期中复习测试四(文科)

合集下载

人教A版必修2高二数学期中考试题(文科)及答案

人教A版必修2高二数学期中考试题(文科)及答案

高二级数学中考试题(文科)本试题卷共4页,三大题20小题,全卷满分150分,考试用时120分钟。

注意事项:1. 答题前,考生务必将自己的姓名、座位号填在答题卡上;2. 选择题每小题选出答案后,填写在答题卡上对应题目;3. 填空题和解答题填写在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束后,只将答题卡上交。

参考公式:圆锥的表面积公式)(l r r S +=π,r 是底面半径,l 是母线锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是( ) A .圆柱 B .圆锥 C .球 D .圆台2、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( )A.300B.450C.600D.9003、直线5x-2y-10=0在x 轴上的截距为a, 在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=-5;C.a=-2,b=5D.a=-2,b=-54、直线2x-y=7与直线3x+2y-7=0的交点是( )A.(3,-1)B.(-1,3)C.(-3,-1)D.(3,1)5、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A.4x+3y-13=0B.4x-3y-19=0C.3x-4y-16=0D.3x+4y-8=06、点M(4,m )关于点N (n,-3)的对称点为P (6,-9),则( )A.m =-3,n =10 B.m =3,n =10 C.m =-3,n =5 D.m =3,n =57、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.8、已知水平放置的ABC ∆的直观图如图所示,其中23,1=''=''=''O A O C O B ,那么原ABC ∆的面积是 ( ) A. 23; B. 43;C.3; D. 22.9、某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做底,且有一个三角形面上写上了“年”字。

2021年高二下学期期中数学试卷(文科)含解析

2021年高二下学期期中数学试卷(文科)含解析
2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )
A.y=B.y=e﹣xC.y=﹣x2+1D.y=lg|x|
3.用反证法证明命题“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设中正确的是( )
A.假设a,b,c不都是偶数
B.假设a,b,c都不是偶数
A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟
【考点】二次函数的性质.
【分析】由提供的数据,求出函数的解析式,由二次函数的图象与性质可得结论.
【解答】解:将(3,0.7),(4,0.8),(5,0.5)分别代入p=at2+bt+c,可得,
解得a=﹣0.2,b=1.5,c=﹣2,
∴p=﹣0.2t2+1.5t﹣2,对称轴为t=﹣=3.75.
故选:B.
6.设a=log37,b=21.1,c=0.83.1,则( )
A.b<a<cB.c<a<bC.c<b<aD.a<c<b
【考点】对数值大小的比较.
【分析】分别讨论a,b,c的取值范围,即可比较大小.
【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,
则c<a<b,
故选:B.
【考点】函数单调性的性质.
【分析】根据函数偶函数的性质,利用对称性即可得到结论.
【解答】解:若x<0,则﹣x>0,
∵当x≥0时,f(x)=x2﹣4x,
∴当﹣x>0时,f(﹣x)=x2+4x,
∵f(x)是定义域为R的偶函数,
∴f(﹣x)=x2+4x=f(x),
即当x<0时,f(x)=x2+4x,

高二数学上学期期中文科试题

高二数学上学期期中文科试题

高二数学上学期期中文科试题可能对于很多文科生来说数学是很难的,大家不要放弃哦,今天小编就给大家分享一下高二数学,就给阅读哦高二数学上期中文科试题第I卷共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1. 已知是等比数列, ( )A.4B.16C.32D. 642.若a>b>0,下列不等式成立的是( )A.a23. 在中,,则一定是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形4.在△ABC内角A,B, C的对边分别是a,b,c,已知a= ,c= ,∠A= ,则∠C的大小为( )A. 或B. 或C.D.5.原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026.在中,已知 ,则角A等于( )A. B. C. D.7.若数列为等差数列且,则sin 的值为( )A. B. C. D.8.在中,分别是角的对边,且 , ,则的面积等于( )A. B. C. D.109.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺10.若不等式组表示的平面区域是一个三角形,则的取值范围是( )A. 或B.C. 或D.11.等比数列的前n项的和分别为, ,则 ( )A. B. C. D.12.已知单调递增数列{an}满足an=3n﹣λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是( )A.λ≤3B.λ<3C.λ≥3D.λ>3第Ⅱ卷共90分二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置.13.已知关于x的不等式ax2﹣(a+1)x+b<0的解集是{x|114.设且 ,则的最小值为15.若数列的前n项的和为,且,则的通项公式为_________.16.若数列为等差数列,首项,则使前项和的最大自然数n是_________________.三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤.17、(本题满分10分)(1)设数列满足,写出这个数列的前四项;(2)若数列为等比数列,且求数列的通项公式18.(本题满分12分)已知函数 .(1)当时,解不等式 ;(2)若不等式的解集为,求实数的取值范围.19.(本题满分12分)的内角的对边分别为 ,已知 .(1)求(2)若 , 面积为2,求20.(本题满分12分)在中,角所对的边分别为,设为的面积,满足(I)求角的大小;(II)若边长,求的周长的最大值.21.(本小题满分12分)已知实数满足不等式组 .(1)求目标函数的取值范围;(2)求目标函数的最大值.22.(本小题满分12分)已知等比数列满足 , ,公比(1)求数列的通项公式与前n项和 ;(2)设,求数列的前n项和 ;(3)若对于任意的正整数,都有成立,求实数m的取值范围. 高二数学(文科)参考答案一、选择题:本大题有12小题,每小题5分,共60分1-12:C C C D B C B C C A B B二、填空题:本大题有4小题,每小题5分,共20分13. 14.8 15. 16. 4034三、解答题:17.(本小题满分10分)(1) …………5分,(2)由已知得,联立方程组解得得,即…………10分18.(本小题满分12分).……4分(2)若不等式的解集为,则①当m=0时,-12<0恒成立,适合题意; ……6分②当时,应满足由上可知,……12分19. (1)由题设及得,故上式两边平方,整理得解得……………6分(2)由,故又,由余弦定理及得所以b=2……………12分20.解:(1)由题意可知,……………2分12absinC=34•2abcosC,所以tanC=3. 5分因为0所以,所以,当时,最大值为4,所以△ABC的周长的最大值为6其他方法请分步酌情给分21.(本小题满分12分)解:(1)画出可行域如图所示,直线平移到点B时纵截距最大,此时z取最小值;平移到点C时纵截距最小,此时z取最大值.由得由得∴C(3,4);当x=3,y=4时,z最大值2.………………………8分(2) 表示点到原点距离的平方,当点M在C点时,取得最大值,且………………12分22. 解:(1)由题设知,,又因为, ,解得:,故an=3 = ,前n项和Sn= - .……4分(2)bn= = = ,所以 = ,所以== < ,………8分(3)要使恒成立,只需,即解得或m≥1. ………………12分高二文科数学上学期期中试卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若,则”的逆否命题是 ( )A. 若,则B. 若,则C. 若,则D. 若,则2 .命题“ ”的否定是 ( )A. B. C. D.3.若中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是 ( )A. x23+y24=1B. x24+y23=1C. x24+y22=1D. x24+y23=14. 表示的曲线方程为 ( )[A. B.C. D.5.抛物线的准线方程是 ( )A. B. C. D.6.若k∈R则“k>5”是“方程x2k-5-y2k+2=1表示双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知是椭圆的两焦点,过点的直线交椭圆于点,若 ,则 ( )A.9B.10C.11D.128.已知双曲线的离心率为3,焦点到渐近线的距离为,则此双曲线的焦距等于 ( )A. B. C. D.9.双曲线的一个焦点为,椭圆的焦距为4,则A.8B.6C.4D.210.已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率分别为、,若,则双曲线的离心率为 ( )A. B. C. D.11.如果是抛物线的点,它们的横坐标依次为,是抛物线的焦点,若 ,则 ( )A. B. C. D.12.已知点,是椭圆上的动点,且,则的取值范围是 ( )A. B. C. D.二、填空题:(本大题共4小题,每小题5分)13.若命题“ ”是假命题,则实数的取值范围是 .14.已知直线和双曲线的左右两支各交于一点,则的取值范围是 .15.已知过抛物线的焦点,且斜率为的直线与抛物线交于两点,则 .16.已知是抛物线上的动点,点是圆上的动点,点是点在轴上的射影,则的最小值是 .三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设命题函数在单调递增;命题方程表示焦点在轴上的椭圆.命题“ ”为真命题,“ ”为假命题,求实数的取值范围.18.(本小题满分12分)(Ⅰ)已知某椭圆过点,求该椭圆的标准方程.(Ⅱ)求与双曲线有共同的渐近线,经过点的双曲线的标准方程.19.(本小题满分12分)已知抛物线的顶点在原点,焦点在轴的正半轴且焦点到准线的距离为2.(Ⅰ)求抛物线的标准方程;(Ⅱ)若直线与抛物线相交于两点,求弦长 .20.(本小题满分12分)已知双曲线的离心率为,虚轴长为 .(Ⅰ)求双曲线的标准方程;(Ⅱ)过点,倾斜角为的直线与双曲线相交于、两点,为坐标原点,求的面积.21.(本小题满分12分)已知椭圆,过点,的直线倾斜角为,原点到该直线的距离为 .(Ⅰ)求椭圆的标准方程;(Ⅱ)斜率大于零的直线过与椭圆交于E,F两点,若,求直线EF的方程.22.(本小题满分12分)已知分别为椭圆C:的左、右焦点,点在椭圆上,且轴,的周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.数学(文科)学科参考答案第Ⅰ 卷 (选择题共60分)一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D D C A A C D C B B A第Ⅱ 卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分. )(13) ; (14) ; (15) ; (16) .三、解答题:(解答应写出必要的文字说明,证明过程或演算步骤.)(17)(本小题满分10分)解:命题p:函数在单调递增命题q:方程表示焦点在轴上的椭圆……4分“ ”为真命题,“ ”为假命题,命题一真一假……6 分① 当真假时:② 当假真时:综上所述:的取值范围为……10分(18)(本小题满分12分)解:(Ⅰ)设椭圆方程为,解得,所以椭圆方程为. ……6分(Ⅱ)设双曲线方程为,代入点,解得即双曲线方程为. ……12分(19)(本小题满分12分)解:(Ⅰ) 抛物线的方程为:……5分(Ⅱ)直线过抛物线的焦点,设,联立,消得,……9分或……12分(20)(本小题满分12分)解:(Ⅰ)依题意可得,解得双曲线的标准方程为. ……4分(Ⅱ)直线的方程为联立,消得,设,,由韦达定理可得 , ,……7分则……9分原点到直线的距离为……10分的面积为……12分(21)(本小题满分12分)解:(Ⅰ)由题意,,,解得,所以椭圆方程是:……4分(Ⅱ)设直线:联立,消得,设,,则 ,……① ……② ……6分,即……③ ……9分由①③得由②得……11分解得或 (舍)直线的方程为:,即……12分(22)(本小题满分12分)解:(Ⅰ)由题意,,,的周长为,,椭圆的标准方程为. ……4分(Ⅱ)由(Ⅰ)知,设直线方程:,联立,消得……5分设,点在椭圆上,……7分又直线的斜率与的斜率互为相反数,在上式中以代,,……9分……10分即直线的斜率为定值,其值为. ……12分高二数学上期中文科联考试题第Ⅰ卷(共100分)一、选择题(本大题共11个小题,每小题5分,共55分)1.已知sin α=25,则cos 2α=A.725B.-725C.1725D.-17252.已知数列1,3,5,7,…,2n-1,…,则35是它的A.第22项B.第23项C.第24项D.第28项3.在△ABC中,角A,B,C的对边分别为a,b,c,若b=c=2a,则cos B=A.18B.14C.12D.14.△ABC中,角A,B,C所对的边分别为a,b,c,若cbA.钝角三角形B.直角三角形C.锐角三角形D.等边三角形5.已知点(a,b) a>0,b>0在函数y=-x+1的图象上,则1a+4b 的最小值是A.6B.7C.8D.96.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则从上往下数第6节的容积为A.3733B.6766C.1011D.23337.设Sn为等比数列{an}的前n项和, 27a4+a7=0,则S4S2=A.10B.9C.-8D.-58.已知数列{an}满足an+1+an=(-1)n•n,则数列{an}的前20项的和为A.-100B.100C.-110D.1109.若x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0,则z=x+2y的最大值为A.3B.4C.5D.610.已知0A.13B.12C.23D.3411.已知等差数列{an}的公差d≠0,前n项和为Sn,若对所有的n(n∈N*),都有Sn≥S10,则A.an≥0B.a9•a10<0C.S2第Ⅰ卷选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 得分答案二、填空题(本大题共3小题,每小题5分,共15分)12.在等比数列{an}中,a4•a6=2 018,则a3•a7= ________ .13.在△ABC中,a=3,b=1,∠A=π3,则cos B=________.14.对于实数a、b、c,有下列命题:①若a>b,则acbc2,则a>b;③若a ab>b2;④若c>a>b>0,则ac-a>bc-b;⑤若a>b,1a>1b,则a>0,b<0.其中正确的是________.(填写序号)三、解答题(本大题共3小题,共30分)15.(本小题满分8分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求角C;(2)若c=7,△ABC的面积为332,求△ABC的周长.16.(本小题满分10分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3 000元、2 000元. 甲、乙产品都需要在A、B两种设备上加工,在A、B设备上加工一件甲产品所需工时分别为1 h,2 h,加工一件乙产品所需工时分别为2 h,1 h,A、B两种设备每月有效使用台时数分别为400 h 和500 h,分别用x,y表示计划每月生产甲、乙产品的件数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问每月分别生产甲、乙两种产品各多少件,可使月收入最大?并求出最大收入.17.(本小题满分12分)已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1anan+1,求数列{bn}的前n项和Sn.第Ⅱ卷(共50分)一、选择题18.(本小题满分6分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP→=4FQ→,则|QF|等于( )A.72B.52C.3D.2二、填空题19.(本小题满分6分)如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是__________.三、解答题20.(本小题满分12分)在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=2.沿EF将梯形AFED折起,使得∠AFB=60°,如图.(1)若G为FB的中点,求证:AG⊥平面BCEF;(2)求二面角C-AB-F的正切值.21.(本小题满分13分)已知二次函数f(x)=x2-16x+q+3.(1)若函数f(x)在区间[-1,1]上存在零点,求实数q的取值范围;(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).22.(本小题满分13分)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=12.(1)求椭圆的标准方程;(2)与圆(x-1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足OM→+ON→=λOC→,求实数λ的取值范围.参考答案第Ⅰ卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11答案 C B B A D A A A B B D1.C 【解析】cos 2α=1-2sin2α=1-2×252=1725.故选C.2.B 【解析】由数列前几项可知an=2n-1,令an=2n-1=35得n=23.故选B.3.B4.A 【解析】由正弦定理可得sin C5.D 【解析】a+b=1,∴1a+4b=1a+4b(a+b)=5+ba+4ab≥9,当且仅当b=2a=23时取等号.故选D.6.A 【解析】根据题意,设该竹子自上而下各节的容积为等差数列{an},设其公差为d,且d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,解可得a1=1322,d=766,则第6节的容积a6=a1+5d=7466=3733.故答案为A.7.A 【解析】由27a4+a7=0,得q=-3,故S4S2=1-q41-q2=1+q2=10.故选A.8.A 【解析】由an+1+an=(-1)n•n,得a2+a1=-1,a3+a4=-3,a5+a6=-5,…,a19+a20=-19.∴an的前20项的和为a1+a2+…+a19+a20=-1-3-…-19=-1+192×10=-100,故选A.9.B 【解析】由x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0.作出可行域如图,由z=x+2y,得y=-12x+z2.要使z最大,则直线y=-12x+z2的截距最大,由图可知,当直线y=-12x+z2过点A时截距最大.联立x=2y,x+y=3解得A(2,1),∴z=x+2y的最大值为2+2×1=4.故答案为B.10.B 【解析】∵0∴x(3-3x)=3x(1-x)≤3•x+1-x22=34,当且仅当x=12时取等号.∴x(3-3x)取最大值34时x的值为12.故选B.11.D 【解析】由?n∈N*,都有Sn≥S10,∴a10≤0,a11≥0,∴a1+a19=2a10≤0,∴S19=19(a1+a19)2≤0,故选D.二、填空题12.2 01813.32 【解析】∵a=3,b=1,∠A=π3,∴由正弦定理可得:sin B=bsin Aa=1×323=12,∵b14.②③④⑤【解析】当c=0时,若a>b,则ac=bc,故①为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,故②为真命题;若a ab且ab>b2,即a2>ab>b2,故③为真命题;若c>a>b>0,则cabc-b,故④为真命题;若a>b,1a>1b,即bab>aab,故a•b<0,则a>0,b<0,故⑤为真命题.故答案为②③④⑤.三、解答题15.【解析】(1)∵在△ABC中,0已知等式利用正弦定理化简得:2cos C(sin AcosB+sin Bcos A)=sin C,整理得:2cos Csin(A+B)=sin C,即2cos Csin(π-(A+B))=sin C,2cos Csin C=sin C,∴cos C=12,∴C=π3.4分(2)由余弦定理得7=a2+b2-2ab•12,∴(a+b)2-3ab=7,∵S=12absin C=34ab=332,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+7.8分16.【解析】(1)设甲、乙两种产品月产量分别为x,y件,约束条件是2x+y≤500,x+2y≤400,x≥0,y≥0,由约束条件画出可行域,如图所示的阴影部分.5分(2)设每月收入为z千元,目标函数是z=3x+2y,由z=3x+2y可得y=-32x+12z,截距最大时z最大.结合图象可知,直线z=3x+2y经过A处取得最大值由2x+y=500,x+2y=400可得A(200,100),此时z=800.故安排生产甲、乙两种产品的月产量分别为200,100件可使月收入最大,最大为80万元.10分17.【解析】(1)设等差数列{an}的公差为d,∵a3+a8=20,且a5是a2与a14的等比中项,∴2a1+9d=20,(a1+4d)2=(a1+d)(a1+13d),解得a1=1,d=2,∴an=1+2(n-1)=2n-1.6分(2)bn=1(2n-1)(2n+1)=1212n-1-12n+1,∴Sn=b1+b2+b3+…+bn=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.12分第Ⅱ卷(共50分)一、选择题18.C 【解析】∵FP→=4FQ→,∴|FP→|=4|FQ→|,∴|PQ||PF|=34.如图,过Q作QQ′⊥l,垂足为Q′,设l与x轴的交点为A,则|AF|=4,∴|QQ′||AF|=|PQ||PF|=34,∴|QQ′|=3,根据抛物线定义可知|QF|=|QQ′|=3,故选C.二、填空题19.62 【解析】|F1F2|=23.设双曲线的方程为x2a2-y2b2=1.∵|AF2|+|AF1|=4,|AF2|-|AF1|=2a,∴|AF2|=2+a,|AF1|=2-a.在Rt△F1AF2中,∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,即(2-a)2+(2+a)2=(23)2,∴a=2,∴e=ca=32=62.三、解答题20.【解析】(1)因为AF=BF,∠AFB=60°,△AFB为等边三角形.又G为FB的中点,所以AG⊥FB.2分在等腰梯形ABCD中,因为E、F分别是CD、AB的中点,所以EF⊥AB.于是EF⊥AF,EF⊥BF,则EF⊥平面ABF,所以AG⊥EF.又EF与FB交于一点F,所以AG⊥平面BCEF.5分(2)连接CG,因为在等腰梯形ABCD中,CD=2,AB=4,E、F分别是CD、AB中点,G为FB的中点,所以EC=FG=BG=1,从而CG∥EF.因为EF⊥平面ABF,所以CG⊥平面ABF.过点G作GH⊥AB于H,连结CH,据三垂线定理有CH⊥AB,所以∠CHG为二面角C-AB-F的平面角.8分因为Rt△BHG中,BG=1,∠GBH=60°,所以GH=32.在Rt△CGB中,CG⊥BG,BG=1,BC=2,所以CG=1.在Rt△CGH中,tan∠CHG=233,故二面角C-AB-F的正切值为233.12分21.【解析】(1)∵函数f(x)=x2-16x+q+3的对称轴是x=8,∴f(x)在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有f(1)≤0,f(-1)≥0,即1-16+q+3≤0,1+16+q+3≥0,∴-20≤q≤12.6分(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x=8.①当0≤t≤6时,在区间[t,10]上,f(t)最大,f(8)最小,∴f(t)-f(8)=12-t,即t2-15t+52=0,解得t=15±172,∴t=15-172;9分②当6∴f(10)-f(8)=12-t,解得t=8;11分③当8∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,∴t=9.综上可知,存在常数t=15-172,8,9满足条件.13分22.【解析】(1)设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知得:4a2+3b2=1,ca=12,c2=a2-b2,解得a2=8,b2=6,所以椭圆的标准方程为x28+y26=1.4分(2)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以|t+k|1+k2=1?2k=1-t2t(t≠0),6分把y=kx+t代入x28+y26=1并整理得:(3+4k2)x2+8ktx+4t2-24=0,设M(x1,y1),N(x2,y2),则有x1+x2=-8kt3+4k2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=6t3+4k2, 8分因为λOC→=(x1+x2,y1+y2),所以C-8kt(3+4k2)λ,6t(3+4k2)λ,又因为点C在椭圆上,所以,8k2t2(3+4k2)2λ2+6t2(3+4k2)2λ2=1?λ2=2t23+4k2=21t22+ 1t2+1,11分因为t2>0,所以1t22+1t2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).13分。

天津市红桥区2022届高三上学期期中数学试卷(文科) Word版含解析

天津市红桥区2022届高三上学期期中数学试卷(文科) Word版含解析

2021-2022学年天津市红桥区高三(上)期中数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,4,5,6},B={1,3,5},则集合A∩B=( )A.{1,3,5} B.{1,5} C.{2,4,6} D.{1,2,3,4,5.6}2.i 是虚数单位,复数=( )A .B .C .D .3.命题“对∀∈R,x2﹣3x+5≤0”的否定是( )A.∃x0∈R,x02﹣3x0+5≤0 B.∃x0∈R,x02﹣3x0+5>0C.∀x∈R,x2﹣3x+5≤0 D.∀x0∈R,x02﹣3x0+5>04.某程序框图如图所示,则输出的结果S等于( )A.26 B.57 C.60 D.615.设a=log0.32,b=log32,c=20.3,则这三个数的大小关系是( )A.b>c>a B.a>c>b C.a>b>c D.c>b>a6.已知=(1,2),=(0,1),=(k,﹣2),若(+2)⊥,则k=( )A.2 B.﹣2 C.8 D.﹣87.将函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图象的一条对称轴方程为( )A.x=﹣B.x=﹣C.x=D.x=8.如图,在三角形ABC中,已知AB=2,AC=3,∠BAC=θ,点D为BC 的三等分点.则的取值范围为( )A .B .C .D .二、填空题:本大题共6个小题,每小题5分,共30分.9.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,3},则A∩(∁U B)=__________.10.计算的值为__________.11.计算:log525+lg=__________.12.在△ABC中,AC=,BC=2,B=60°,则△ABC的面积等于__________.13.设函数f(x)=,则f(f(﹣4))的值是__________.14.如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=3,BD=4则线段AF的长为__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合A={x|(x﹣2)[x﹣(3a+1)]<0},B={x|2a<x<a2+1}.(Ⅰ)当a=﹣2时,求A∪B;(Ⅱ)求使B⊆A的实数a的取值范围.16.(13分)在等差数列{a n}中,已知a1+a4+a7=9,a3+a6+a9=21,(Ⅰ)求数列{a n}的通项a n;(Ⅱ)求数列{a n}的前9项和S9;(Ⅲ)若,求数列{c n}的前n项和T n.17.(13分)已知cosθ=,(Ⅰ)求sin2θ的值;(Ⅱ)求的值;(Ⅲ)求的值.18.(13分)已知函数f(x)=sin2ωx+cos2ωx.(ω>0)的最小正周期为4π,(Ⅰ)求ω的值及函数f(x)的单调递减区间;(Ⅱ)将函数y=f(x)的图象上各点的横坐标向右平行移动个单位长度,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在上的最大值和最小值.19.(14分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.20.(14分)已知:已知函数f(x)=﹣+2ax,(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;(Ⅱ)若a=1,求f(x)的极值;(Ⅲ)当0<a<2时,f(x)在[1,4]上的最小值为﹣,求f(x)在该区间上的最大值.2021-2022学年天津市红桥区高三(上)期中数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,4,5,6},B={1,3,5},则集合A∩B=( )A.{1,3,5} B.{1,5} C.{2,4,6} D.{1,2,3,4,5.6}【考点】交集及其运算.【专题】计算题;集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={1,2,4,5,6},B={1,3,5},∴A∩B={1,5},故选:B.【点评】此题考查了交集及其运算,娴熟把握交集的定义是解本题的关键.2.i 是虚数单位,复数=( )A .B .C .D .【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:复数==,故选:C.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理力量与计算力量,属于基础题.3.命题“对∀∈R,x2﹣3x+5≤0”的否定是( )A.∃x0∈R,x02﹣3x0+5≤0 B.∃x0∈R,x02﹣3x0+5>0C.∀x∈R,x2﹣3x+5≤0 D.∀x0∈R,x02﹣3x0+5>0【考点】命题的否定.【专题】计算题;规律型;简易规律.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:由于全称命题的否定是特称命题,所以,命题“对∀∈R,x2﹣3x+5≤0”的否定是:∃x0∈R,x02﹣3x0+5>0.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4.某程序框图如图所示,则输出的结果S等于( ) A.26 B.57 C.60 D.61【考点】程序框图.【专题】计算题;图表型;分类争辩;试验法;算法和程序框图.【分析】分析程序中各变量、各语句的作用,再依据流程图所示的挨次,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:k S 是否连续循环循环前1 1/第一圈2 4 是其次圈3 11 是第三圈4 26 是第四圈5 57 否故最终的输出结果为:57故选:B.【点评】依据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.5.设a=log0.32,b=log32,c=20.3,则这三个数的大小关系是( )A.b>c>a B.a>c>b C.a>b>c D.c>b>a【考点】对数值大小的比较.【专题】转化思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=log0.32<0,0<b=log32<1,c=20.3>1,∴c>b>a.故选:D.【点评】本题考查了指数函数与对数函数的单调性,考查了推理力量与计算力量,属于中档题.6.已知=(1,2),=(0,1),=(k,﹣2),若(+2)⊥,则k=( )A.2 B.﹣2 C.8 D.﹣8【考点】数量积推断两个平面对量的垂直关系.【专题】平面对量及应用.【分析】由向量的坐标运算易得的坐标,进而由可得它们的数量积为0,可得关于k的方程,解之可得答案.【解答】解:∵=(1,2),=(0,1),∴=(1,4),又由于,所以=k﹣8=0,解得k=8,故选C【点评】本题考查平面对量数量积和向量的垂直关系,属基础题.7.将函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图象的一条对称轴方程为( )A.x=﹣B.x=﹣C.x=D.x=【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】依据函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.【解答】解:将函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),可得函数y=sin(2x+)的图象,再向右平移个单位,那么所得图象对应的函数解析式为y=sin[2(x ﹣)+]=sin(2x ﹣)=﹣cos2x,故最终所得函数的图象的一条对称轴方程为2x=kπ,即x=,k∈z,结合所给的选项可得只有B满足条件,故选:B.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于中档题.8.如图,在三角形ABC中,已知AB=2,AC=3,∠BAC=θ,点D为BC 的三等分点.则的取值范围为( )A .B .C .D .【考点】平面对量数量积的运算.【专题】计算题;转化思想;向量法;平面对量及应用.【分析】直接利用向量的运算法则和数量积运算把化为2cos,然后由﹣1<cosθ<1求得答案.【解答】解:∵====,∴=()•()=﹣==2cos.∵﹣1<cosθ<1,∴﹣<2cosθ+<.∴∈(﹣).故选:D.【点评】本题考查平面对量的数量积运算,娴熟把握向量的运算法则和数量积运算是解题的关键,是中档题.二、填空题:本大题共6个小题,每小题5分,共30分.9.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,3},则A∩(∁U B)={1,5}.【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】进行集合的补集、交集运算即可.【解答】解:∁U B={1,4,5,6};∴A∩(∁U B)={1,5}.故答案为:{1,5}.【点评】考查列举法表示集合,全集的概念,以及补集、交集的运算.10.计算的值为﹣.【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】所求式子中的角变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果.【解答】解:cos=cos(π+)=﹣cos=﹣.故答案为:﹣【点评】此题考查了运用诱导公式化简求值,娴熟把握诱导公式是解本题的关键.11.计算:log525+lg =.【考点】对数的运算性质.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用导数的运算法则化简求解即可.【解答】解:log525+lg=2﹣2++1=故答案为:.【点评】本题考查导数的运算法则的应用,考查计算力量.12.在△ABC中,AC=,BC=2,B=60°,则△ABC 的面积等于.【考点】余弦定理;三角形的面积公式.【专题】计算题;解三角形.【分析】通过余弦定理求出AB的长,然后利用三角形的面积公式求解即可.【解答】解:设AB=c,在△ABC中,由余弦定理知AC2=AB2+BC2﹣2AB•BCcosB,即7=c2+4﹣2×2×c×cos60°,c2﹣2c﹣3=0,又c>0,∴c=3.S△ABC =AB•BCsinB=BC•h可知S△ABC ==.故答案为:【点评】本题考查三角形的面积求法,余弦定理的应用,考查计算力量.13.设函数f(x)=,则f(f(﹣4))的值是4.【考点】函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用分段函数求解函数值即可.【解答】解:函数f(x)=,则f(f(﹣4))=f(16)=log216=4.故答案为:4.【点评】本题考查分段函数的应用,函数值的求法,考查计算力量.14.如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB 的延长线交于点E,AD与BC交于点F.若AB=AC,AE=3,BD=4则线段AF的长为.【考点】与圆有关的比例线段.【专题】综合题;选作题;转化思想;综合法.【分析】由切割线定理得到AE2=EB•ED=EB(EB+BD),求出EB=5,由已知条件推导出四边形AEBC 是平行四边形,从而得到AC=AB=BE=5,BC=AE=3,由△AFC∽△DFB,能求出CF的长.【解答】解:∵AB=AC,AE=3,BD=4,梯形ABCD中,AC∥BD,BD=4,由切割线定理可知:AE2=EB•ED=EB(EB+BD),即45=BE(BE+4),解得EB=5,∵AC∥BD,∴AC∥BE,∵过点A作圆的切线与DB的延长线交于点E,∴∠BAE=∠C,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠BAE,∴AE∥BC,∴四边形AEBC 是平行四边形,∴EB=AC ,∴AC=AB=BE=5,∴BC=AE=3,∵△AFC∽△DFB,∴=,即=,解得CF=.故答案为:.【点评】本题考查与圆有关的线段长的求法,是中档题,解题时要认真审题,留意切割线定理的合理运用.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合A={x|(x﹣2)[x﹣(3a+1)]<0},B={x|2a<x<a2+1}.(Ⅰ)当a=﹣2时,求A∪B;(Ⅱ)求使B⊆A的实数a的取值范围.【考点】集合的包含关系推断及应用;并集及其运算.【专题】分类争辩;分类法;集合.【分析】由已知中集合A={x|(x﹣2)(x﹣3a﹣1)<0},集合B={x|(x﹣2a)(x﹣a2﹣1)<0},我们先对a 进行分类争辩后,求出集合A,B,再由B⊆A,我们易构造出一个关于a的不等式组,解不等式组,即可得到实数a的取值范围【解答】(Ⅰ)解:当a=﹣2时,A={x|﹣5<x<2},B={x|﹣4<x<5},∴A∪B={x|﹣5<x<5}.(Ⅱ)∵B={x|2a<x<a2+1}当时,2>3a+1,A={x|3a+1<x<2},﹣﹣﹣﹣﹣﹣﹣﹣要使B⊆A必需此时a=﹣1,当时,A=ϕ,使B⊆A的a不存在;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当时,2<3a+1,A={x|2<x<3a+1}要使B⊆A必需,故1≤a≤3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上可知,使的实数a的取值范围为[1,3]∪{﹣1}.﹣﹣﹣﹣﹣(13分)【点评】本题考查集合的基本运算,集合关系中的参数取值问题,考查计算力量,分类争辩思想的应用16.(13分)在等差数列{a n}中,已知a1+a4+a7=9,a3+a6+a9=21,(Ⅰ)求数列{a n}的通项a n;(Ⅱ)求数列{a n}的前9项和S9;(Ⅲ)若,求数列{c n}的前n项和T n.【考点】数列的求和;等差数列的通项公式.【专题】计算题;方程思想;数学模型法;等差数列与等比数列.【分析】(I)利用等差数列的通项公式即可得出;(II)利用等差数列的前n项和公式即可得出;(III)利用等比数列的前n项和公式即可得出.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a1+a4+a7=9,a3+a6+a9=21,得,解得a1=﹣3,d=2,∴a n=2n﹣5.(Ⅱ)S9=9a1+36d=9×(﹣3)+36×2=45.(Ⅲ)由(Ⅰ),∴{c n}是首项c1=1,公比q=4的等比数列,∴.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理力量与计算力量,属于中档题.17.(13分)已知cosθ=,(Ⅰ)求sin2θ的值;(Ⅱ)求的值;(Ⅲ)求的值.【考点】两角和与差的正切函数;两角和与差的余弦函数.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(Ⅰ)利用同角三角函数关系式可求sinθ的值,依据二倍角的正弦函数公式即可求值.(Ⅱ)利用(Ⅰ)的结论及两角和的余弦函数公式即可求值得解.(Ⅲ)利用同角三角函数关系式可求tanθ的值,依据两角和的正切函数公式即可求值.【解答】(本小题满分13分)解:(Ⅰ)∵,∴.﹣﹣﹣﹣﹣﹣(公式,结论1分)﹣﹣﹣﹣∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(公式,结论1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)∴=cosθcos﹣sin ==.﹣﹣﹣﹣(公式,函数值,结论1分)﹣﹣(Ⅲ)∵,﹣﹣﹣﹣﹣﹣﹣(公式1分)∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(公式,结论1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)【点评】本题主要考查了同角三角函数关系式,二倍角的正弦函数公式、余弦函数公式、正切函数公式的应用,考查了计算力量,属于基础题.18.(13分)已知函数f(x)=sin2ωx+cos2ωx.(ω>0)的最小正周期为4π,(Ⅰ)求ω的值及函数f(x)的单调递减区间;(Ⅱ)将函数y=f(x )的图象上各点的横坐标向右平行移动个单位长度,纵坐标不变,得到函数y=g(x)的图象,求函数g(x )在上的最大值和最小值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】计算题;数形结合;数形结合法;三角函数的图像与性质.【分析】(Ⅰ)利用两角和的正弦函数公式化简可得解析式:f(x)=sin(2ωx+),由周期公式可求ω,解得函数解析式,由,k∈Z*,即可解得f(x)的单调递减区间.(Ⅱ)由函数y=Asin(ωx+φ)的图象变换规律可得解析式,由正弦函数的图象和性质,即可求得函数g(x )在上的最大值和最小值.【解答】(本小题满分13分)解:(Ⅰ)由于,(公式2分)又由于,所以;(公式,结论1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得:.当,k∈Z*,函数f(x)单调递减,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以,函数f(x )的单调递减区间为k∈Z*.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)将函数y=f(x )的图象上各点的横坐标向右平行移动个单位长度,纵坐标不变,得到函数y=g(x)的图象,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣g(x )在上单调递增,在上单调递减,,,所以g(x )在上最大值为,最小值为.(单调性,结论各1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)【点评】本题主要考查了两角和的正弦函数公式,周期公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质的应用,属于中档题.19.(14分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.【考点】函数的最值及其几何意义;函数零点的判定定理.【专题】计算题;函数思想;转化思想;解题方法;函数的性质及应用.【分析】(Ⅰ)利用f(0)=2,f(x+1)﹣f(x)=2x﹣1,直接求出a、b、c,然后求出函数的解析式.(Ⅱ)利用二次函数的对称轴与区间的关系,直接求解函数的最值.(Ⅲ)利用g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出M的范围.【解答】(本小题满分14分)解:(Ⅰ)由f(0)=2,得c=2,又f(x+1)﹣f(x)=2x﹣1得2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,所以f(x)=x2﹣2x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(a,b,c各,解析式1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)f(x)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1∈[﹣1,2],故f min(x)=f(1)=1,又f(﹣1)=5,f(2)=2,所以f max(x)=f(﹣1)=5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)g(x)=x2﹣(2+m)x+2,若g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,则满足﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查二次函数的解析式的求法,二次函数的性质与最值的求法,零点判定定理的应用,考查计算力量.20.(14分)已知:已知函数f(x)=﹣+2ax,(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;(Ⅱ)若a=1,求f(x)的极值;(Ⅲ)当0<a<2时,f(x)在[1,4]上的最小值为﹣,求f(x)在该区间上的最大值.【考点】利用导数争辩曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】计算题;规律型;函数思想;方程思想;转化思想;综合法;导数的综合应用.【分析】(Ⅰ)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求实数a;(Ⅱ)通过a=1,利用导函数为0,推断导数符号,即可求f(x)的极值;(Ⅲ)当0<a<2时,利用导函数的单调性,通过f(x)在[1,4]上的最小值为﹣,即可求出a,然后求f(x)在该区间上的最大值.【解答】(本小题满分14分)解:(Ⅰ)由于f′(x)=﹣x2+x+2a,曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣依题意:2a﹣2=﹣6,a=﹣2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)当a=1时,,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)﹣﹣﹣﹣x (﹣∞,﹣1)﹣1 (﹣1,2) 2 (2,+∞)f′(x)﹣0 + 0 ﹣f(x)单调减单调增单调减所以,f(x)的极大值为,f(x)的微小值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)令f′(x)=0,得,,f(x)在(﹣∞,x1),(x2,+∞)上单调递减,在(x1,x2)上单调递增,当0<a<2时,有x1<1<x2<4,所以f(x)在[1,4]上的最大值为f(x2),f(4)<f(1),所以f(x)在[1,4]上的最小值为,解得:a=1,x2=2.故f(x)在[1,4]上的最大值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查导数的综合应用,切线方程以及极值的求法,函数的单调性与函数的最值的关系,考查转化思想以及计算力量.。

安徽省蚌埠二中2017届高三上学期期中考试文科数学试题

安徽省蚌埠二中2017届高三上学期期中考试文科数学试题

蚌埠二中2016-2017学年第一学期期中测试高三数学试题(文科)满分(150分)考试时间:120分钟命题人:梁卫祥注意:所有选择题答案必须用2B 铅笔在答题卡中相应的位置,否则,该大题不予得分。

第I 卷(选择题,共60分)一.选择题:本大题共12题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则( )A .B .C .D .2.已知复数(其中i 是虚数单位,满足i 2=﹣1),则复数z 等于( ) A .1﹣2i B .1+2i C .﹣1﹣2i D .﹣1+2i3.小赵、小钱、小孙、小李四位同学被问到谁去过长城时,小赵说:我没去过;小钱说:小李去过;小孙说;小钱去过;小李说:我没去过.假定四人中只有一人说的是假话,由此可判断一定去过长城的是( ) A .小赵 B .小李 C .小孙 D .小钱4.袋子中装有大小相同的5个小球,分别有2个红球3个白球,现从中随机抽取2个小球,则这2个球中既有红球也有白球的概率为( )A .B .C .D .5.在等差数列{a n }中,a 1=﹣2011,其前n 项的和为S n .若﹣=2,则S 2011=( )A .﹣2010B .2010C .﹣2011D .20116.设函数)(x f =,若)(x f 是奇函数,则)3(g 的值是( )A .1B .﹣3C .3D .﹣1 7.如图所示程序框图,输出结果是( )A .5B .6C .7D .88.曲线y=2cos (x+)cos (x ﹣)和直线y=在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|= ( ) A .π B .2π C .4π D .6π9.如图,为了测量A 、C 两点间的距离,选取同一平面上B 、D 两点,测出四边形ABCD 各边的长度(单位:km ):AB=5,BC=8,CD=3,DA=5,且∠B 与∠D 互补,则AC 的长为( )km .A .7B .8C .9D .610.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A .B .C .D .11.若函数f (x )=x 3﹣(1+)x 2+2bx 在区间[﹣3,1]上不是单调函数,则函数f (x )在R 上的极小值为( )A .2b ﹣B . b ﹣C .0D .b 2﹣b 312.已知函数)(x f 满足)1()1(-=+x f x f ,且)(x f 是偶函数,当x ∈[0,1]时,12)(-=x x f ,若在区间[﹣1,3]内,函数k kx x f x g --=)()(有4个零点,则实数k 的取值范围是( )A .B .C .D .第Ⅱ卷(非选择题,共90分)二.选择题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置。

高三期中考试(文科教师)

高三期中考试(文科教师)

江苏省南通中学2013-2014学年度第一学期期中考试高三数学试卷(文科)一、填空题:1.已知集合{|22}=-<<A x x ,{|13}=<≤B x x ,则A B = {|12}x x << . 2.命题“∀∈x R ,3x a >”的否定是 x R ∃∈,3x a ≤ . 3.2lg 2lg 2lg5(lg5)+⋅+= 1 .4.已知||2=a ,||1=b ,且()-⊥a b b ,则a 与b 的夹角大小为 π3 .5.已知实数,x y 满足0,40,4,x y x y x -≥⎧⎪+-≥⎨⎪≤⎩则2x y +的取值范围是 [6,12] .6.已知ABC ∆中,角,,A B C 所对应的边分别为,,a b c .若cos cos a B b A c -=,则ABC ∆ 是 直角 三角形.7.已知,αβ均为锐角,且π1tan()43α-=,sin β=,则αβ+= π .8.若()f x 是偶函数,且()f x 在区间[0,)+∞上是单调增函数,且(2)0f -=,则不等式(2)(1)0x f x -->的解集是 (1,2)(3,)-+∞ .9.直角三角形ABC 中,πC =,2AC =,4BC =.已知()CP AB AC λ=+ ,则PA PB ⋅ 的最小值为 1- .10.若n S 是等差数列{}n a 的前n 项和,且8521S S -=,则13S 的值为 91 . 11.如图所示的是定义域为R 的函数()sin()f x A x ωϕ=+ (其中0ω>,[π,π)ϕ∈-)的部分图象,则不等式()f x >的解集为 π(π,π)(Z )6k k k +∈ .12.若[1,1]x ∃∈-,使不等式212731x x a -⋅+>成立,则实数a 的取值范围是 2a >- .13.已知函数22()log 2log ()f x x x c =-+,其中0c >.则“对于任意的(0,)x ∈+∞有()1f x ≤恒成立”的充要条件是 18c ≥ .14.已知函数41()(sin cos )cos 42f x m x x x =++在π[0,]2x ∈时有最大值为72,则实数m 的值为 1 .-2(第11题图)O37π12二、解答题:15.(本小题满分14分)已知集合2{|320}A x x x =-+<,集合22{|(32)2310}B x x m x m m =--+-+<. (1)若1m =,求A B ;(2)若“x A ∈”是“x B ∈”的充分条件,求实数m 的取值范围. 解:2{|320}{|12}A x x x x x =-+<=<<;22{|(32)2310}{|((21))((1))0}B x x m x m m x x m x m =--+-+<=----< (1)1m =时,{|01}B x x =<<,则{|01A B x x =<< ,或12}x <<; (2)由题意可知,A B ⊆,当211m m -<-即0m <时,{|211}B x m x m =-<<-, 则21121m m -≤<≤-,无解; 当0m =时,B =∅,不符合题意;当211m m ->-即0m >时,{|121}B x m x m =-<<-, 则11221m m -≤<≤-,得322m ≤≤;综上所述, 322m ≤≤.注:本题第(2)问也可以使用根的分布求解:集合B 所对应的方程的两根满足:一根小于等于1,另一根大于等于2.16.(本小题满分14分)在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥面ABCD ,2PA =,点M ,N 分别为边P A ,BC 的中点. (1)求证:AB //面MCD ; (2)求点A 到平面MND 的距离. (1)证明:因为 底面ABCD 是正方形, 所以AB // CD ,因为CD ⊂面MCD ,AB ⊄面MCD , 所以,AB //面MCD ;(2)解:过点A 作AQ ND ⊥于点Q ,连接MQ ,过点A 作AH MQ ⊥于点H , 因为PA ⊥面ABCD ,ND ⊂面ABCD ,所以PA ⊥ND , 因为AQ ND ⊥,AQ PA A = ,所以ND ⊥面MAQ , 因为AH ⊂面MAQ ,所以ND ⊥AH ,因为AH MQ ⊥,ND MQ Q = ,所以AH ⊥面MND . 在三角形AND中,AN DN ==,AD =1,由111122ND AQ ⋅=⨯⨯,得AQ =,在直角三角形MAQ 中,22249155MQ AM AQ =+=+=,所以MQ =,由11122AH ⨯=,得23AH =,所以,点A 到平面MND 的距离为23.注:本题也可以使用等积法求解.三角形MND 中,可用余弦定理得π4NMD ∠=,再求面积为34.PM NABCD(第16题图)17.(本小题满分14分)已知函数222(1)log 2m x f x x -=-,其中1m >. (1)判断并证明()f x 的奇偶性; (2)解关于x 的不等式2()(1)23f x f x≥-+. 解:(1)2222211(1)log log 21(1)mm x x f x x x -+-==---,则1()log 1m x f x x +=-,其中11x -<<. 又1111()log log ()log ()111m m m x x x f x f x x x x --++-===-=-+--,所以()f x 为奇函数;(2)12()log log (1)m m x f x +==-, 根据函数单调性判断:()f x 在(1,1)-上为单调增函数, 由3()()23x f x f x ≥+得31123x x x -<≤<+, 解得:103x -<<或113x <<, 不等式的解集为:11(,0](,1)33- .注:不等式可转化为1log log (13)1m m x x x+≥+-求解.18.(本小题满分16分)锐角三角形ABC 中,角A ,B ,C 所对应的边长分别为a ,b ,c .已知m =(2,)c a b -,n =(cos ,cos )B C ,且||||+=-m n m n .又b =. (1)求三角形ABC 的面积S 的最大值; (2)求三角形ABC 的周长l 的取值范围.解:由||||+=-m n m n 得0⋅=m n ,所以(2)cos cos 0c a B b C -+=,则sin cos sin cos 2sin cos 0C B B C A B +-=,即sin()2sin cos B C A B +=, 因为πA B C ++=,所以sin()2sin cos 2sin B C A B A +==, 因为0<<πA ,所以sin 0A ≠,则1cos 2B =,因为0<<πB ,得π3B =,因为b 22sin b R B==(1)1sin sin )cos())2S ac B A C A C A C =--+1)cos )))2A C B A C =-+-+,当A C =时,S(2)2(sin sin sin )2(sin sin l a b c A B C A C =++=++=++2(2sin cos 222A C A C A C +--== 因为ππ2π0,0,223A C A C <<<<=-,所以ππ62C <<, 因为2ππ3223C CA C C ---==-, 所以ππ626A C --<<,所以3l <≤19.(本小题满分16分)设等差数列{a n }的公差d ≠0,数列{b n }为等比数列.若a 1=b 1=a ,a 3=b 3,a 7=b 5. (1)求数列{b n }的公比q ;(2)若a n =b m ,*,m n ∈N ,求m ,n 满足的条件.解:(1)由题意242,6,aq a d aq a d ⎧=+⎪⎨=+⎪⎩ 所以2432aq aq a -=,因为0a ≠,所以42320q q -+=,所以1q =±,或q =因为等差数列{a n }的公差d ≠0,所以13a a ≠,则21q ≠,因此,q =(2)因为q =22aq a d =+,所以2a d =,由a n =b m ,得1(1)n a n d aq -+-=, 则11(2m n a a -+=所以11(1)m n +-+=±,因为10n +>,所以1m -必为偶数,即m 必为奇数, 所以,121m n +=-,且m ,n 均为奇数.20.(本小题满分16分)设t >0,已知函数f (x )=x 2(x -t )的图象与x 轴交于A 、B 两点. (1)求函数f (x )的单调区间;(2)设函数y =f (x )在点P (x 0,y 0)处的切线的斜率为k ,当x 0∈(0,1]时,k ≥-12恒成立,求t 的最大值;(3)有一条平行于x 轴的直线l 恰好..与函数y =f (x )的图象有两个不同的交点C ,D ,若四边形ABCD 为菱形,求t 的值.解:(1)f ′(x )=3x 2-2tx =x (3x -2t )>0,因为t >0,所以当x >2t 3或x <0时,f ′(x )>0,所以(-∞,0)和(2t3,+∞)为函数f (x )的单调增区间;当0<x <2t 3时,f ′(x )<0,所以(0,2t3)为函数f (x )的单调减区间. ………………4分(2)因为k =3x 02-2tx 0≥-12恒成立,所以2t ≤3x 0+12x 0恒成立, …………………6分因为x 0∈(0,1],所以3x 0+12x 0≥23x 0×12x 0=6,即3x 0+12x 0≥6,当且仅当x 0=66时取等号.所以2t ≤6,即t 的最大值为62. …………………8分 (3)由(1)可得,函数f (x )在x =0处取得极大值0,在x =2t 3处取得极小值-4t 327.因为平行于x 轴的直线l 恰好..与函数y =f (x )的图象有两个不同的交点, 所以直线l 的方程为y =-4t 327. …………………10分令f (x )=-4t 327,所以x 2(x -t )=-4t 327,解得x =2t 3或x =-t 3.所以C (2t 3,-4t 327),D (-t 3,-4t 327). …………………12分因为A (0,0),B (t ,0).易知四边形ABCD 为平行四边形. AD =(-t 3)2+(-4t 327)2,且AD =AB =t , 所以(-t 3)2+(-4t 327)2=t ,解得:t =3482. …………………16分。

高中数学 2021-2022学年河南省南阳市高二(下)期中数学试卷(文科)

高中数学 2021-2022学年河南省南阳市高二(下)期中数学试卷(文科)

(VIP&校本题库)2021-2022学年河南省南阳市南召第一高级中学高二(下)期中数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)A .第一象限B .第二象限C .第三象限D .第四象限1.(5分)已知复数z =i3+i,则复数z 在复平面中对应的点在( )A .1B .2C .3D .42.(5分)设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为̂y =0.85x -85.71.①y 与x 具有正的线性相关关系;②回归直线过样本点的中心(x ,y );③若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;④若该大学某女生身高为170cm ,则其体重必为58.79kg .则上述判断不正确的个数是( )A .0.02B .0.28C .0.72D .0.983.(5分)甲、乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为( )A .160B .162C .166D .1704.(5分)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为̂y =̂b x +̂a .已知10i =1x i =225,10i =1y i =1600,̂b =4.该班某学生的脚长为23,据此估计其身高为( )A .-1B .12C .−12D .15.(5分)在一组样本数据(x 1,y 1),(x 2,y 2),⋯,(x n ,y n ),(n ≥2,x 1,x 2,…,x n 不相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,⋯,n )都在直线y =−12x +3上,则这组样本数据的样本相关系数为( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数6.(5分)用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个偶数时,下列假设正确的是( )7.(5分)目前国家为进一步优化生育政策,实施一对夫妻可以生育三个子女的政策.假定生男孩和生女孩是等可能的,现随机选择一个有三个小孩的家庭,如果已经知道这个家庭有女孩,那么在此条件下该家庭也有男孩的概率是( )A .12B .23C .34D .67A .使得ni =1[y i -(a +bx i )]最小B .使得ni =1[y i -(a +bx i )2]最小C .使得ni =1[y i 2-(a +bx i )2]最小D .使得ni =1[y i -(a +bx i )]2最小8.(5分)最小二乘法的原理是( )A .1B .2C .3D .49.(5分)下列四个命题:①在线性回归分析中,相关系数r 的取值范围是(-1,1);②在线性回归分析中,相关系数r 的值越大,变量间的相关性越强;③在线性回归分析中,相关系数r >0时,两个变量正相关;④在对两件事进行独立性检验时,用χ2作为统计量,χ2越大,则能判定两件事有关联的把握越大.其中真命题的个数是( )A .9B .16C .23D .3010.(5分)定义[x ]表示不超过x 的最大整数,例如[2]=2,[3.6]=3,执行如图的程序框图,则输出的结果是( )11.(5分)研究发现,任意一个三次函数f (x )=ax 3+bx 3+cx +d (a ≠0)的图象必有一个对称中心,一般地,判断点(x 0,f (x 0))是否是三次函数f (x )图象的对称中心的流程如图所示,则对于函数f (x )=x 3-32x 2+34x +18,其图像的对称中心以及f(12021)+f (22021)+f (32021)+…+f (20202021)的值分别是( )二、填空题(本大题共4小题,每小题5分,共20分)三、解答题(本大题共6小题,共70分。

2014苏教版高二化学上学期期中考试试卷(文科)

2014苏教版高二化学上学期期中考试试卷(文科)

灌云县第一中学2014-2015学年第一学期期中检测试卷高二化学(考试时间60分钟,总分100分;命题人:张学玉)本卷可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Cl-35.5 Cu-64一、单项选择题:只有1个选项是符合要求的(本部分23题,每题3分,共69分)。

1.当光束通过鸡蛋清水溶液时,从侧面观察到一条光亮的“通路”,说明鸡蛋清水溶液是A.溶液B.胶体C.悬浊液D.乳浊液2.生产、生活中离不开各类化学物质。

下列物质中属于盐类的是A.生石灰B.硫酸C.硫酸镁D.酒精3.下列过程中,不涉及化学变化的是A.明矾净水B.石油分馏C.铁锅生锈D.海水制镁4.下列关于二氧化硫的说法错误的是A.无色无味B.有毒C.密度比空气大D.是形成酸雨的一种物质5.下列物质中,能够用来干燥氯气的是A.碱石灰固体B.浓硫酸C.饱和食盐水D.石灰乳6.下列物质的水溶液呈酸性的是A.碳酸氢钠B.氨气C.醋酸D.纯碱7.下列试剂需要用棕色瓶保存的是A.浓硫酸B.浓硝酸C.浓盐酸D.碳酸钠溶液8.下列化学用语正确的是A.乙烯的结构简式:CH2CH2B.氟原子的结构示意图:C.甲烷的电子式:D.磷酸钠的电离方程式:Na3PO4=Na33++PO43—9.欲配制浓度为1.00mol/L的氯化钠溶液100mL,用不到的仪器是A.容量瓶B.分液漏斗C.玻璃棒D.烧杯10.光导纤维已成为信息社会必不可少的高技术材料。

下列物质用于制造光导纤维的是A.金刚石B.大理石C.铝合金D.二氧化硅11.在加热时,浓硫酸与铜发生反应的化学方程式为:2H2SO4(浓)+Cu CuSO4+SO2↑+2H2O对于该反应,下列说法中不正确的是A.是氧化还原反应B.铜是还原剂C.H2SO4表现了氧化性和酸性D.反应后铜元素的化合价降低12.某溶液中存在大量的Na+、OH-、SO42-,该溶液中还可能大量存在的离子是A.Ba2+B.AlO2—C.Mg2+D.H+13.某气体通入品红溶液中,溶液褪色,加热后又恢复为原来颜色,该气体是A.SO2B.O2C.CO2D.H214.下列物质中,主要成分属于硅酸盐的是A.烧碱B.水泥C.石灰石D.胆矾15.下列化学式与指定物质的主要成分对应正确的是A.CH4——天然气B.CO2——水煤气C.CuSO4▪5H2O——明矾D.NaHCO3——苏打粉16.下列离子方程式正确的是A.铝和稀盐酸反应:Al+2H+=Al3++H2↑B.稀硝酸和碳酸钙反应:2H++CO32ˉ=CO2↑+H2OC.氢氧化钡溶液与硫酸铜溶液反应:Ba2++SO42ˉ=BaSO4↓D.用氢氧化钠溶液吸收多余的Cl2:Cl2+2OH-=Cl-+ClO-+H2O17.下列实验或操作正确的是18.用N A表示阿伏加德罗常数的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中复习测试四
学校:___________姓名:___________班级:___________考号:___________ 一、选择题:
1.若函数y=f(x)在区间(a,b)内可导,且x
∈(a,b),则的值
为( )A.f′(x
0) B.2f′(x
) C.-2f′(x
) D.0
2满足条件|z-i|=|3+4i|的复数z在复平面上对应点的轨迹是( )
A.一条直线
B.两条直线
C.圆
D.椭圆
3设函数,其图象在点处的切线与直线垂直,则直线与坐标轴围成的三角形的面积为( )
A. B. C. D.
4.
若函数不是单调函数,则实数的取值范围是().
A
.B .C .D .
5下面三个命题:
①0比-i大;
②x+yi=1+i的充要条件为x=y=1;
③如果让实数a与ai对应,那么实数集与纯虚数集一一对应.
其中正确的个数是( )
A.0
B.1
C.2
D.3
6.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损
术”.执行该程序框图,若输入分别为14,18,则输出的()
A.0B.2C.4D.14
7.在平面几何中有如下结论:正三角形ABC的内切圆面积为S 1,外切圆面积为S 2,则
= ,推广到空间可以得到类似结论,已知正四面体P-ABC的内切球体积为V 1,外接球体积为V 2,则
=()
A. B. C. D.
8. 圆周上2个点可连成1条弦,这条弦可将圆面划分成2部分;圆周上3个点可连成3条弦,这3条弦可将圆面划分成4部分;圆周上4个点可连成6条弦,这6条弦最多可将圆面划分成8部分.则这些弦最多可把圆面分成( ) 部分
A. 2 n-1
B. 2 n
C. 2 n+1
D. 2 n+2
9.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0
时,
且g(3)=0.则不等式的解集是()
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)
C.(-∞,- 3)∪(3,+∞)D.(-∞,- 3)∪(0,3)
10.某同学使用类比推理得到如下结论:
(1)同一平面内,三条不同的直线a,b,c,若a⊥c,b⊥c,则a∥b,类比出:空间中,三条不同的直线a,b,c,若a⊥c,b⊥c,则a∥b;
(2)a,b∈R,a-b>0则a>b,类比出:a,b∈C,a-b>0则a>b;
(3)以点(0,0)为圆心,r为半径的圆的方程是x 2+y 2=r 2,类比出:以点(0,0,0)为
球心,r为半径的球的方程是x 2+y 2+z 2=r 2;
(4)正三角形ABC中,M是BC的中点,O是△ABC外接圆的圆心,则
,类
比出:在正四面体ABCD中,若M是△BCD的三边中线的交点,O为四面体ABCD
外接球的球心,则

其中类比的结论正确的个数是()
A. 4
B. 3
C. 2
D. 1
二、填空题:
11.
已知,

的图像在点处的切线斜率是
______.
12.如下数表,为一组等式:
某学生根据上表猜
测,老师回答正确,

13.已
知,
若,使

成立,则实数的取值范围是_____.
14. 已知复数z,且|z|=1,则|z+3+i|的最小值是________.
15. 已

与都是定义在R上的函

,
,
,
,
,
有穷数列中,
任意取前项相加,则
前项和大于的概率等于。

三、解答题:
16.已知z=1+i,a,b为实数.
(1)若ω=z 2
+3 -4,求|ω|;
(2)若
,求a,b的值.
17. 某学校一个生物兴趣小组对学校的人工
湖中养殖的某种鱼类进行观测研究,在饲料
充足的前提下,兴趣小组对饲养时间(单位:
月)
与这种鱼类的平均体重(单位:千克)得
到一组观测值,如下表:
(1).在给出的坐标系中,画出关于、两个相关变量的散点图.
(2).请根据上表提供的数据,用最小二乘法求出变量关于变量的线
性回归直线方程.
(3).预测饲养满12个月时,这种鱼的平均体重(单位:千克
).
(参考公式
:
,)
18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
①;
② ;

④ ;
⑤ .
(1)从上述五个式子中选择一个,求出常数;
(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.
19.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关
于行驶速度x (千米/小时)的函数解析式可以表示为
:
已知甲、乙两地相距100千米。

(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 20.设函数
,其中实数.
(1)若,求函数的单调递增区间;
(2)当函数与的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;
(3)若与在区间内均为增函数,求的取值范围.
21. 已知函数.
(1)求函数的最大值;(2)若函数与有相同极值点. ①求实数的值;
②若对于(为自然对数的底数),不等式恒成立, 求实数的取值范围.。

相关文档
最新文档