七年级数学下册第八章教案[人教版] 8.3(1)

合集下载

人教版七年级下册数学《实际问题与二元一次方程组—图形问题》课件

人教版七年级下册数学《实际问题与二元一次方程组—图形问题》课件

yy yyy
4x + 7y = 34 x
x
解得:xy
5 2
∴大长方形的长为:2x=10
y x
y x
宽为:x+y=5+2=7. ∴长方形的面积为:10×7=70c㎡
答:大长方形的面积是70c㎡
60
练一练: 8块相同的小长方形地砖拼成一个大长方形, 每块小长方形地砖的长和宽分别是多少?(单位cm)
解:设小长方形地砖的长为x, 宽为y, 由题意,得 x+y=60 x=3y 解此方程组得: x =45, y=15.
三、组内合作、交流探索
【变式】一个长方形,长减少6,宽增加3,或长增加 4,宽减少1,面积都与原长方形的面积相等求原长方 形的长与宽。
三、组内合作、交流探索
例题4、把棱长为4的正方体分割成29个棱长为整数的正方体 (且没有剩余),求其中棱长为1的正方体的个数
课堂练习
1.如图,将矩形ABCD分割成一个灰色矩形和148个面积相等的小正 方形,若黑色矩形的长与宽的比是5:3,则AD:AB的值是 47:29.
长方形ABCD分割为两个小长方形,
长方形1和长方形2分别种甲、乙作物,
甲、乙单位面积产量的比是1:2.
A
B
目标:甲、乙两种作物的总产量的比是3:4
这里研究的实际上是长方形什的么面积分割 问 把一题个. 长方形分成两个小长方形有哪些分割方式? 01 竖着画,把长分成两段,则 宽 不变
02 横着画,把宽分成两段,则 长 不变
分析:如图,设在黑色长方形的长上摆x个小正方形,宽上摆y个小 正 方 形 . 又 知 道 一 共 有 148 个 正 方 形 , 所 以 2(x+y)=148–4 ; 再 根 据 “黑色矩形的长与宽的比为5:3”,得到x:y=5:3.可列出方程组 求解x,y的值,即可求出AD:AB=(x+2):(y+2)=47:29.

人教版七年级数学下册精品课件 第八章 8.3 第1课时 利用二元一次方程组解决实际问题

人教版七年级数学下册精品课件 第八章  8.3 第1课时 利用二元一次方程组解决实际问题

40 y
370
解得
x 25,
y15.
答:甲种票25张,乙种票15张.
2020/6/11
3.课本中介绍我国古代数学名著《孙子算经》上有这 样的一道题:今有鸡兔同笼,上有三十五头,下有 九十四足,问鸡兔各多少只?
解:设鸡有x只,兔有y只. 则2x xy4y3594
解得
x 23,
y12.
答:鸡有23只,兔有12只.
2020/6/11
剧情发展:随着养牛场规模逐渐扩大,李大叔需聘 请饲养员协助管理现有的42头大牛和20头小牛,已 知甲种饲养员每人可负责8头大牛和4头小牛,乙种 饲养员每人可负责5头大牛和2头小牛,请问李大叔 应聘请甲乙两种饲养员各多少人?
解:设李大叔应聘请甲种饲养员x人,乙种饲养员 y人,则:
根据题意,可列方程组:
x 60
y 80
10
x
y
15.
60 40
解方程组,得
x 300
y400
所以,小明家到学校的距离为700m.
2020/6/11
方法二(间接设元法) 解:设小华下坡路所花时间为xmin,
上坡路所花时间为ymin.
平路 坡路 距离 距离
上学 60(10 x) 80x
放学 60(15 y) 40 y
2020/6/11
02 横着画,把宽分成两段,则长不变
D
200m
C 解:过点E作EF⊥AD,交
BC于点F.
x
甲种作物 200x 100m
设DE=xm,AE=ym.
E y
F
乙种作物 200y
根据题意列方程组为
x+y=100
A
Hale Waihona Puke B200x:400y=3:4

人教版七年级数学下册8.3.1《和差倍分问题》教学设计

人教版七年级数学下册8.3.1《和差倍分问题》教学设计

人教版七年级数学下册8.3.1《和差倍分问题》教学设计一. 教材分析《和差倍分问题》是人教版七年级数学下册第八章第三节的第一课时,主要内容是引导学生掌握和差、倍数关系的解法,培养学生解决实际问题的能力。

本节课的内容在学生的知识体系中占有重要地位,为其后续学习方程、比例等知识打下基础。

二. 学情分析学生在之前的学习中已经掌握了整数的加减乘除运算,对数学问题有一定的分析能力。

但他们在解决实际问题时,还存在着对和差、倍数关系的理解不够深入,解题方法不够灵活等问题。

因此,在教学过程中,需要关注学生的学习需求,引导他们通过实例感受和差、倍数关系,培养他们的解决问题的能力。

三. 教学目标1.理解并掌握和差、倍数关系的解法。

2.能够运用和差、倍数关系解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.重点:和差、倍数关系的解法。

2.难点:运用和差、倍数关系解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过实例引导学生感受和差、倍数关系,培养学生解决实际问题的能力。

六. 教学准备1.准备相关案例和实际问题。

2.准备课件和教学道具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:“小明有5个苹果,小华比小明多2个苹果,小丽比小华少3个苹果,请问小丽有几个苹果?”引导学生思考和差、倍数关系。

2.呈现(10分钟)呈现一系列和差、倍数关系的例子,让学生观察、分析并总结解题方法。

如:(1)甲有10个苹果,乙比甲多5个苹果,丙比乙少3个苹果,请问丙有几个苹果?(2)一家有3个孩子,老大比老二大3岁,老二比老三大2岁,请问老三大几岁?3.操练(10分钟)让学生分成小组,运用和差、倍数关系解决实际问题。

如:某班有40名学生,其中男生比女生多20%,请问男生和女生各有多少名?4.巩固(10分钟)通过一些练习题,巩固学生对和差、倍数关系的理解和掌握。

如:(1)甲有20个苹果,乙比甲多1/5,丙比乙少1/4,请问丙有几个苹果?(2)一家有5个孩子,老大比老二大2岁,老二比老三大1岁,请问老五大几岁?5.拓展(10分钟)引导学生思考和差、倍数关系在实际生活中的应用,如购物、分配等。

人教版七年级数学 下册 第八章 8.1 二元一次方程组 教案(表格式)

人教版七年级数学 下册 第八章 8.1 二元一次方程组 教案(表格式)

教学设计定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究活动:满足x +y=35的值有哪些? 教师启发: (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值? (2)你能模仿一元一次方程解给二元一次方程的解下定义吗? (3)它与一元一次方程的解有什么区别?定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为目标导学二:二元一次方程组及其解的定义例2: 有下列方程组:①x +y =2;xy =1,②+y =1;1③;1④=7;y⑤x -y =1,x +π=3,其中二元一次方程组有( )A .1个B .2个C .3个D .4个解析:①方程组中第一个方程含未知数的项xy 的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤方程组中的π是常数.故选B.方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是只含两个未知数;三看含未知数的项的次数是不是都为1.例3:用库存化肥给麦田追肥,如果每亩施肥6公斤,就缺少200公斤,如果每亩施肥5公斤,就剩余300公斤,问有多少亩麦田?库存化肥有多少?分析:本题有两上未知数:麦田的亩数和库存化肥的数量。

相等关系:1、每亩施肥6公斤所需化肥量=库存化肥量+200公斤。

2、每亩施肥5公斤,所需化肥量=库存化肥量-300公斤 小组讨论,解答。

四、课堂总结我们学习二元一次方程和方程组,要结合一元一次方程来理解。

1、方程mx−2y=3x+4是关于x、y的二元一次方程,则m的值范围是( )A.m≠0 B.m≠−2 C.m≠3 D.m≠42、已知是方程3x-my=1的一个解,则m=__________。

3、已知方程,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4.4、写出二元一次方程3x-5y=1的一个正整数解______.5、下列方程组中,是二元一次方程组的是()A、B、C、D、。

七年级数学下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组(第1课时)教案 新人教版

七年级数学下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组(第1课时)教案 新人教版

8.3 实际问题与二元一次方程组第1课时【教学目标】知识技能目标1.能够找出实际问题中的已知数和未知数,分析它们之间的等量关系,列出方程组,并解决生活中一些实际问题.2.在列方程组的建模过程中,强化方程的模型思想.过程性目标让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学应用能力.情感态度目标通过列方程组解决实际问题,培养应用数学意识,提高学习数学的趣味性、现实性、科学性.【重点难点】重点:根据简单应用题的题意列出二元一次方程组.难点:将实际情景中的数量关系抽取出来,并用二元一次方程组表示.【教学过程】一、创设情境知识回顾:列二元一次方程组解决实际问题的一般步骤是什么?进一步提问:如何解二元一次方程组的应用问题?解决实际问题的基本思路:二、新知探究探究点1:和差倍分问题例题讲解例1 (教材P99【探究1】)请同学们讨论以下各题:(1)你有什么办法检验李大叔估计的值是否准确?(2)问题中有几个未知数?(3)能写出题目中的等量关系吗?(4)能用等式表示出来吗?引导学生独立思考,培养学生自主学习的能力.让学生自己动手解答问题,检验知识的掌握情况.【方法指导】解答“和、差、倍、分”问题要善于抓关键词,如“谁比谁大、小、多、少,谁是谁的几倍或几分之几.在谁的基础上增加或减少”等,分析题意,准确找出等量关系.探究点2:行程问题例2 1.(教材P101习题8.3 T2变形)一艘轮船顺流航行时,每小时行32 km;逆流航行时,每小时行28 km,则轮船在静水中的速度是每小时行_______km.(轮船在静水中的速度大于水流速度)2.甲乙两人在400 m的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.则甲、乙两人的平均速度分别是每秒_______m.要点归纳:环形问题的等量关系1.同时同地反向跑:(v甲+v乙)×t相遇=环长.2.同时同地同向跑:(v甲-v乙)×t追上=环长.解决顺逆流(风)行程问题常用的两个等量关系1.往返路程相等,即顺流(风)速度×顺流(风)时间=逆流(风)速度×逆流(风)时间.2.轮船(飞机)本身速度不变,即顺流(风)速度-水(风)速度=逆流(风)速度+水(风)速度.【方法技巧】行程问题中的两个重要相等关系(1)相遇问题:两人各自走的路程之和等于两地间的距离.(2)追及问题:两人同地不同时,同向而行,直至后者追上前者,两人所走路程相等;两人同时不同地,同向而行,直至后者追上前者,两人所走路程差等于两地的距离.例3 (教材P99探究2)问题1:本题研究的是长方形面积的分割问题,你能画出示意图帮助自己理解吗?问题2:长度涉及的数量关系?问题3:产量比与种植面积的比有什么关系?问题4:你能根据数量关系列出方程组,并解决这个问题吗?问题5:你还能设计其他种植方案吗?三、检测反馈1.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A. B.C. D.2.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是 ( )A. B.C. D.3.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为( )A. B.C. D.4.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是( )A.175 cm2B.300 cm2C.375 cm2D.336 cm25.某校去年有学生1000名,今年比去年增加5.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x名,走读学生y名,则可列出方程组为_______.6.一个两位数,个位上的数字比十位上的数字大4,交换位置后,所得的新两位数比原两位数的4倍少9,则原两位数是_______.7.为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);某农户承包了一片山坡地种树种草,所得到国家的补偿如表(二),问:该农户种树、种草各多少亩?表(一)种树、种草每亩每年补粮补钱情况表表(二)该农户收到乡政府下发的种树种草亩数及年补偿通知单8.甲、乙两人从相距36 km的两地相向而行,如果甲比乙先动身2 h,那么他们在乙动身2.5 h后相遇;如果乙比甲先动身2 h,那么他们在甲动身3 h后相遇,问甲、乙两人每小时各走多少km?四、本课小结这节课学了什么知识?列二元一次方程组解决实际问题的一般步骤(1)审题.(2)设两个未知数,找两个等量关系.(3)根据等量关系列方程,联立方程组.(4)解方程组.(5)检验并作答.五、布置作业课本第101页第1,2,3题六、板书设计七、教学反思在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题.(比如92页例2、95页例4).这一节安排了两个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些.这节课更为关注建立二元一次方程组数学模型的“探索”过程.它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据.所以设计本节课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用.教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想.在教学中应发挥学生自主学习的积极性,引导学生先独立探究,再进行合作交流.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。

8.3.1实际问题与二元一次方程组教案

8.3.1实际问题与二元一次方程组教案
同学们,今天我们将要学习的是《实际问题与二元一次方程组》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(如购物时总价相等的问题)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组的奥秘。
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑思维能力:通过将实际问题转化为二元一次方程组,让学生学会分析问题,培养其逻辑思维和推理能力;
2.提升解决问题的策略与方法:使学生掌握求解二元一次方程组的不同方法,如代入法、消元法等,并能灵活运用解决实际问题;
3.增强数学建模能力:培养学生从现实问题中抽象出数学模型,即二元一次方程组,并能够运用数学知识解决现实问题;
本节课将通过以下案例进行教学:
(1)购物问题:小华去超市购物,已知购买苹果和香蕉的总价与购买橘子和葡萄的总价相等,求苹果、香蕉、橘子、葡萄的单价。
(2)行程问题:小明和小红同时从同一地点出发,分别向相反方向行走,已知小明速度较快,小红速度较慢,经过一段时间后,两人相距一定距离,求两人的速度。
二、核心素养目标
1.加强对方程组列出的方法和技巧的讲解,让学生在实际问题中更加熟练地运用;
2.在实践活动和小组讨论中,注重对学生的引导和启发,帮助他们提高发现问题和解决问题的能力;
3.关注学生的总结能力,培养他们在课堂学习过程中及时总结、归纳所学知识;
4.针对不同学生的学习情况,进行有针对性的辅导,提高他们的学习效果。
(4)解决实际问题时的数据分析;
-学生在分析数据时可能会出现偏差,需要教师引导学生关注细节,提高数据分析能力。
在教学过程中,教师要针对重点内容进行详细讲解和强调,同时关注学生的难点,采取适当的教学方法,如举例、互动、小组讨论等,帮助学生突破难点,确保他们对核心知识理解透彻。

人教版七年级数学下第八章二元一次方程教案8.3.1

人教版七年级数学下第八章二元一次方程教案8.3.1

8.3.1 实际问题与二元一次议程组(一)(教案)姓名___________班级__________学号__________分数___________学习目标:(1)使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用.(2)通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性.(3)体会列方程组比列一元一次方程容易.(4)进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力.重点与难点:重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系自学指导(一)列方程解应用题的步骤是什么?审题、设未知数、列方程、解方程、检验并答认真阅读课本113页探究1养牛场原有30只母牛和15只小牛,1天约需用饲料675 kg ;一周后又购进12只母牛和5只小牛,这时1天约用饲料940 kg ,饲养员李大叔估计平均每只母牛1天需饲料18~20 kg ,每只小牛1天约需饲料7~8kg ,你能否通过计算检验他的估计?问题:1、题中有哪些已知量?哪些未知量?2、题中等量关系有哪些?3、如何解这个应用题?本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675 kg(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940 kg解:设平均每只母牛和每只小牛1天各需用饲料为x kg 和y kg根据题意列方程,得30156754220940x y x y +=⎧⎨+=⎩整理得24502110470x y x y +=⎧⎨+=⎩解这个方程组得⎩⎨⎧==520y x 答:每只母牛和每只小牛1天各需用饲料为20kg 和5kg ,饲料员李大叔估计每天母牛需用饲料18-20千克,每只小牛一天需用7到8千克与计算有一定的出入。

教师总结:如果系数有公约数的方程要先约分再计算,对于形式不是一般形式的方程组要先对方程组内的方程整理,再计算,整理的原则是左为未知数,右为常数,系数化整.当堂训练1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?解:设现在初中在校学生有x 人,高中在校生有y 人.根据题意,列方程得⎩⎨⎧+=+++=+%)101(4200%)111(%)81(4200y x y x 或42008%11%420010%x y x y +=⎧⎨+=⨯⎩整理得:4200811420010x y x y +=⎧⎨+=⨯⎩解这个方程组得⎩⎨⎧==28001400y x总结:①注意计算的技巧,有时带着比乘出来算得更准、更快!②不要漏乘 ③对于方程4200811420010x y x y +=⎧⎨+=⨯⎩,将第2个方程化为()83420010x y y ++=⨯,将第1个方程直接代入也是一种很好的技巧,所以根据方程自身的特点选择恰当的方程去解.2、有大小两辆货车,两辆大车与3辆小车一次可以支货15.50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?解:设每辆大车和每辆小车一次运货量分别为x ,y 吨⎩⎨⎧=+=+35655.1532y x y x ,42.5x y =⎧⎨=⎩,3524.5x y += 答:3辆大车与5辆小车一次可以运货24.5吨.总结:根据方程自身的特点选择消去哪个未知数.3、某工厂第一车间比第二车间人数的54少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的43,问这两车间原有多少人?解:设第一、第二车间原来分别有 x ,y 人根据题意列表格:⎪⎪⎩⎪⎪⎨⎧-=+-=)10(43103054y x y x ⎩⎨⎧==250170y x 答:第一、第二车间原来分别有170人,250人.总结:采用画图、列表等直观的图形的来辅助思考.4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?解:设这批货物有x 吨,原计划每天运y 吨.⎩⎨⎧x =20y x +10=(y +5)(20-2) 整理得⎩⎨⎧x -20y =0 ①x -18y =80 ②②-①得y =40将y =40代入①得x =800∴⎩⎨⎧x =800y =40 答:设这批货物有800吨,原计划每天运40吨.8.3.1 实际问题与二元一次议程组(一)(学案)姓名___________班级__________学号__________分数___________学习目标:(1)使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用.(2)通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性.(3)体会列方程组比列一元一次方程容易.(4)进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力.重点与难点:重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系自学指导(一)列方程解应用题的步骤是什么?认真阅读课本113页探究1养牛场原有30只母牛和15只小牛,1天约需用饲料675 kg;一周后又购进12只母牛和5只小牛,这时1天约用饲料940 kg,饲养员李大叔估计平均每只母牛1天需饲料18~20 kg,每只小牛1天约需饲料7~8kg,你能否通过计算检验他的估计?问题:1、题中有哪些已知量?哪些未知量?2、题中等量关系有哪些?3、如何解这个应用题?当堂训练1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2、有大小两辆货车,两辆大车与3辆小车一次可以支货15.50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?3、某工厂第一车间比第二车间人数的54少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的43,问这两车间原有多少人?4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?。

新人教版七年级数学下册第八章二元一次方程组8.3再探实际问题与二元一次方程组ppt课件

新人教版七年级数学下册第八章二元一次方程组8.3再探实际问题与二元一次方程组ppt课件

15x 24y
x y 90 C、 30x 24 y
y 90 x D、 2(15 x) 24y
4. 一船顺水航行45千米需要3小时,逆水航 行65千米需要5小时,若设船在静水中的 速度为x千米/小时,水流的速度为y㎞/h, 则x、y的值为 ( )B A、 X=3,y=2 B、x=14,y=1 C、 x=15,y=1 E、x=14,y=2
x y 42 x,乙数为y,依题意可列方程组 3 x 4 y。
3.某车间有90名工人,每人每天平均能生产螺栓15个或螺 帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才 能使螺栓和螺帽刚好配套?设生产螺栓x人,生产螺帽y人, 列方程组为( ) c x 90 y x y 90 A B、 48y 15x
活动一
1.列方程解应用题的一般步骤:
⑴审题,弄清 题意 ,及题中的 相等关系 ; ⑵设未知数,可直接设元 ,也可 间接设元 ; ⑶根据题目中所给的关系找出 相等关系, 列出方程; ⑷ 解方程组,检验解的正确性;
2.练一练: 长18米的钢材,要锯成10段,而每 段的长只能取“1米或2米”两种型号之一,小 明估计2米的有3段,你们认为他估计的是否正 确?为什么呢?那2米和1米的各应多少段?
30x 15y 675 42x 20 y 940 x 20 解这个方程组得 y 5
这就是说平均每只母牛约需饲料 20 克, 每只小牛1天需饲料 5 千克,饲养员李大叔 对母牛的食量估计 较准确 ,对小牛的食量估 计 偏高 。
活动三
已知某电脑公司有A型、B型、C型 三种型号的电脑,其价格分别为A型每台 6000元,B型每台4000元,C型每台 2500元。我市东坡中学计划将100500元 钱全部用于从该电脑公司购进其中两种 不同型号的电脑共36台,请你设计出几 种不同的购买方案供该校选择,并说明 理由。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练一练:
1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
解:设现在初中在校学生有x人,高中在校生有y人
根据题意,列方程得
解这个方程组得
2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?
重点与难点:
重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系
教学过程:
一复习
列方程解应用题的步骤是什么?
新课:
看一看
课本113页探究1
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg
解:设每辆大车和每辆小车一次运货量分别为x,y吨
答:3辆大车与5辆小车一次可以运货24.5吨
3、某工厂第一车间比第二车间人数的 少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的 ,问这两车间原有多少人?
解:设第一、第二车间原来分别有x,y人
4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
8.3再探实际问题与二元一次议程组
教学目标:
1使学生会借助二元一次方程组解ห้องสมุดไป่ตู้简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用
2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性
3体会列方程组比列一元一次方程容易
4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940
解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg
根据题意列方程,得
解这个方程组得
答:每只母牛和每只小牛1天各需用饲料为20kg和5kg,饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算有一定的出入。
相关文档
最新文档