平面向量的数量积及其应用
高中数学中的平面向量的数量积与向量积的应用

高中数学中的平面向量的数量积与向量积的应用平面向量是高中数学中的重要概念,它在几何和代数两个层面上都有广泛的应用。
其中,数量积和向量积是平面向量最常用的两种运算方式。
数量积主要用于计算两个向量之间的夹角和长度,而向量积则用于计算平面向量的面积和解决与平面相关的问题。
本文将详细介绍平面向量的数量积和向量积的应用。
1. 数量积的应用数量积(也叫点积或内积)是两个向量相乘后再相加的结果,具体计算方式是两个向量的对应分量相乘再相加。
数量积的应用主要包括计算两个向量之间的夹角、判断两个向量是否垂直或平行、计算向量的长度等。
首先,数量积可以用于计算两个向量之间的夹角。
设有两个向量a 和a,它们的数量积为a·a,根据数量积的定义,可以得到a·a=|a||a|cos a,其中|a|和|a|分别代表向量a和a的长度,a为向量a 和a之间的夹角。
通过这个公式,我们可以轻松地计算出两个向量之间的夹角大小。
其次,数量积还可以用于判断两个向量之间的关系。
如果两个向量的数量积为0,即a·a=0,那么这两个向量是垂直的;如果两个向量的数量积大于0,即a·a>0,那么这两个向量是锐角;如果两个向量的数量积小于0,即a·a<0,那么这两个向量是钝角。
另外,数量积还可以用于计算向量的长度。
根据数量积的定义,可以得到a·a=|a|^2。
通过这个公式,我们可以求得向量的长度,即|a|=√(a·a)。
这个公式在实际问题中经常被用到,以计算物体的位移、速度等。
2. 向量积的应用向量积(也叫叉积或外积)是两个向量相乘后得到一个新向量,具体计算方式是两个向量的对应分量按照一定规律相乘再相加。
向量积的应用主要包括计算平面向量的面积、判断三个向量是否共面、求解直线的方程等。
首先,向量积可以用于计算平面向量的面积。
设有两个向量a和a,它们的向量积为a×a,那么a与a所张成的平行四边形的面积就等于向量积的长度,即|a×a|。
平面向量的数量积与几何应用

平面向量的数量积与几何应用在平面几何学中,向量是非常重要的概念。
在平面向量中,数量积是一种常见的运算,它能够帮助我们计算向量之间的夹角、判断向量之间的关系以及解决几何问题。
本文将介绍平面向量的数量积及其在几何中的应用。
一、平面向量的数量积定义当给定两个平面向量a和b时,我们可以通过计算它们的数量积来得到一个实数。
数量积通常用符号a·b表示,计算公式如下:a·b = |a| * |b| * cosθ其中,|a|和|b|分别表示向量a和b的模(长度),θ表示向量a和b 之间的夹角。
二、平面向量的数量积性质1. 交换律:a·b = b·a2. 结合律:(ka)·b = k(a·b),其中k为实数3. 分配律:(a+b)·c = a·c + b·c根据这些性质,我们可以简化计算,并灵活应用数量积的概念。
三、数量积的几何意义1. 判断垂直关系:若a·b=0,则向量a和向量b垂直。
2. 计算夹角:通过计算a·b,我们可以得到向量a和向量b之间的夹角θ的余弦值。
进而可以求得夹角的大小。
3. 判断共线关系:若a·b=|a|*|b|,则向量a和向量b共线,并且方向相同;若a·b=-|a|*|b|,则向量a和向量b共线,但方向相反。
4. 计算投影:向量a在向量b上的投影表示为P = a·(b/|b|),表示a 在b上的投影长度。
它的方向与向量b的方向相同或相反,长度为|a|*cosθ。
通过上述的几何意义,我们可以运用数量积来解决一些常见的几何问题。
四、数量积的几何应用举例1. 判断线段相交:假设有两个线段AB和CD,可以定义向量AB和向量CD,若向量AB和向量CD的数量积不为零,则线段AB和CD 相交。
2. 判断平行四边形:对于一个平行四边形ABCD,可以定义向量AB,向量BC,向量CD和向量DA,若相邻两个向量的数量积相等,则该四边形为平行四边形。
平面向量的数量积和向量积的定义和性质

平面向量的数量积和向量积的定义和性质平面向量是代表有大小和方向的箭头,它可以用坐标表示。
在平面向量的运算中,数量积和向量积是两个重要的概念,它们分别有各自的定义和性质。
接下来将详细介绍平面向量的数量积和向量积,包括它们的定义、性质及应用。
一、数量积的定义和性质数量积又称为点积或内积,表示两个向量之间的乘积。
给定平面向量a和b,它们的数量积定义为a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ是a和b的夹角。
数量积是一个标量。
1. 交换律:a·b = b·a2. 分配律:(c·a)·b = c·(a·b)3. a·a = |a|^2 ≥ 0,等号成立当且仅当a = 04. 如果a·b = 0,则称a和b垂直或正交。
5. 若θ是锐角,则a·b > 0;若θ是直角,则a·b = 0;若θ是钝角,则a·b < 0。
数量积的一个重要应用是求两个向量之间的夹角。
根据数量积的定义,可以得到夹角θ的公式:cosθ = a·b / (|a||b|)。
通过计算数量积可以求解两个向量之间的夹角大小。
二、向量积的定义和性质向量积又称为叉乘或外积,表示两个向量之间的叉积。
给定平面向量a和b,它们的向量积定义为a×b = |a||b|sinθn,其中|a|和|b|分别表示向量a和b的模长,θ是a和b的夹角,n是垂直于a和b构成的平面的单位法向量。
向量积是一个向量。
1. 反交换律:a×b = -b×a2. 分配律:a×(b+c) = a×b + a×c3. 若a和b共线或其中任意一个为零向量,则a×b = 0。
4. |a×b| = |a||b|sinθ,模长等于两个向量的模长和夹角的正弦值的乘积。
平面向量的数量积及其物理意义几何意义

平面向量的数量积及其物理意义几何意义数量积,也称为内积、点积或标量积,是平面向量的一种重要运算。
在数学上,给定两个平面向量a=(a1,a2)和b=(b1,b2),它们的数量积可以表示为a·b=a1b1+a2b2、在本文中,我将讨论平面向量数量积的物理意义和几何意义。
物理意义:数量积在物理学中扮演着重要的角色,它有许多实际的物理意义和应用。
以下是其中一些常见的物理意义:1. 力和位移之间的关系:数量积可以用于计算两个力之间的关系。
当一个物体受到力F作用时,它在位移s方向上的分量可以表示为向量F和向量s之间的数量积。
根据数量积的定义,F·s = Fscosθ,其中θ是F和s之间的夹角。
因此,数量积可以帮助我们计算出物体在特定方向上受到的力的大小。
2.功的计算:在物理学中,功是通过应用力在物体上产生的能量变化。
当一个力F作用于物体上时,物体在位移s方向上的功可以表示为F·s。
这是因为功是力与位移的数量积,能够给出在应用力的方向上所做的工作的大小。
3. 速度和加速度之间的关系:当一个物体被施加一个恒定的力F时,它的加速度a可以表示为F和物体质量m之间的比值,即a = F/m。
然而,我们也可以从另一个角度理解这个关系。
我们知道,加速度a等于速度v的变化率。
因此,v = at。
将F = ma和v = at相结合,我们可以得到v = (F/m)t = (F·t)/m,其中t是时间。
这表明速度v可以用力F和时间t的数量积来计算。
几何意义:数量积不仅在物理学中有实际应用,而且在几何学中也有重要的几何意义。
以下是其中一些常见的几何意义:1. 夹角的计算:由数量积的定义可知,a·b = ,a,b,cosθ,其中θ是a和b之间的夹角,a,和,b,分别是向量a和b的长度。
通过这个公式,我们可以得到夹角θ的值,从而计算向量之间的夹角。
2.正交性:如果两个向量的数量积为零,即a·b=0,那么这两个向量是相互正交的。
平面向量的数量积及平面向量的应用举例

3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角
平面向量的数量积与应用

向量夹角计算
添加 标题
定义:两个非零向量的夹角是指它们所在的直线之间的夹角,取值范围为$[0^{\circ},180^{\circ}]$
添加 标题
计算公式:$\cos\theta = \frac{\overset{\longrightarrow}{u} \cdot \overset{\longrightarrow}{v}}{|\overset{\longrightarrow}{u}| \cdot |\overset{\longrightarrow}{v}|}$,其中 $\overset{\longrightarrow}{u}$和$\overset{\longrightarrow}{v}$是两个非零向量,$\theta$是它们的夹角
平面向量的数量积 与应用
单击此处添加副标题
汇报人:XX
目录
平面向量的数量积概念 平面向量的数量积的应用
平面向量的数量积运算
平面向量的数量积的扩展 应用
01
平面向量的数量积 概念
定义与性质
定义:平面向量的数量积是 两个向量之间的点积,表示 为a·b,等于它们的模长和 夹角的余弦值的乘积。
性质:数量积满足交换律和 分配律,即a·b=b·a和 (a+b)·c=a·c+b·c。
几何意义
平面向量的数量积表示向量在 平面上的投影长度
等于两个向量在垂直方向上的 投影的乘积
表示两个向量在平面上的夹角 大小
等于两个向量在水平方向上的 投影的乘积
运算性质
交换律:a · b = b · a 分配律:(a+b) · c = a · c + b · c 数乘性质:k(a · b) = (ka) · b = a · (kb) 向量数量积的性质:|a · b| ≤ |a| |b|
平面向量的数量积与向量积的性质与应用

平面向量的数量积与向量积的性质与应用平面向量是代表大小和方向的有向线段。
在研究平面向量的性质和应用时,我们经常会涉及到数量积和向量积这两个概念。
本文将分别介绍平面向量的数量积和向量积,并探讨它们的性质和应用。
一、平面向量的数量积平面向量的数量积,也称为点积或内积,是指两个向量之间的数量乘积。
给定两个平面向量u和v,它们的数量积的定义如下:u · v = |u| |v| cosθ其中,|u|和|v|分别表示向量u和v的模(长度),θ表示u和v之间的夹角。
数量积的结果是一个标量,即一个实数。
1.1 数量积的性质数量积具有以下性质:性质1:交换律u · v = v · u性质2:分配律(u + v) · w = u · w + v · w性质3:数量积与向量模的关系u · u = |u|^2性质4:数量积为零的条件当且仅当两个向量正交(即夹角θ=90°)时,它们的数量积为零。
1.2 数量积的应用数量积具有广泛的应用,其中一些常见的应用如下:应用1:求向量夹角通过数量积的定义,我们可以得到夹角θ的计算公式:cosθ = (u · v) / (|u| |v|)应用2:判断向量正交当且仅当两个向量的数量积为零时,它们相互垂直。
因此,可以利用数量积来判断向量是否正交。
二、平面向量的向量积平面向量的向量积,也称为叉积或外积,是指两个向量之间的向量乘积。
给定两个平面向量u和v,它们的向量积的定义如下:u × v = |u| |v| sinθ n其中,|u|和|v|分别表示向量u和v的模,θ表示u和v之间的夹角,n是垂直于u和v所在平面的单位向量,其方向由右手定则确定。
向量积的结果是一个垂直于u和v所在平面的向量。
2.1 向量积的性质向量积具有以下性质:性质1:反交换律u × v = -v × u性质2:分配律u × (v + w) = u × v + u × w性质3:数量积与向量模的关系|u × v| = |u| |v| sinθ2.2 向量积的应用向量积也具有广泛的应用,其中一些常见的应用如下:应用1:求向量的面积两个非零向量u和v的向量积的模等于由u和v所张成的平行四边形的面积。
平面向量的数量积及平面向量的应用

解析 建立平面直角坐标系如图所示,则A(2,0),
设P(0,y),C(0,b),则B(1,b),且0≤y≤b.
所以 PA
+3 PB
=(2,-y)+3(1,b-y)=(5,3b-4y),
所以| PA
+3 PB
|= 25
(3b
4
y)2
(0≤y≤b),
所以当y= 3 b时,| PA
+3 PB
§5.2 平面向量的数量积及平面向量的应用
知识清单
考点一 向量数量积的定义及长度、角度问题 1.两向量夹角的定义和范围
2.两向量的夹角分别是锐角与钝角的充要条件
3.平面向量的数量积
4.向量数量积的性质 设a,b都是非零向量,e是与b方向相同的单位向量,θ是a与e的夹角,则 (1)e·a=a·e=⑤ |a|·cos θ . (2)a⊥b⇔⑥ a·b=0 . (3)当a与b同向时,⑦ a·b=|a||b| ;当a与b反向时,⑧ a·b=-|a||b| . 特别地,a·a=⑨ |a|2 .
解析 因为a⊥(2a+b),所以a·(2a+b)=0,
所以a·b=-2|a|2,设a与b的夹角为θ,则cos
θ= a b
| a || b |
=
2 4|
| a |2 a |2
=- 1 ,又0≤θ≤π,
2
所以θ= 2 ,故选C.
3
例4 (2017江西七校联考,13)已知向量a=(1, 3 ),b=(3,m),且b在a的方向
标→求 AF · BC
解析 解法一:如图,
AF · BC
=( AD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06—平面向量的数量积及其应用突破点(一) 平面向量的数量积1.向量的夹角;2.平面向量的数量积;3.平面向量数量积的运算律 平面向量数量积的运算 1.利用坐标计算数量积的步骤 第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可.2.根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.[典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12 C.32 D.52(2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且 BE =23 BC , DF =16DC ,则 AE · AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =⎝⎛⎭⎫-12,1,所以a ·b =-1×⎝⎛⎭⎫-12+2×1=52. (2)取 BA , BC 为一组基底,则 AE = BE - BA =23 BC - BA , AF = AB + BC + CF =- BA + BC +512 BA =-712 BA + BC ,∴ AE · AF =⎝⎛⎭⎫23 BC - BA ·⎝⎛⎭⎫-712 BA + BC =712| BA |2-2518 BA · BC +23| BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918[易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”.突破点(二) 平面向量数量积的应用平面向量的垂直问题1.第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足 AB =2a , AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1D .(4a +b )⊥ BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 D.152 [解析] (1)在△ABC 中,由 BC = AC - AB =2a +b -2a =b ,得|b |=2,A 错误.又 AB =2a 且| AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )· BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥ BC ,D 正确,故选D.(2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6). ∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C[易错提醒]x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题 利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法: (1)a 2=a ·a =|a |2; (2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2.[例2] (1)(2017·衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( ) A .2 B .6 C .2 3 D .12(2)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. [解析] (1)|4a -b |2=16a 2+b 2-8a ·b =16×1+4-8×1×2×cos π3=12.∴|4a -b |=2 3. (2)∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2 =12,∴ e 1,e 2 =60°.又∵b ·e 1=b ·e 2=1>0,∴ b ,e 1 = b ,e 2 =30°.由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.[答案] (1)C (2)233 [方法技巧]求向量模的常用方法(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.平面向量的夹角问题第一步 由坐标运算或定义计算出这两个向量的数量积第二步 分别求出这两个向量的模第三步 根据公式cos 〈a ,b 〉=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解出这两个向量夹角的余弦值 第四步根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角[例3] (1)若非零向量a ,b 满足|a |=22|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D .π (2)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.[解析] (1)由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a ||b |cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0.∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)∵a 2=(3e 1-2e 2)2=9+4-2×3×2×13=9,b 2=(3e 1-e 2)2=9+1-2×3×1×13=8, a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8,∴cos β=a ·b |a ||b |=83×22=223. [易错提醒](1)向量a ,b 的夹角为锐角⇔a ·b >0且向量a ,b 不共线.(2)向量a ,b 的夹角为钝角⇔a ·b <0且向量a ,b 不共线.突破点(三) 平面向量与其他知识的综合问题平面向量集数与形于一体,是沟通代数、几何与三角函数的一种非常重要的工具.在高考中,常将它与三角函数问题、解三角形问题、几何问题等结合起来考查.平面向量与三角函数的综合问题 [例1] 已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z), 所以f (x )的单调递减区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝⎛⎭⎫2A +π3=-1,∴cos ⎝⎛⎭⎫2A +π3=-1. 又0<A <π,故π3<2A +π3<7π3,∴2A +π3=π,即A =π3. ∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sin C .由正弦定理得2b =3c ,②由①②,可得b =3,c =2.[方法技巧]平面向量与三角函数综合问题的类型及求解思路(1)向量平行(共线)、垂直与三角函数的综合:此类题型的解答一般是利用向量平行(共线)、垂直关系得到三角函数式,再利用三角恒等变换对三角函数式进行化简,结合三角函数的图象与性质进行求解.(2)向量的模与三角函数综合:此类题型主要是利用向量模的性质|a |2=a 2,如果涉及向量的坐标,解答时可利用两种方法:一是先进行向量的运算,再代入向量的坐标进行求解;二是先将向量的坐标代入,再利用向量的坐标运算求解.此类题型主要表现为两种形式:①利用三角函数与向量的数量积直接联系;②利用三角函数与向量的夹角交汇,达到与数量积的综合.平面向量与几何的综合问题 [例2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若 AC ·BE =1, 则AB 的长为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若 AE · AF =1,则 λ的值为________. [解析] (1)设| AB |=x ,x >0,则 AB · AD =12x .又 AC · BE =( AD + AB )·( AD -12 AB )=1-12x 2+14x =1,解得x =12,即AB 的长为12. (2)由题意可得 AB · AD =| AB |·| AD |cos 120°=2×2×⎝⎛⎭⎫-12=-2, 在菱形ABCD 中,易知 AB = DC , AD = BC , 所以 AE = AB + BE = AB +13 AD , AF = AD + DF =1λ AB + AD , AE · AF =⎝⎛⎭⎫ AB +13 AD ·⎝⎛⎭⎫1λ AB + AD =4λ+43-2⎝⎛⎭⎫1+13λ=1,解得λ=2.[答案] (1)12(2)2 [方法技巧]平面向量与几何综合问题的求解方法(1)坐标法:把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解. [检验高考能力]一、选择题1.已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( )A .-3B .-2C .1D .-1解析:选A 因为a +2b 与c 垂直,所以(a +2b )·c =0,即a ·c +2b ·c =0,所以3k +3+23=0,解得k =-3. 2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形, AB =(1,-2), AD =(2,1),则 AD · AC =( )A .5B .4C .3D .2 解析:选A 由四边形ABCD 是平行四边形,知 AC = AB + AD =(1,-2)+(2,1)=(3,-1),故 AD · AC =(2,1)·(3,-1)=2×3+1×(-1)=5.3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( )A .(3,-6)B .(-3,6)C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则(-λ)2+(2λ)2=35,所以λ=-3,b =(3,-6),故选A.4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94解析:选B ∵n ⊥(t m +n ),∴n·(t m +n )=0,即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0.又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4.故选B. 5.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则 AF · BC 的值为( )A .-58 B.18 C.14 D.118解析:选B 如图所示, AF = AD + DF .又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以 AD =12 AB , DF =12 AC +14 AC =34 AC ,所以 AF =12 AB +34 AC .又 BC = AC - AB ,则 AF · BC =12 AB +34 AC ·( AC - AB )=12 AB · AC -12 AB 2+34 AC 2-34 AC · AB =34 AC 2-12 AB 2-14 AC · AB .又| AB |=| AC |=1,∠BAC =60°,故 AF · BC =34-12-14×1×1×12=18.故选B. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足 AP =λ AB , AQ =(1-λ) AC ,λ∈R ,若 BQ ·CP =-32,则λ=( ) A.12 B.1±22 C.1±102 D.-3±222解析:选A ∵ BQ = AQ - AB =(1-λ) AC - AB , CP = AP - AC =λ AB - AC ,又 BQ ·CP =-32,| AB |=| AC |=2,A =60°, AB · AC =| AB |·| AC |cos 60°=2,∴[(1-λ) AC - AB ]·(λ AB - AC )=-32,即λ| AB |2+(λ2-λ-1) AB · AC +(1-λ)| AC |2=32,所以4λ+2(λ2-λ-1)+4(1-λ)=32,解得λ=12. 二、填空题7.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )·b ,则|c |=________.解析:由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )·b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+(-8)2=8 2.答案:8 28.已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为________.解析:∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6,又|a |=2,|b |=1,∴a ·b =-1,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.答案:2π39.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是________.解析:a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝⎛⎭⎫-∞,-43∪⎝⎛⎭⎫0,13∪⎝⎛⎭⎫13,+∞.答案:⎝⎛⎭⎫-∞,-43∪⎝⎛⎭⎫0,13∪⎝⎛⎭⎫13,+∞ 10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则 AM · AN 的最大值为________. 解析:设 AN =λ AB +μ AD ,因为N 在菱形ABCD 内,所以0≤λ≤1,0≤μ≤1. AM = AD +12 DC =12 AB + AD .所以 AM · AN =⎝⎛⎭⎫12 AB + AD ·(λ AB +μ AD )=λ2 AB 2+⎝⎛⎭⎫λ+μ2 AB · AD +μ AD 2=λ2×4+⎝⎛⎭⎫λ+μ2×2×2×12+4μ=4λ+5μ.所以0≤ AM · AN ≤9,所以当λ=μ=1时, AM · AN 有最大值9,此时,N 位于C 点.答案:9三、解答题11.在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解:(1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴m ·n =|m ||n |cos π3=1×1×12=12,即22sin x -22cos x =12, ∴sin ⎝⎛⎭⎫x -π4=12.又∵x ∈⎝⎛⎭⎫0,π2,∴x -π4∈⎝⎛⎭⎫-π4,π4,∴x -π4=π6,即x =5π12. 12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cosA ),m ·n =sin 2C .(1)求角C 的大小; (2)若sin A ,sin C ,sin B 成等差数列,且 CA ·( AB - AC )=18,求边c 的长.解:(1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),对于△ABC ,A +B =π-C,0<C <π,∴sin(A +B )=sin C ,∴m ·n =sin C ,又m ·n =sin 2C ,∴sin 2C =sin C ,cos C =12,C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b . ∵ CA ·( AB - AC )=18,∴ CA · CB =18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,∴c 2=4c 2-3×36,c 2=36,∴c =6.。