轻质夹层结构复合材料的制备及性能
复合材料夹层结构湿热试验

复合材料夹层结构湿热试验1. 引言1.1 概述概述部分内容:复合材料夹层结构广泛应用于各个领域,如航空航天、汽车制造、建筑等。
夹层结构由两个或多个不同材料层组成,通过粘合或堆叠在一起,形成具有特定性能和功能的材料。
相比于传统材料,复合材料夹层结构具有重量轻、强度高、耐热、耐腐蚀等优点,因此备受关注。
湿热试验是评估复合材料夹层结构在湿热环境下性能稳定性的一种重要方法。
通过将样品暴露在高温高湿的环境中,模拟真实使用条件下的气候环境,来测试材料的耐候性、强度和粘接性能等关键指标。
湿热试验能够帮助工程师和科研人员了解材料在潮湿和高温环境下的性能变化规律,提供可靠的数据支持来指导材料开发、设计优化和工业应用。
本文旨在探讨复合材料夹层结构在湿热试验中的表现以及湿热试验对复合材料夹层结构性能的影响因素。
首先,我们将介绍复合材料夹层结构的定义和特点,以及其在各个领域的应用。
然后,我们将详细描述湿热试验的定义和目的,并探讨湿热试验对复合材料夹层结构性能的影响因素。
最后,我们将总结结论,提出一些对于未来研究的展望。
通过对复合材料夹层结构湿热试验的研究,我们可以更深入地理解复合材料夹层结构在实际应用中的性能和稳定性,为复合材料的开发和应用提供有效的参考和指导。
同时,对于相关领域的工程师和科研人员,本文也可作为他们进行复合材料夹层结构湿热试验和性能评估时的重要参考资料。
1.2 文章结构文章结构部分的内容可以根据以下描述进行编写:文章结构部分旨在向读者展示本文的框架和组织方式。
本文将按照以下几个主要部分进行撰写和论述。
首先,我们将在引言部分给出本文的概述,简要介绍复合材料夹层结构湿热试验的背景和重要性。
接着,我们将详细介绍本文的目的,即通过分析复合材料夹层结构湿热试验的定义和影响因素,探讨其在实际应用中的作用和意义。
然后,正式进入正文部分。
在第二节中,我们将首先对复合材料夹层结构进行定义和特点的阐述,以便读者对其有一个基本的了解。
复合材料手册

复合材料手册复合材料是由两种或两种以上的不同材料组成的材料,通过它们的组合可以获得比单一材料更好的性能。
复合材料通常具有优异的强度、刚度和耐腐蚀性能,因此在航空航天、汽车、建筑和体育器材等领域得到了广泛的应用。
本手册将介绍复合材料的基本知识、制备方法、性能特点以及应用领域,希望能够对复合材料的研究和应用有所帮助。
1. 复合材料的基本知识。
复合材料由增强材料和基体材料组成。
增强材料通常是纤维或颗粒,如碳纤维、玻璃纤维、芳纶纤维等,而基体材料则是粘合剂或树脂。
通过不同的组合方式,可以获得不同性能的复合材料,如碳纤维增强树脂基复合材料、玻璃纤维增强水泥基复合材料等。
2. 复合材料的制备方法。
制备复合材料的方法主要包括手工层叠法、预浸法、注塑法和激光熔化沉积等。
手工层叠法是最早的制备方法,通过手工将增强材料和基体材料层叠组合,然后进行固化。
预浸法是将增强材料预先浸渍于树脂中,再进行成型和固化。
注塑法则是将树脂和增强材料混合后注入模具中,通过加热和压力进行成型。
激光熔化沉积是一种新型的制备方法,通过激光熔化金属粉末或塑料粉末,实现复合材料的快速成型。
3. 复合材料的性能特点。
复合材料具有优异的强度和刚度,重量轻、耐腐蚀、绝缘性能好等特点。
其中,碳纤维增强复合材料的比强度和比刚度均优于金属材料,因此在航空航天领域得到了广泛的应用。
玻璃纤维增强复合材料具有良好的耐腐蚀性能,适用于化工设备和建筑材料。
4. 复合材料的应用领域。
复合材料在航空航天、汽车、建筑和体育器材等领域得到了广泛的应用。
在航空航天领域,复合材料可以减轻飞机结构的重量,提高飞机的燃油效率和飞行性能。
在汽车领域,复合材料可以减轻汽车的自重,提高汽车的燃油经济性和安全性。
在建筑领域,复合材料可以制备出具有良好耐久性和抗风压性能的新型建筑材料。
在体育器材领域,复合材料可以制备出轻量、坚固的运动器材,提高运动员的竞技水平。
总结。
复合材料具有优异的性能,具有广阔的应用前景。
夹层结构复合材料设计原理及其应用

夹层结构复合材料设计原理及其应用
夹层结构复合材料是一种由两层或多层材料组成的复合材料,其中夹层材料通常是一种轻质、高强度的材料,如泡沫塑料、蜂窝结构、铝合金等,而外层材料则通常是一种高强度、高刚度的材料,如碳纤维、玻璃纤维等。
夹层结构复合材料的设计原理是通过组合不同的材料,以达到优化材料性能的目的。
夹层结构复合材料的应用非常广泛,特别是在航空航天、汽车、建筑等领域。
在航空航天领域,夹层结构复合材料被广泛应用于飞机机身、机翼、尾翼等部件中,以提高飞机的强度和刚度,同时减轻重量,提高燃油效率。
在汽车领域,夹层结构复合材料被应用于车身、底盘等部件中,以提高汽车的安全性能和燃油效率。
在建筑领域,夹层结构复合材料被应用于建筑外墙、屋顶等部件中,以提高建筑的抗风、抗震性能,同时减轻建筑重量,降低建筑成本。
夹层结构复合材料的设计原理是通过选择不同的材料,以达到优化材料性能的目的。
例如,在航空航天领域,夹层结构复合材料通常由碳纤维和泡沫塑料组成,碳纤维提供高强度和高刚度,泡沫塑料提供轻质和吸能性能。
在汽车领域,夹层结构复合材料通常由玻璃纤维和铝合金组成,玻璃纤维提供高强度和高刚度,铝合金提供轻质和耐腐蚀性能。
在建筑领域,夹层结构复合材料通常由钢板和聚氨酯泡沫组成,钢板提供高强度和高刚度,聚氨酯泡沫提供轻质和隔热性能。
夹层结构复合材料是一种非常重要的材料,它具有轻质、高强度、高刚度、吸能性能等优点,被广泛应用于航空航天、汽车、建筑等领域。
夹层结构复合材料的设计原理是通过选择不同的材料,以达到优化材料性能的目的。
未来,随着科技的不断发展,夹层结构复合材料将会得到更广泛的应用。
PMI

PMI泡沫可在170℃—190℃温度之间热成形。
泡沫在热成形之前必须对泡沫进行干燥处理,热成形需要对板材进行加热,加热过程可在烘箱、加热板或红外加热器中进行。加热的持续时间根据板材的厚度而定(大约1mm/min)。
由于泡沫的质量很小,泡沫的比热容较低,另外板材表面由于大量切开的空隙充当了降温通道,泡沫表面的温度很快降低,能够保持的热量很少。所以需要对泡沫板材加以保温,防止泡沫从烘箱或加热板中取出后,温度很快降低,不能满足热成形工艺的温度要求。
压缩蠕变性能和材料密度有关:密度越高压缩蠕变越小。
压缩蠕变性能和材料含水率有关:含水率越高,压缩蠕变率越大。
蠕变除了和材料的性能有关外,还和工艺所需的压力、温度、时间有关。在加温、加压固化时,为了保证在共固化以后,泡沫夹层结构不发生变形,设计时需要考虑蠕变性能。在确定制作工艺之后,所选材料的压缩蠕变率越小越好。
在有阻燃要求的一些场合,也有使用酚醛泡沫填充蜂窝孔隙,提高材料和面材之间的粘结性能和结构隔热性能。例如,在公共交通工具内使用时。
在航空领域,一些常见的使用NOMEX蜂窝的结构有:机翼的前缘和尾翼,起落架舱门、其它各种舱门和整流罩。尽管蜂窝夹层结构在结构性能上有突出的优点,但是航空公司还是在寻找其它更好的材料来代替,原因是蜂窝夹心材料在各种用途的使用过程中需要昂贵的维护费用。因为在一些特殊情况下,蜂窝会进水。例如,面板出现裂缝以后。在低温下,蜂窝孔隙中的水冻结,发生膨胀,会破坏相邻的蜂窝孔隙。
PMI泡沫适用于多个领域,包括电子,运载火箭,航空,铁路机车,船舶以及天线,雷达天线罩,体育器材等。目前在国外的主要应用有:美国的Delta运载火箭的整流罩,日本三菱的Hll-A运载火箭的整流罩,日本新干线的火车头,通用、西门子等公司的医疗床板,Vestas的风力发电机叶片,还有导弹、直升机和飞机项目,如图4所示。
PMI

线性PVC,即非交联PVC泡沫(例如AirexR63.80),兼具良好韧性和柔性,可以按照曲面形状热成形。但是,线性PVC的力学性能、化学稳定性(耐苯)和热变形性能和交联的PVC泡沫相比,在相同的密度条件下,相对要低一些。
聚氯乙烯PVC泡沫是一种闭孔泡沫。严格的讲,它实际上是PVC和聚氨酯混合物,但常常都简单的说成PVC泡沫。PVC泡沫具有综合的静力和动力性能,不易受潮。使用温度在-240℃-+80℃,并且能够耐多
种化学物质腐蚀。尽管PVC泡沫是可燃材料,但是阻燃类型的PVC泡沫可以在具有防火严格要求的结构中,例如列车。PVC泡沫耐苯,所以能够和聚酯树脂共同使用。PVC泡沫主要用在一些不需要压力罐的工艺中。在选择固化工艺方法时,需要注意PVC泡沫在温度升高时会释放孔隙气体。
在有阻燃要求的一些场合,也有使用酚醛泡沫填充蜂窝孔隙,提高材料和面材之间的粘结性能和结构隔热性能。例如,在公共交通工具内使用时。
在航空领域,一些常见的使用NOMEX蜂窝的结构有:机翼的前缘和尾翼,起落架舱门、其它各种舱门和整流罩。尽管蜂窝夹层结构在结构性能上有突出的优点,但是航空公司还是在寻找其它更好的材料来代替,原因是蜂窝夹心材料在各种用途的使用过程中需要昂贵的维护费用。因为在一些特殊情况下,蜂窝会进水。例如,面板出现裂缝以后。在低温下,蜂窝孔隙中的水冻结,发生膨胀,会破坏相邻的蜂窝孔隙。
聚氨酯PU泡沫的力学性能表现一般,树脂芯材的界面发生老化,导致面板剥离。作为结构材料使用时,常常是用作构件的加强筋或加劲肋。但是聚氨酯泡沫也能用作荷载较小情况下的夹层层板中,起到隔热作用。该类泡沫的使用温度是150℃左右,同时吸声性能好。泡沫的机械加工成形简单。
复合材料蜂窝夹层结构的优化设计

复合材料蜂窝夹层结构的优化设计一、引言复合材料蜂窝夹层结构是一种新型的轻质高强材料结构,其具有优异的力学性能和重量比。
因此,在航空航天、汽车、船舶等领域中得到广泛应用。
本文将对复合材料蜂窝夹层结构的优化设计进行探讨。
二、复合材料蜂窝夹层结构的组成复合材料蜂窝夹层结构由三部分组成:面板、蜂窝芯和面板。
其中,面板是由复合材料制成的,通常采用碳纤维或玻璃纤维增强塑料;蜂窝芯是由铝或塑料等轻质材料制成,具有良好的抗压性能;最后一层面板与第一层面板相同。
三、复合材料蜂窝夹层结构的力学性能1. 抗弯强度高:由于采用了轻质高强度的蜂窝芯,使得该结构在承受外力时能够有效地抵抗弯曲变形。
2. 抗压性好:由于采用了铝或塑料等轻质材料作为蜂窝芯,使得该结构在承受外力时能够有效地抵抗压缩变形。
3. 重量轻:由于采用了轻质材料和蜂窝结构,使得该结构的重量比传统材料结构降低了约50%。
4. 热膨胀系数低:由于面板和蜂窝芯的热膨胀系数不同,因此在温度变化时不易发生破裂和变形。
四、复合材料蜂窝夹层结构的优化设计1. 面板厚度的优化设计:面板厚度对复合材料蜂窝夹层结构的强度和重量有着较大的影响。
一般来说,面板越厚,强度越高,但重量也会相应增加。
因此,在优化设计中需要根据具体使用场景和要求选择合适的面板厚度。
2. 蜂窝芯密度的优化设计:蜂窝芯密度对复合材料蜂窝夹层结构的强度和重量也有着较大的影响。
一般来说,密度越小,重量越轻,但强度也会相应减弱。
因此,在优化设计中需要根据具体使用场景和要求选择合适的蜂窝芯密度。
3. 面板和蜂窝芯的材料选择:面板和蜂窝芯的材料选择也是影响复合材料蜂窝夹层结构性能的重要因素。
一般来说,面板采用碳纤维或玻璃纤维增强塑料,而蜂窝芯则采用铝或塑料等轻质材料。
4. 夹层结构的优化设计:夹层结构的优化设计也是影响复合材料蜂窝夹层结构性能的重要因素。
一般来说,采用对称夹层结构可以使得该结构在承受外力时具有更好的抗弯强度和抗压性能。
复合材料夹层结构芯材

复合材料夹层结构芯材夹层结构芯材的应用领域十分广泛,例如在航空航天领域中,夹层结构芯材被广泛应用于飞机机身、机翼和尾翼等部件中,可以显著提高飞机的抗弯刚度、抗压能力和疲劳寿命,同时减轻了整体重量。
在轻型车辆领域,夹层结构芯材可以用于汽车车身和座椅等部件中,提高汽车的碰撞安全性和节能性能。
在建筑领域中,夹层结构芯材可以用于墙体和屋顶等部件中,提高建筑的抗震性能和隔热性能。
夹层结构芯材的主要组成部分是芯材、上下面板和粘接剂。
芯材通常采用轻质、高强度的材料,例如泡沫塑料、铝合金、蜂窝结构等。
泡沫塑料芯材具有质量轻、耐腐蚀、吸音隔热等优点,常用于航空航天和建筑领域。
铝合金芯材具有高强度、刚性好、阻燃性能好等优点,常用于汽车和建筑领域。
蜂窝结构芯材由许多蜂窝状的小腔体组成,具有高比强度、刚度和吸能性能,常用于航空航天领域。
上下面板通常采用玻璃纤维增强复合材料、碳纤维增强复合材料等高强度材料制成,以提供夹层结构的表面强度。
粘接剂用于将芯材和上下面板牢固地粘接在一起,以形成整体结构。
夹层结构芯材具有许多优越性能。
首先,它具有较高的强度和刚度,能够有效抵抗外部载荷作用下的变形和破坏。
其次,夹层结构芯材具有较低的密度,可以减轻整体重量,提高产品的载重能力和燃油经济性。
此外,夹层结构芯材还具有良好的冲击吸能性能,能够吸收和分散冲击能量,减少事故发生时的伤害。
另外,夹层结构芯材还具有优异的阻燃性能和耐腐蚀性能,能够提高产品的安全性和使用寿命。
然而,夹层结构芯材也存在一些问题和挑战。
首先,制备复杂,加工难度大,需要高精度的模具和复杂的工艺控制。
此外,夹层结构芯材的成本较高,需要考虑生产成本和性能要求之间的平衡。
另外,夹层结构芯材的设计和优化也需要考虑多个因素的影响,包括结构形式、材料选择、制备工艺等,需要进行全面的性能评估和优化设计。
综上所述,夹层结构芯材是一种具有特定性能和结构的夹层材料,应用广泛且具有许多优越性能。
复合材料夹层结构

点阵夹芯结构
应用领域
点阵夹芯结构应用于卫星结构,其 大的空隙为热控元件提供了安置空 间,无需在结构中挖掘空洞,保持 了结构完整性
22
点阵夹层结构
23
点阵夹层结构
24
点阵夹层结构
25
传统夹层结构
芯材的制备 芯材与蒙皮的胶接 蒙皮的成型 芯材的承压能力与压力传递
26
传统夹层结构
夹层结构的优点很多,如比强度高、比刚度高、结 构稳定性好、承载能力高、耐疲劳、抗振动、隔音、隔热 等。
5
新型轻质夹层结构复合材料
Z向缝合夹层结构
Z-pin夹层结构
新型轻质夹层 结构复合材料
连体织物夹层结构
点阵夹芯结构
6
Z向缝合夹层结构
上面板
泡沫 芯材
下面板
承力柱
突出平压强度 优异耐久性 良好隔热隔声性
1.胶液压力。涂胶辊对玻璃布的接触压力越大,胶液 浸透到玻璃布背面的可能性也就越大,容易造成严 重的透胶现象,致使固化后的蜂窝芯子条拉不开。
2.胶液粘度。胶液粘度越大越不易透胶,但粘度过 大会造成涂胶困难,或使胶层过厚在加压固化过程 中出现透胶。胶液粘度小则容易在涂胶过程中发生 透胶。因此在保证涂胶顺利的情况下,胶液粘度越 大越好。
3.皱褶和偏斜。涂胶过程中往往会出现玻璃布打折 和偏移,影响蜂窝质量。原因是传动不平稳,涂胶 导向及胶布放布辊之间不平行等。
49
② 压制固化
涂胶完毕后从叶轮转筒上取下的蜂窝叠块,按所 用胶的固化规范固化。压力大小以胶液不渗透到玻璃 布背面,保证蜂窝胶接边胶合良好为原则。
蜂窝叠块的厚度即布的层数,由产品的尺寸要求 来决定。可由以下公式算出:
47
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作 为 表 层 材 料 和 轻 质 聚 氨 酯 改 性 环 氧 树 脂 材 料 作 为 芯 材 来 制 作 的夹 层 结 构 复 合 材 料 具 有 重 量 轻 、 声 性 能 和 力 学 性 水
第3 3卷 第 1 2期
舰
船
科3,No 1 13 .2 De ..2 1 c 01
21年 1 01 2月
SHI CI P S ENCE AND TECHNOLOGY
轻质夹层结构复合材料 的制备及性能
张 乔 斌 李 浩 , ,昌放 辉
( . 军工程 大 学, 1海 湖北 武 汉 4 0 3 ; . 军 9 8 4部 队 , 东 湛 江 5 4 0 ) 303 2 海 25 广 2 0 5
l w d nst e c le tun e ae c u t r p ry a d me h n c lprpete sn RP s n h sz d fo o e i y, x el n d r t ra o si p o et n c a ia o ri su i g GF y t e ie m w c r
teS i — rn t gasf e bi o aj gIs tt a h ufc a r la dl h p l rta e h 2hg s e gh l brf r f ni ntue stesr e m t i n i t oy e n - h t si a c N n i a ea g u h
m o i e po y e i ma e il s h c r .Th s a d c c m p st h s g o be rn p o e t a d d f d e x r sn i tra a t e o e i s n wih o o i e a a o d a i g r p ry n
d i1. 4 4 ji n 1 7 — 6 9 2 l . 2 0 1 o :0 3 0 /.s .6 2 7 4 .0 1 1. 3 s 文 章 编 号 : 17 — 6 9 2 1 ) 2 0 2 — 5 6 2 7 4 ( 0 1 — 19 0 1
Pr p r to nd pe f r a c flg t eg a w ih c m p st e a a i n a r o m n e o i h w i hts nd c o o ie
摘 要 : 为减 轻以往夹层结 构复合材 料的密度 , 采用高强玻璃 钢材料作 为表层 、 多种空 心玻璃微珠 填充 聚氨
酯 改 性 环 氧 树 脂 合 成 的轻 质 吸 声 材 料 作 为 芯 材 , 备 了一 种 新 型 的 轻 质 夹 层 结 构 复 合 材 料 , 夹 层 复 合 材 料 的 制 备 制 对
Ab ta t s r c : To al va e t e e iy o h a wih c mpo ie, e lg t s n wih c mp st s le it h d nst f t e s nd c o st a n w ih a d c o o i wa e p e a e sn i h- ̄e g h ga sfb r- i fr e o o iem ae il St e s ra e a ih o y r t a e- r p r d u i g h g ・ n t l s e —en o c d c mp st trasa h u f c nd lg tp lu eh n - s i r m o i e p x e i b o p in ma e ila h o e wh c s s n h sz d fo a v re y o o lw l s d f d e o y r sn a s r to tra s t e c r ih wa y t e ie r m ai t fh lo ga s i mir s h r a d p lu eh n — a e r sn. Th p e a ai n,u d r t r c u t p o e t me h n c l cop ee n oy rta eb sd ei e rp rt o n e wae a o si c r p ry c a i a p o et fs n r p ry o a dwih c m p st r t y T e e r h r s ls s o d t tt e s n wih c m p st a c o o ie we e sud . he r s a c e u t h we ha h a d c o o ie h s a
Z A G Q a—i , I a C A G F n .u H N iobn L o , H N agh i H ( . aa U i r t o nier g Wu a 3 0 3 C ia 1 N vl nv s y f g ei , h n4 0 3 , hn ; e i E n n 2 N vl nt O 9 8 4 Z aj n 2 0 5 C ia . aa U i N .2 5 ,h ni g5 4 0 , hn ) a
能 优 良的 特 点 , 降 低 夹层 结 构 复 合 材 料 重 量 的 同 时 , 有 良好 的声 隐身 性 能 和 承载 性 能 , 有 利 于 工 程 应用 。 在 具 更
关键 词 : 复 合材料 ; 夹层 ; 质 ; 轻 空心玻 璃微 珠 ; 声性 能 ; 学性能 水 力
中图分 类号 : 0 2 37 文 献标 识码 : A