人教版初中数学七年级下册第九章第三节《一元一次不等式组》导学案

合集下载

人教版七年级下册数学第九章《不等式与不等式组》四步导学案

人教版七年级下册数学第九章《不等式与不等式组》四步导学案

第九章不等式与不等式组9.1.1不等式及其解集学习目标知识:不等式及其解集和一元一次不等式。

方法:渗透数形结合的思想。

情感:培养学生的数感,促进合作交流意识的形成。

学习重点不等式、不等式解与解集的意义,并把解集正确地表示在数轴上。

学习难点正确理解不等式的解集意义。

.教具准备多媒体课件。

教学流程【导课】某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?依题意得4x>6(x−10)看下面的图片:长度不同的尺子大小不同的玩具你能举出生活中不相等关系的一些实例吗?怎样来表示这些不等关系呢?这就是我们今天探讨的问题。

(板书课题:不等式及其解集)。

【阅疑质疑,自主探究】1,阅读121——123页自读提纲:(1)什么叫做不等式及不等式的解?(2)什么叫做不等式的解集?什么叫做一元一次不等式?(3)怎样在数轴上表示不等式的解集?【多元互动,合作探究】以上问题让学生展示,先让学困生回答,中等生补充,优等生总结;教师适当指导汇总得出:1、不等式的概念:用“<”“>”“≠”表示大小关系的式子叫做不等式。

(让学生回忆等式的概念。

)2:使不等式成立的未知数的值叫做不等式的解。

3:使不等式成立的所有的解的集合叫做不等式的解集。

4:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

(让学生回忆一元一次方程的概念。

)例1、用不等式表示。

(1)a 与1的和是正数。

(2)y 的2倍与1的和大于3;(3)x 的一半与x 的2倍的和是非正数;(4)c 与4的和不大于-2;例2、判断下列数中哪些是不等式32x >50的解 76,73,79,80,74,75.1,90,60例3、例、在数轴上表示下列不等式的解集(1)x>1;(2)x ≥1;(3)x<1;(4)x ≤1解:教师分析指点:按画数轴,定界点,走方向答。

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

第九章不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。

教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。

为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。

在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。

最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。

教学目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。

〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。

重点难点一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。

课时分配9.1不等式………………………………………………………4课时9.2实际问题与一元一次不等式……………………………… 3课时9.3一元一次不等式组………………………………………… 2课时9.4课题学习利用不等式分析比赛……………………… 1课时本章小结……………………………………………………… 2课时不等式及其解集[教学目标]1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。

最新人教版七年级数学下册第九章一元一次不等式与不等式组导学案

最新人教版七年级数学下册第九章一元一次不等式与不等式组导学案

最新人教版七年级数学下册第九章一元一次不等式与不等式组导学案第九章不等式与不等式组第一课时不等式及其解集课型:新授课时:1课时主备人:初一数学组学习目标:1、了解不等式的概念,能用不等式表示简单的不等关系。

2、知道什么是不等式的解,什么是解不等式,并能判断一个数是否是一个不等式的解。

3、理解不等式的解集,能用数轴正确表示不等式的解集,对于一个较简单的不等式能直接说出它的解集。

学习重点:不等式的解集的表示。

学习难点:不等式解集的确定。

学习过程:一、自主学习数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系:(1)a与1的和是正数;(2)y的2倍与1的和大于3;(3)x的一半与x的2倍的和是非正数;(4)c与4的和的30%不大于-2;(5)x除以2的商加上2至多为5;(6)a与b两数的和的平方不可能大于3。

解:(1)_____ _____ (2)_____ __ (3)_____ _____ (4)_____ _____(5)_____ _____ (6)_____ _____二、合作探究:1、像上面那样,用符号“____”或“____”表示________关系的式子叫做不等式;用“_____”表示不等关系的式子也是不等式。

2、当x=78时,不等式x﹥50成立,那么78就是不等式x﹥50的解。

与方程类似,我们把使不等式______的__________叫做不等式的解。

完成P115思考中提出的问题。

3、一个含有未知数的不等式的________的解,组成这个不等式的_________。

求不等式的_______的过程叫做解不等式。

4、你能画出数轴并在数轴上表示出下列不等式的解集吗?(1)x﹥3 (2)x﹤2 (3)y≥-1 三、巩固运用:1、对于下列各式中:①3﹥2;②x≠0;③a﹤0;④x+2=5;⑤2x+xy+y;⑥2a +1﹥5;⑦a+b﹥0。

不等式有_____ _____(只填序号)2、下列哪些数值是不等式x+3﹥6的解?那些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12。

人教版数学七年级下册9.3一元一次不等式组解一元一次不等式组教学设计

人教版数学七年级下册9.3一元一次不等式组解一元一次不等式组教学设计
3.培养学生团队合作意识,使他们懂得与他人合作共同解决问题的重要性。
4.培养学生严谨、细致的学习态度,让他们明白在数学学习中,细节决定成败。
二、学情分析
在本章节的学习中,七年级学生已经具备了一定的数学基础,掌握了线性方程组的相关知识,但对于一元一次不等式组的认识尚处于初级阶段。学生在此阶段对于不等式的概念、性质和图像表示有一定的了解,但在解决实际问题时,可能还无法熟练地将不等式组应用于问题求解。此外,学生在解决不等式组问题时,可能存在以下困难:
1.对于多个不等式组成的复杂关系,学生可能难以理清思路,容易混淆。
2.学生在运用高斯消元法求解不等式组时,可能会出现计算错误,影响解题结果。
3.部分学生可能对于一元一次不等式组的实际应用场景缺乏认识,导致解题时缺乏针对性。
因此,在教学过程中,教师需要关注学生的这些困难,通过生动的实例、形象的比喻和具体的操作,帮助学生克服困难,提高解题能力。同时,注重培养学生的数学思维,激发他们的学习兴趣,使其在掌握知识的同时,形成良好的学习习惯和价值观。
难点:指导学生通过观察、分析、归纳等过程,发现不等式组的规律,提高解题技巧。
(二)教学设想
1.采用情境教学法,将实际生活中的问题引入课堂,激发学生的学习兴趣,使其在解决实际问题中感受到数学的魅力。
2.采用启发式教学法,引导学生通过自主探究、合作交流等途径,掌握一元一次不等式组的解法,培养学生的独立思考能力和团队合作精神。
4.完成课后作业册中的一元一次不等式组专项练习,进一步巩固所学知识。
5.家长监督并协助孩子完成作业,关注孩子的学习进度,培养孩子独立解决问题的能力。
作业要求:
1.认真审题,规范解答,保持卷面整洁。
2.注意解题过程中的符号、计算准确,避免出现低级错误。

人教版初一数学下册9.3 一元一次不等式组导学案

人教版初一数学下册9.3 一元一次不等式组导学案

第九章课题《9.3 一元一次不等式组》(第1课时)导学案 责任学校 设计教师 日期
一、学习目标
1.了解一元一次不等式组及其解集的概念;
2.会利用数轴求不等式组的解集.
二、自学探究
1.知识回顾
一元一次不等式: , 一元一次不等式的解集: ;
(1) ()213x +< (2)
32523
x x --<
2.利用数轴来确定不等式组的解集: ()311x x >⎧⎨>-⎩ ()321x x <⎧⎨<-⎩ ()331x x <⎧⎨>-⎩ ()341x x >⎧⎨<-⎩
口诀: .
自学检测:1.解下列不等式组:
()211241x x x x >-⎧⎨+<-⎩ ()5122324x x x x ->+⎧⎨+≤⎩ ()2513331148x x x x ⎧+>-⎪⎪⎨⎪-≤-⎪⎩
2. x 取哪些正整数值时,不等式36x +>与2110x -<都成立?
三、达标训练
1.关于x 的不等式组8
x x m <⎧⎨>⎩
有解,那么m 的取值范围是( ) A .8m > B .8m ≥ C .8m < D .8m ≤
2.如果不等式组x a
x b >⎧⎨>⎩
的解集是x a >,则a b . 3.已知关于关于x 的不等式组521
x x a -≥-⎧⎨->⎩无解,求a 的取值范围?
四、小结提升 通过本节课的学习,你收获了什么?
五、课后反思
六、课后作业
课本130页习题9.3——2(1)(3)、3。

《一元一次不等式组》教案

《一元一次不等式组》教案

《一元一次不等式组》教案——九年义务教育七年级下册第九章第三节执教者:性质:时间:2014年6月《一元一次不等式组》教案教材分析本节课的内容是人教版七年级下册第九章第三节《一元一次不等式组》。

本节课,是在学生学习了一元一次不等式,知道了一元一次不等式的有关概念及其解法的基础上学习的。

本节主要学习一元一次不等式组及其解法,这是学好利用一元一次不等式组解决实际问题的基础和关键。

教材通过一个实例入手,引出要解决的问题必须同时满足两个不等式,进而通过一元一次不等式的概念及其解法等,来类推学习一元一次不等式组及其相关解法。

学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,善于发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力,这为顺利完成本节课的教学任务打下了基础,但对于不等式基本性质的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

教学目标1、知识与技能:了解一元一次不等式组的概念,在了解一元一次不等式组的解集的概念的基础上会求解一元一次不等式组的解集。

2、过程与方法:经历一元一次不等式组解集的探究过程,体会不等式之间的内在联系,通过利用数轴解一元一次不等式组,培养学生数形结合的思想方法。

3、情感、态度与价值观:学生充分参与数学学习活动,从而获得成功的体验,建立良好的自信心。

教学重点:掌握一元一次不等式组的含义及其解法。

教学难点:1、将两个不等式的解表示在同一数轴上,并通过找公共部分确定不等式组的解集;2、理解不等式的解集。

人教版七年级下册数学9.3 一元一次不等式组(导学案)

人教版七年级下册数学9.3 一元一次不等式组(导学案)

9.3 一元一次不等式组上大附中何小龙一、新课导入1.导入课题:用每分钟可抽30t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1200t而不足1500t,那么将污水抽完所用时间的范围是什么?为了解决这个问题,这节课,我们就来学习一元一次不等式组及其解法.2.学习目标:(1)认识一元一次不等式组及其解的含义.(2)会用数轴找出一元一次不等式组的解集,能解简单的一元一次不等式组.3.学习重、难点:重点:了解一元一次不等式组的概念,能用数轴找出一元一次不等式组的解集,会解简单的一元一次不等式组.难点:(1)用数形结合的方法,确定一元一次不等式组的解集.(2)找不等关系列不等式组.二、分层学习1.自学指导:(1)自学内容:课本P127至P128例1之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,重要的概念或存在的疑点做上记号.(4)自学参考提纲:①什么是一元一次不等式组?②怎样解一元一次不等式组?③什么是一元一次不等式组的解集?在数轴上如何表示?2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题(是否明确一元一次不等式组的含义;能否利用数轴确定一元一次不等式组的解集).②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流和帮助.4.强化:(1)一元一次不等式组的概念.(2)一元一次不等式组的解集的确定方法.(①)练习:利用数轴找出下面各不等式组的解集.①32xx>⎧⎨>⎩,-;②15xx<⎧⎨<⎩-,-;③310xx>⎧⎨<⎩,;④13xx<⎧⎨>⎩-,.答案:①x>3;②x<-5;③3<x<10;④无解.1.自学指导:(1)自学内容:课本P128例1.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,注意解题方法和格式,并在不理解的地方做上记号.(4)自学参考提纲:①按例题的提示解不等式,并用数轴求解集的公共部分.②试归纳出解一元一次不等式组的一般步.③解不等式组21241x xx x>⎧⎨+<⎩-,-.答案:x>12.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题(解不等式的方法是否熟练、准确;解不等式组步骤是否完整,格式是否规范;能否由数轴求出不等式组的解集).②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流和帮助.4.强化:(1)解一元一次不等式组的一般步骤和书写格式. (2)练习:解下不等式组:(a)512324x xx x>+⎧⎨+≤⎩-,①;②(b)251331148x xx x.⎧+>⎪⎪⎨⎪≤⎪⎩-,①--②解:(a)解不等式①,得x<-6,解不等式②,得x≥2.把不等式①和②的解集在数轴上表示出来:由图可知,解集没有公共部分,不等式组无解.(b)解不等式①,得x>-125,解不等式②,x≤72,把不等式①和②的解集在数轴上表示出来:由图可得等式组的解集为125<x≤72.1.自学指导:(1)自学内容:课本P129例2.(2)自学时间:8分钟.(3)自学要求:认真审题,弄清题意,寻求数量之间关系,把握解题要领.(4)自学参考提纲:①例2中,使不等式5x+2>3(x-1)和12x-1≤7-32x都成立是什么意思?求出x的取值范围,怎么求?②例2中,如何取x的整数值?③练习:一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完,李永平均每天张力多读3页,张力平均每天读多少页?(答案取整数)解:设张力平均每天读x 页,根据题意,得7989873x x <⎧⎪⎨<⎪+⎩,,解得11<x<14. ∵x 为整数, ∴x 可取12,13.答:张力平均每天读12页或13页. 2、自学同学们可结合自学指导进行自学. 3、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题(会不会解不等式组;能否找出题中不等关系,设未知数列出不等式组).(2)差异指导:对少数学有困难和学法不当的学生进行引导. 2.生助生:小组内学生之间相互交流和帮助. 4、强化1.对于具有多种不等关系的问题,可通过不等式组解决.对于实际问题一定要按以下步骤进行:(1)审题、设未知数;(2)找不等关系;(3)列不等式组;(4)解不等式组;(5)根据实际情况写出答案.2.练习:(1)x 取哪些正整数时,不等式x +3>6与2x -1<10都成立? (2)x 取哪些整数时,2≤3x -7<8成立? 解:(1)解不等式x+3>6,得x>3. 解不等式2x-1<10,得x<112. ∴不等式组362110x x +>⎧⎨-<⎩,的解集为3<x<112.又∵x 为正整数,∴x取4,5.(2)解不等式2≤3x-7,得x≥3.解不等式3x-7<8,得x<5,∴不等式2≤3x-7<8的解集为3≤x<5.又∵x为整数.∴x取3,4.三、评价1.学生的自我评价:各小组长汇报本组学习收获和存在的不足.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课重点是会解一元一次不等式组,并会利用数轴表示出解集,在教学过程中要求学生在解不等式组时,一定要通过画数轴,求出不等式的解集,从而建立数形结合的数学思想,提高学生动手操作的数学能力,激发学生学习数学的兴趣.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)下列是在数轴上表示的关于x的不等式组的解集,请将各数轴上表示的解集写出来.解集为1<x≤2;解集为无解;解集为x≥2;解集为x≤1.2.(10分)若点(x-1,3-2x)是第二象限内的点,则x的取值范围是x<1.3.(10分)两个式子x-1与x-3的值的符号相同,则x的取值范围是( D )A.x>3B.x<1C.1<x<2D.x<1或x>34.(20分)解下列不等式组:(1)1313xx-<⎧⎨+<⎩,①;②(2)1313xx->⎧⎨+>⎩,①;②解:(1)解不等式①得:(2)解不等式①得:x<4,x>4,解不等式②得:x<2,解不等式②得:x>2,∴不等式组的解集为:∴不等式组的解集为:x<2;x>4;(3)1313xx-<⎧⎨+>⎩,①;②(4)1313xx.->⎧⎨+<⎩,①②(3)解不等式①得:(4)解不等式①得:x<4,x>4,解不等式②得:x>2,解不等式②得:x<2,∴不等式组的解集为:∴不等式组无解集. 2<x<4;5.(20分)解下列不等式组(1)21013xx->⎧⎨+≤⎩,①;②(2)313213xx.-->⎧⎨+>⎩,①②解:(1)解不等式①得:x>12,(2)解不等式①得:x<-43,解不等式②得:x≤2,解不等式②得:x>1,∴不等式组的解集为:∴不等式组无解.12<x≤2.6.(20分)x取哪些整数时,不等式4(x-0.3)<0.5x+5.8与3+x>12x+1都成立?解:解不等式4(x-0.3)<0.5x+5.8得:x<2,解不等式3+x>12x+1得:x>-4,∴不等式的解集-4<x<2.又∵x为整数,∴当x取-3,-2,-1,0,1时,不等式4(x-0.3)<0.5x+5.8和3+x>12x+1都成立.二、综合运用(20分)7.解下列不等式组:(1)()()311352552136x x xx x⎧-+>--⎪⎨-+<-⎪⎩(),①;②(2)32421152x xxx.--≥⎧⎪⎨-+>⎪⎩(),①②解:(1)解不等式①得:x<5,(2)解不等式①得:x≤1.解不等式②得:x<-14. 解不等式②得:x<-7.∴不等式组的解集为:x<-14. ∴不等式组的解集为:x<-7.8.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有多少本?共有多少人?解:设共有x人,根据题意,得()()3851038513x xx x.⎧+--≥⎪⎨+<--⎪⎩,解得5<x≤6.5.∵x为整数,∴x=6.3x+8=3×6+8=26.答:这些书有26本,共有6人.三、拓展延伸(20分)9.你能求三个不等式5x-1>3(x+1),12x-1>3-32x,x-1<3x+1的解集的公共部分吗?解:解不等式5x-1>3(x+1),得x>2解不等式12x-1>3-32x,得x>2.解不等式x-1<3x+1,得x>-1.将三个不等式的解集在数轴上表示出来:∴三个不等式的解集的公共部分为x>2.【素材积累】1、成都,是一个微笑的城市,宁静而美丽。

人教版第九章不等式与不等式组导学案[1]

人教版第九章不等式与不等式组导学案[1]

(1)(2第九章不等式与不等式组9.1.1 不等式及其解集学习目标: 1、了解不等式及一元一次不等式的概念。

2.、理解不等式的解、不等式的解集的概念。

3、能在数轴上正确表示不等式的解集。

学习重点、难点:理解不等式的解集,会在数轴上表示解集.学习过程:一、学前准备:1.等式:用“=”连接的表示相等关系的式子叫做等式.2.一元一次方程:含有_____个未知数,并且未知数的次数是_____的方程叫做一元一次方程.3. 方程的解:使方程左右两边相等的未知数的值叫做方程的解二、新课探究:(一)、不等式、一元一次不等式的概念1. 你能列出下列式子吗?(1)5小于7;(2)x与1的和是正数(3)m的2倍大于或等于-1;(4)x-3不等于2(5)a不大于1 ;(6)y的2倍与1的和不等于3(7)c与4的和的30﹪不大于-2不等式:像上面的这些式子,用符号“”,“”,“”“”或“”表示不等关系的式子叫做不等式。

一元一次不等式:含有且未知数的次数是的不等式,叫做一元一次不等式.巩固练习2:下列式子中哪些是不等式?哪些是一元一次不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)3>2 (5) 2a+1≥0 (6)32x+2x(7)x<2x+1 (8)x=2x-5 (9)2x +4x<3x+1 (10)a+b≠c(11)x十3≥6 (12) 2m< n(二)、不等式的解、不等式的解集总结1:1、不等式的解:使不等式的的值叫做不等式的解.2、不等式的解有个。

由上题我们可以发现,当x>3时,不等式x+3 > 6总成立;而当x≤3时,不等式x+3 > 6总不成立.这就是说,任何一个大于3的数都是不等式x+3 > 6的解,因此x>3表示了能使不等式x+3 > 6成立的x的取值范围,叫做不等式x+3 > 6的解的集合,简称解集总结2: 1.不等式的解集:一个含有未知数的不等式的组成这个不等式的解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2 -1 0 1 2
3.不等式组 的解集在数轴上表示为( )
A
-5 -2
B
-5 -2
C
-5 -2
D
-5 -2
4.解集如图所示的不等式组为().
A. B. C. D.
活动3:
活动4;
活动5
活动6
师生行为
教师提出问题,学生独立思考并解答。
本次活动教师重点关注:
学生能否准确得到不等关系
学生讨论总结其形式结构上的共同点引出一元一次不等式组的概念、记法和课题.
注意:
(1)每个不等式必须为一元一次不等式;
(2)不等式必须是只含有同一个未知数;
(3)不等式的数量至少是两个或者多个。
教师提出问题,学生独立思考后回答,其他同学提出自己的观点,并说明理由,进一步明确上述概念的三个要素。
发现第六个可以改写成不等式组的形式,明确连不等式是不等式组的另一种表示方法。
回到速度问题,由学生回答速度范围,用不等关系表示。引出一元一次不等式组解集的概念。

引导学生由形再回到数,抛开数轴,直接运用规律解决问题。
组内出题,组间互换互批,发现问题解决问题,培养同学们的参与意识,进一步巩固了所学知识,激发学生的学习兴趣
及时巩固练习,加深对知识的理解与记忆.
学生归纳:
教师总结:学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要;学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念;求不等式组的解集时,利用数轴很直观,也很快捷,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验.
活动1:
一、创设情境,导入新课
1.小视频引出速度问题
2.跷跷板引出小猪体重问题
引出课题:9.3一元一次不等式组
二、师生互动,探索新知
1.得出相关概念。
一元一次不等式组,
巩固概念:
活动2:
比一比,看谁快
1.不等式组的解集在数轴上表示如图,其解集是什么?
-2 -1 0 1 2
2.不等式组的解集在数轴上表示如图,其解集是什么?
教师布置作业
通过课后作业,教师及时了解学生对本节知识的掌握情况,对教学进度和方法进行适当的调整。
回到小猪体重的问题,教师提出问题,如何解决,并类比解二元一次方程组的方法,由学生分组讨论并解决,合作探究解一元一次不等
先自主探究解题步骤,后具体解题,进一步熟悉解题步骤,熟练地利用数轴正确地找到公共部分。教师板演例题,书写完整的解题步骤,强调格式。
教师提出问题,我们可以借助什么工具来形象直观地表示出该公共部分。渗透数形结合的思想。一起回顾将解集表示在数轴上时需要注意的问题,由学生作答。
教师出示强化训练不等式组解集问题,由学生独立观察并抢答。
此次活动中关注:
(1)学生的参与意识;(2)能否利用数轴顺利找出不等式的解集;
第四题提出问题,关注不等式组的整数解,分清实点及空心圆圈的区别
培养学生们的总结概括能力和语言表达能力.培养了学生参与意识和合作交流的意识
让学生分组完成,组内对比合作探究,总结出相关规律。在学生亲自动手实践的基础上,老师再次逐条总结出规律
此次活动中关注:
(1)学生完成问题的准确性;(2)能否注意细节;(3)能否抓住解不等式的规律:同大取大,同小取小;大小小大中间找,大大小小找不着
课题
课题:9.3.1一元一次不等式组
课型
新授课
教学
目标
1、理解一元一次不等式组,一元一次不等式组的解集等概念
2、会解不等式组,并会用数轴确定解集
3、经过观察、讨论、交流等过程,体会数形结合以及类比的思想
重点
一元一次不等式组的解法
难点
在数轴上找公共部分,确定不等式组的解集
教学过程
环节
师生行为
设计意图
第问题与情景
相关文档
最新文档