈a ,b 〉=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解出这两个向量夹角的余弦值 第四步 根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角[例3] (1)若非零向量a ,b 满足|a |=22|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) D .π(2)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.[解析] (1)由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a ||b |cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0.∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)∵a 2=(3e 1-2e 2)2=9+4-2×3×2×13=9,b 2=(3e 1-e 2)2=9+1-2×3×1×13=8, a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8,∴cos β=a ·b |a ||b |=83×22=223.[易错提醒](1)向量a ,b 的夹角为锐角⇔a ·b >0且向量a ,b 不共线.(2)向量a ,b 的夹角为钝角⇔a ·b <0且向量a ,b 不共线.突破点(三) 平面向量与其他知识的综合问题平面向量集数与形于一体,是沟通代数、几何与三角函数的一种非常重要的工具.在高考中,常将它与三角函数问题、解三角形问题、几何问题等结合起来考查.[例1] 已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z), 所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1. 又0<A <π,故π3<2A +π3<7π3,∴2A +π3=π,即A =π3. ∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sin C .由正弦定理得2b =3c ,②由①②,可得b =3,c =2. [方法技巧]平面向量与三角函数综合问题的类型及求解思路(1)向量平行(共线)、垂直与三角函数的综合:此类题型的解答一般是利用向量平行(共线)、垂直关系得到三角函数式,再利用三角恒等变换对三角函数式进行化简,结合三角函数的图象与性质进行求解.(2)向量的模与三角函数综合:此类题型主要是利用向量模的性质|a |2=a 2,如果涉及向量的坐标,解答时可利用两种方法:一是先进行向量的运算,再代入向量的坐标进行求解;二是先将向量的坐标代入,再利用向量的坐标运算求解.此类题型主要表现为两种形式:①利用三角函数与向量的数量积直接联系;②利用三角函数与向量的夹角交汇,达到与数量积的综合.[例2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若u u u r AC ·u u u r BE =1, 则AB的长为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若u u u r AE ·u u u r AF =1,则 λ的值为________. [解析] (1)设|u u u r AB |=x ,x >0,则u u u r AB ·u u u r AD =12x .又u u u r AC ·u u u r BE =(u u u r AD +u u u r AB )·(u u u r AD -12u u u r AB )=1-12x 2+14x =1,解得x =12,即AB 的长为12. (2)由题意可得u u u r AB ·u u u r AD =|u u u r AB |·|u u u r AD |cos 120°=2×2×⎝ ⎛⎭⎪⎫-12=-2, 在菱形ABCD 中,易知u u u r AB =u u u r DC ,u u u r AD =u u u r BC , 所以u u u r AE =u u u r AB +u u u r BE =u u u r AB +13u u u r AD ,u u u r AF =u u u r AD +u u u r DF =1λu u u r AB +u u u r AD , u u u r AE ·u u u r AF =⎝ ⎛⎭⎪⎫u u u r AB +13 u u u r AD ·⎝ ⎛⎭⎪⎫1λ u u u r AB +u u u r AD =4λ+43-2⎝ ⎛⎭⎪⎫1+13λ=1,解得λ=2.[答案](1)12 (2)2 [方法技巧]平面向量与几何综合问题的求解方法(1)坐标法:把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.[检验高考能力]一、选择题1.已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( )A .-3B .-2C .1D .-1解析:选A 因为a +2b 与c 垂直,所以(a +2b )·c =0,即a ·c +2b ·c =0,所以3k +3+23=0,解得k =-3. 2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,u u u r AB =(1,-2),u u u r AD =(2,1),则u u u r AD ·u u u r AC =( )A .5B .4C .3D .2 解析:选A 由四边形ABCD 是平行四边形,知u u u r AC =u u u r AB +u u u r AD =(1,-2)+(2,1)=(3,-1),故u u u r AD ·u u u r AC =(2,1)·(3,-1)=2×3+1×(-1)=5.3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( )A .(3,-6)B .(-3,6)C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则-λ2+2λ2=35,所以λ=-3,b =(3,-6),故选A.4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94 解析:选B ∵n⊥(t m +n ),∴n·(t m +n )=0,即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0.又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4.故选B. 5.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则u u u r AF ·u u u r BC 的值为( )A .-58 解析:选B 如图所示,u u u r AF =u u u r AD +u u u r DF .又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以u u u r AD =12u u u r AB ,u u u r DF =12u u u r AC +14u u u r AC =34u u u r AC ,所以u u u r AF =12u u u r AB +34u u u r AC .又u u u r BC =u u u r AC -u u u r AB ,则u u u r AF ·u u u r BC =12u u u r AB +34u u u r AC ·(u u u r AC -u u u r AB )=12u u u r AB ·u u u r AC -12u u u r AB 2+34u u u r AC 2-34u u u r AC ·u u u r AB =34u u u r AC 2-12u u u r AB 2-14u u u r AC ·u u u r AB .又|u u u r AB |=|u u u r AC |=1,∠BAC =60°,故u u u r AF ·u u u r BC =34-12-14×1×1×12=18.故选B. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足u u u r AP =λu u u r AB ,uuu r AQ =(1-λ)u u u r AC ,λ∈R ,若uuu r BQ ·uuu r CP =-32,则λ=( )解析:选 A ∵uuu r BQ =uuu r AQ -u u u r AB =(1-λ)u u u r AC -u u u r AB ,uuu r CP =u u u r AP -u u u r AC =λu u u r AB -u u u r AC ,又uuu r BQ ·uuu r CP =-32,|u u u r AB |=|u u u r AC |=2,A =60°,u u u r AB ·u u u r AC =|u u u r AB |·|u u u r AC |cos 60°=2,∴[(1-λ)u u u r AC -u u u r AB ]·(λu u u r AB -u u u r AC )=-32,即λ|u u u r AB |2+(λ2-λ-1)u u u r AB ·u u u r AC +(1-λ)|u u u r AC |2=32,所以4λ+2(λ2-λ-1)+4(1-λ)=32,解得λ=12. 二、填空题7.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )·b ,则|c |=________.解析:由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )·b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+-82=8 2.答案:828.已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为________.解析:∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6,又|a |=2,|b |=1,∴a ·b =-1,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.答案:2π39.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是________.解析:a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞.答案:⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞ 10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则u u u u r AM ·u u u u r AN 的最大值为________. 解析:设u u u u r AN =λu u u r AB +μu u u r AD ,因为N 在菱形ABCD 内,所以0≤λ≤1,0≤μ≤1.u u u u r AM =u u u r AD +12u u u r DC =12u u u r AB +u u u r AD .所以u u u u r AM ·u u u u r AN =⎝ ⎛⎭⎪⎫12 u u u r AB +u u u r AD ·(λu u u r AB +μu u u r AD )=λ2u u u r AB 2+⎝ ⎛⎭⎪⎫λ+μ2u u u r AB ·u u u r AD +μu u u r AD 2=λ2×4+⎝ ⎛⎭⎪⎫λ+μ2×2×2×12+4μ=4λ+5μ.所以0≤u u u u r AM ·u u u u r AN ≤9,所以当λ=μ=1时,u u u u r AM ·u u u u r AN 有最大值9,此时,N 位于C 点.答案:9三、解答题11.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解:(1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴m ·n =|m ||n |cos π3=1×1×12=12,即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C .(1)求角C 的大小; (2)若sin A ,sin C ,sin B 成等差数列,且u u u r CA ·(u u u r AB -u u u r AC )=18,求边c 的长.解:(1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),对于△ABC ,A +B =π-C,0<C <π,∴sin(A +B )=sin C ,∴m ·n =sin C ,又m ·n =sin 2C ,∴sin 2C =sin C ,cos C =12,C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b . ∵u u u r CA ·(u u u r AB -u u u r AC )=18,∴u u u r CA ·uuu r CB =18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,∴c 2=4c 2-3×36,c 2=36,∴c =6.。
高中数学第六章平面向量及其应用-向量的数量积课件及答案

【对点练清】 1.(2020·全国卷Ⅱ)已知单位向量 a ,b 的夹角为 45°,ka -b 与 a 垂直,则 k=_____.
解析:由题意,得 a ·b =|a |·|b |cos 45°= 22.因为向量a =ka
2-a ·b =k-
22=0,解得
【学透用活】 [典例 3] (1)已知 e1 与 e2 是两个互相垂直的单位向量,若向量 e1+ke2 与 ke1+e2 的夹角为锐角,则 k 的取值范围为_________. (2)已知非零向量 a ,b 满足 a +3b 与 7a -5b 互相垂直,a -4b 与 7a -2b 互相垂直,求 a 与 b 的夹角. [解析] (1)∵e1+ke2 与 ke1+e2 的夹角为锐角, ∴(e1+ke2)·(ke1+e2)=ke21+ke22+(k2+1)e1·e2=2k>0,∴k>0.当 k =1 时,e1+ke2=ke1+e2,它们的夹角为 0,不符合题意,舍去.综上, k 的取值范围为 k>0 且 k≠1. 答案:(0,1)∪(1,+∞)
(3)设非零向量 a 与 b 的夹角为 θ,则 cos θ>0⇔a ·b >0.
(√)
(4)|a ·b |≤a ·b .
( ×)
2.若向量 a ,b 满足|a |=|b |=1,a 与 b 的夹角为 60°,则 a ·b 等于 ( )
1 A.2
3 B.2
C.1+
3 2
D.2
答案:A
3.已知|a |=1,|b |=2,设 e 是与 a 同方向上的单位向量,a 与 b 的夹 角为π3,则 b 在 a 方向上的投影向量为______.
(4)|a ·b |≤__|_a_|_|_b_|.
2.平面向量数量积的运算律:
高中数学必修4 第四章 第三节 平面向量的数量积与平面向量应用举例

5π D. 6
4.已知向量 a=(-2,3),b=(3,m),且 a⊥b,则 m=________.
5.(教材改编)已知|a|=5,|b|=4,a 与 b 的夹角 θ=120°,则向量 b 在向量 a 方向上的投影为________.
平面向量数量积的运算
1.(2018·全国卷Ⅱ)已知向量 a,b 满足|a|=1,a·b=-1,则 a·(2a-b)=( )
(1)(2017·全国卷Ⅰ)已知向量 a,b 的夹角为 60°,|a|=2, |b|=1,则|a+2b|=__. (2)(2017·山东高考)已知 e1,e2 是互相垂直的单位向量.若 3e1-e2 与 e1+λe2 的夹角为 60°,则实数 λ 的值是________.
平面向量与三角函数的综合
例 4:(2017 江苏高考)已知向量 a=(cos x,sin x),b=(3,- 3),x∈[0,π].
几何 数量积 a·b 等于 a 的长度|a|与 b 在 a 的方向上的投影|b|cos θ 意义 的乘积
3.平面向量数量积的运算律 (1)交换律:a·b=b·a;
(2)数乘结合律:(λa)·b=_λ_(a__·b_)__=_a_·_(λ_b_)__; (3)分配律:a·(b+c)=_a_·_b_+__a_·_c___.
(1)若 a∥b,求 x 的值;
(2)记 f(x)=a·b,求 f(x)的最大值和最小值以及对应的 x 的值.
在平面直角坐标系
xOy
中,已知向量
m=
22,-
22,
n=(sin x,cos x),x∈0,π2.
(1)若 m⊥n,求 tan x 的值;
(2)若 m 与 n 的夹角为π3,求 x 的值.
()
平面向量的数量积及平面向量的应用举例

3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角
平面向量的数量积与应用

向量夹角计算
添加 标题
定义:两个非零向量的夹角是指它们所在的直线之间的夹角,取值范围为$[0^{\circ},180^{\circ}]$
添加 标题
计算公式:$\cos\theta = \frac{\overset{\longrightarrow}{u} \cdot \overset{\longrightarrow}{v}}{|\overset{\longrightarrow}{u}| \cdot |\overset{\longrightarrow}{v}|}$,其中 $\overset{\longrightarrow}{u}$和$\overset{\longrightarrow}{v}$是两个非零向量,$\theta$是它们的夹角
平面向量的数量积 与应用
单击此处添加副标题
汇报人:XX
目录
平面向量的数量积概念 平面向量的数量积的应用
平面向量的数量积运算
平面向量的数量积的扩展 应用
01
平面向量的数量积 概念
定义与性质
定义:平面向量的数量积是 两个向量之间的点积,表示 为a·b,等于它们的模长和 夹角的余弦值的乘积。
性质:数量积满足交换律和 分配律,即a·b=b·a和 (a+b)·c=a·c+b·c。
几何意义
平面向量的数量积表示向量在 平面上的投影长度
等于两个向量在垂直方向上的 投影的乘积
表示两个向量在平面上的夹角 大小
等于两个向量在水平方向上的 投影的乘积
运算性质
交换律:a · b = b · a 分配律:(a+b) · c = a · c + b · c 数乘性质:k(a · b) = (ka) · b = a · (kb) 向量数量积的性质:|a · b| ≤ |a| |b|
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的数量积及平面向量的应用一、目标认知学习目标:1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表示,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题.重点:数量积的运算,以及运用数量积求模与夹角.难点:用向量的方法解决几何、物理等问题.二、知识要点梳理知识点一:平面向量的数量积1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量叫与的数量积,记作,即有.并规定与任何向量的数量积为0.2.一向量在另一向量方向上的投影:叫做向量在方向上的投影.要点诠释:1.两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由的符号所决定.(2)两个向量的数量积称为内积,写成;今后要学到两个向量的外积,而是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若,且,则;但是在数量积中,若,且,不能推出.因为其中有可能为0.2.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0°时投影为;当=180°时投影为.知识点二:向量数量积的性质设与为两个非零向量,是与同向的单位向量.1.2.3.当与同向时,;当与反向时,. 特别的或4.5.知识点三:向量数量积的运算律1.交换律:2.数乘结合律:3.分配律:要点诠释:1.已知实数a、b、c(b≠0),则ab=bc a=c.但是;2.在实数中,有(a×b)c=a(b×c),但是显然,这是因为左端是与共线的向量,而右端是与共线的向量,而一般与不共线.知识点四:向量数量积的坐标表示1.已知两个非零向量,,2.设,则或3.如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式).三、规律方法指导1.向量在几何中的应用:(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件(2)证明垂直问题,常用垂直的充要条件(3)求夹角问题,利用(4)求线段的长度,可以利用或2.向量在物理中的应用:(1)向量的加法与减法在力的分解与合成中的应用;(2)向量在速度分解与合成中的作用.经典例题透析类型一:数量积的运算1.已知下列命题:①;②;③;④其中正确命题序号是___________.思路点拨:掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.解析:②、④ .2.已知; (2) ;(3) 的夹角为30°,分别求.解析:(1)当时,或.(2)当时,.(3)当的夹角为30°时,.举一反三:【变式1】已知,求.解析:总结升华:熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整.类型二:模的问题3.已知向量满足,且的夹角为60°,求.解析:,且的夹角为60°;总结升华:要根据实际问题选取恰当的公式举一反三:【变式1】已知的夹角为,,,则等于( )A 5 B. 4 C. 3 D. 1解析:,,解得,故选B.总结升华:涉及向量模的问题一般利用,注意两边平方是常用的方法.类型三:夹角问题4.①已知,求向量与向量的夹角.②已知,夹角为,则___________.解析:①,故夹角为60°.②题意得.总结升华:求两个向量的夹角,需求得,及,或得出它们的关系,在求解过程中要注意夹角的范围,同时要正确理解公式.5.已知是非零向量,若与垂直,与垂直,试求的夹角.解析:由条件知且∴①②由①-②得,代入①∴∴即所求向量的夹角为.举一反三:【变式1】已知是两个非零向量,同时满足,求的夹角.解析:法一:将两边平方得,则,故的夹角为30°.法二:数形结合总结升华:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法.【变式2】求等腰直角三角形两直角边上的中线所成的钝角.解析:设为等腰三角形,,AD、BE为两直角边BC、AC的中线,以两直角边BC、AC所在的直线分别为,轴,建立直角坐标系,如图所示,并设,,则,.∴,,∴,又,,设AD与BE所成的钝角为角,则为与的夹角.∴,故所求的角为.类型四:综合应用问题6.已知向量.(1) 若; (2)求的最大值 .解析:(1)若,则.(2)==,的最大值为.7.设AC是平行四边形ABCD的长对角线,从C引AB、AD的垂线CE、CF,垂足分别为E、F,如图所示,求证:.思路点拨:由向量的数量积的定义可知:两向量、的数量积(其中是、的夹角),它可以看成与在的方向上的投影之积,因此要证明等式可转化成:,而对该等式我们采用向量方法不难得证.解析:在中,,在中,∴,∴又∵在平行四边形ABCD中,,∴原等式左边右边.举一反三:【变式1】如图所示,四边形ADCB是正方形,P是对角线DB上一点,PFCE是矩形,证明:.思路点拨:如果我们能用坐标表示与,则要证明结论,只要用两向量垂直的充要条件进行验证即可.因此只要建立适当的坐标系,得到点A、B、E、F的坐标后,就可进行论证.解析:以点D为坐标原点,DC所在直线为轴建立如图所示坐标系,设正方形的边长为1,,则,,,,于是,,∵∴.学习成果测评基础达标:1.若·=0,,且则A. B. C. D.12.若=(1,1),=2,,则=( )A.B.5 C.1 D.3.已知,是非零向量且满足,则与的夹角是( )A. B. C. D.4.在边长为1的正三角形ABC中,,则=________.5.设均为非零向量,则下面结论:①;②;③;④.正确的是_________.6.已知平面向量,=(3,-4),=(2,x),=(2,y)且//,,求以及和的夹角.7.已知(1)求与的夹角(2)求和(3)若作三角形ABC,求的面积.答案与解析:1.A2.A3.B4.5.①,③6.解:,解之,又与的夹角为90°.7.解:①解得:,又②③能力提升:1.已知向量=(x-5,3),=(2,x)且则由x的值构成的集合是( )A. B. C. D.2.已知为非零的平面向量,甲:;乙:;则( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件.C.甲是乙的充要条件D.既不充分也不必要条件.3.已知向量且则向量等于A.B.C.D.4.若且,则向量与的夹角为( )A. B. C. D.5.点O是三角形ABC所在平面内的一点,满足,则点O是△ABC的( )A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点 D.三条高的交点6.设,在上的投影为,在轴上的投影为2,且,则为( )A.B. C. D.7.已知且与的夹角为,k的值是_________.8.若两个向量与的夹角为,则称向量为“向量积”,其长度,令已知,则=_____.9.设向量满足及(1)求所成角的大小;(2)求的值.10.已知,且存在实数k和t,使得且,试求的最小值.答案与解析:1.C2.B3.解:设联立解得选D.4.C5.D6.B7.-58.39.(1)而则,故与所成的角为(2)10.由题意可得,,,故有由知:,即可得,故即当t=-2时,有最小值为综合探究:1.△ABC中,点O为BC的中点,过点O作直线分别交直线AB、AC于不同两点M、N,若,则m+n=( )A.2 B.1 C.4 D.2.设,,为坐标平面上三点,为坐标原点,若与在方向上的投影相同,则与满足的关系式为( )A. B. C.D.3.△ABC中,∠BAC=120°,AB=2,AC=1,D为边BC上一点,,则 =( )A. B.C. D.44.F为抛物线y2=4x的焦点,A、B、C为抛物线上三点,若,=( )A.9 B.6 C.4 D.35.若向量不共线,,且,则向量的夹角为( )A.0 B.C.D.6.已知,且.(1)求的最值.(2)是否存在k的值,使.答案与解析:1.A2.A 解:由与在方向上的投影相同,可得:,即,.选A.3.A4.B5.D6.解:(1),又θ∈,∴令令,则则∴m在[,1]上为增函数∴(2)由条件知:又,∴由得,即故存在满足题意.(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。