推荐-自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃 精品
自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
典型环节与及其阶跃响应

实验一: 典型环节与及其阶跃响应一、实验目的1、掌握控制模拟实验的基本原理和一般方法。
2、掌握控制系统时域性能指标的测量方法。
二、实验仪器1、EL-AT-III 型自动控制系统实验箱一台2、计算机一台三、实验原理控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应1、比例环节的模拟电路及其传递函数G(S)= −R2/R12、惯性环节的模拟电路及其传递函数G(S)= −K/TS+1K=R2/R1T=R2C3、积分环节的模拟电路及传递函数G(S)=1/TST=RC4、微分环节的模拟电路及传递函数G(S)= −RCS5、比例+微分环节的模拟电路及传递函数G(S)= −K(TS+1)K=R2/R1T=R1C五、实验结果及分析(注:图中黄色为输入曲线、紫色为输出曲线)1、比例环节(1)模拟电路图:(2)响应曲线:2、惯性环节(1)模拟电路图:(2)响应曲线:(3)传递函数计算:实验值:X1=1029ms=1.029s=4TT=0.257sK=Y2/1000=2.017G(S)=-2.017/(0.257S+1) 理论值:G(S)=-2/(0.2S+1)结论:实验值与理论值相近。
3、积分环节(1)模拟电路图:(2)响应曲线:(3)传递函数计算:实验值:5000/(2110/2/2)=9.1G(S)=-9.1/S=-1/0.11S 理论值:G(S)=-1/0.1S结论:实验值与理论值相近。
4、微分环节(1)模拟电路图:(2)响应曲线:5、比例+微分环节(1)模拟电路图:(2)响应曲线:实验二:二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn 对系统动态性能的影响。
自动控制实验报告一-典型环节及其阶跃响应

实验一环典型环节节及其阶跃响应班级:学号:姓名:一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响;2.学习典型环节阶跃响应的测量方法,并学会根据阶跃响应曲线计算典型环节的传递函数;二、实验仪器1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2.时域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。
2)测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。
5)鼠标单击实验课题弹出实验课题参数窗口。
在参数设置窗口中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。
6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:YM A X- Y∞Ó%=——————×100%Y∞ T P 与T S :利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态 值所需的时间值,便可得到T P 与T S 。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1.比例环节的模拟电路及其传递函数:G (s )=-R1/R22.惯性环节:G(s)= -K/TS+1 K=R2/R1 ,T=R2C; 3.积分环节 G(S)= 1/TS T=RC 4.微分环节G(S)=-RCS5.比例+微分环节G(S)= -K(TS+1) K=R2/R1 T=R2C6.比例+积分环节G(S)=K(1+1/TS) K=R2/R1 T=R2C五、实验步骤1.启动计算机,在桌面双击图标【自动控制实验系统】运行软件。
自动控制原理实验(全面)

自动控制原理实验实验一 典型环节的电模拟及其阶跃响应分析一、实验目的⑴ 熟悉典型环节的电模拟方法。
⑵ 掌握参数变化对动态性能的影响。
二、实验设备⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。
⑵ 数字万用表。
三、实验内容1.比例环节的模拟及其阶跃响应微分方程 )()(t Kr t c -= 传递函数 =)(s G )()(s R s C K -= 负号表示比例器的反相作用。
模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。
图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应微分方程 )()(t r dtt dc T= 传递函数 sKTs s G ==1)(模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。
3.一阶惯性环节的模拟及其阶跃响应微分方程 )()()(t Kr t c dtt dc T=+ 传递函数 1)(+=TS KS G模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃响应曲线,并打印曲线。
4.二阶系统的模拟及其阶跃响应微分方程 )()()(2)(222t r t c dt t dc T dt t c d T =++ξ传递函数 121)(22++=Ts s T s G ξ2222nn n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。
⑵ T=2,ξ=0.5 时的阶跃响应曲线。
四、实验步骤⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。
⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。
⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。
自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。
3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。
利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。
实验一 典型环节及其阶跃响应

实验一典型环节及其阶跃响应
概述:
在控制系统中,典型环节是指能够用数学模型描述的一类基本功能模块,包括比例环节、积分环节和微分环节等。
它们在工程中应用十分广泛,可用于控制系统的建模和分析。
本文将介绍比例环节、积分环节和微分环节的定义及其阶跃响应。
一、比例环节
比例环节是指将输入信号按一定比例进行放大或缩小的环节。
用数学式子表示为y=kx,其中k为比例常数,x为输入信号,y为输出信号。
比例环节的作用是调整输入信号与输出信号之间的比例关系。
比例环节的阶跃响应:在阶跃信号的作用下,比例环节的输出将按比例变化。
阶跃信
号是指输入信号在某一时刻瞬间从0跳变到一个确定的值。
对比例环节而言,其阶跃响应
可以表示为:
$$
y(t)=K_{p} u(t)
$$
其中,$K_{p}$为比例放大的增益,$u(t)$为阶跃函数。
二、积分环节
总结:
比例环节、积分环节和微分环节是控制系统中常用的三种典型环节。
它们可以按照不
同的方法进行组合和调整,形成复杂的系统结构,实现对输入信号的更为精细的控制。
在
实际应用中,需要针对具体问题进行具体分析,选择合适的环节组合方案,以实现最佳的
控制效果。
自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。
比例环节的模拟电路及其传递函数示图2-1。
G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。
G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。
G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。
G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。
G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。
G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。
2、启动应用程序,设置T和N。
参考值:T=0.05秒,N=200。
3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。
实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。
2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。
2、进一步学习实验仪器的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。
自动控制原理实验-典型环节及其阶跃响应

广州大学学生实验报告开课学院及实验室:实验中心 2013 年 11 月4日学 院机电年级、专业、班姓名学号 实验课程名称成绩 实验项目名称 典型环节及其阶跃响应指导 教师一、实验目的二、实验原理(实验相关基础知识、理论)三、实验过程原始记录(程序界面、代码、设计调试过程描述等) 四、实验结果及总结一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
二、实验原理及电路图(一) 用实验箱构成下述典型环节的模拟电路,并测量其阶跃响应。
1.比例环节的模拟电路及其传递函数如图2-1。
图2-1G(S)= -R 2/R 12.惯性环节的模拟电路及其传递函数如图2-2。
图2-2G(S)=-K/(TS+1) K=R 2/R 1, T=R 2C3.积分环节的模拟电路及其传递函数如图2-3。
图2-3G(S)=-1/TS T=RC4.微分环节的模拟电路及其传递函数如图2-4。
图2-4G(S)=-RCS5.比例+微分环节的模拟电路及其传递函数如图2-5。
图2-5G(S)=-K(TS+1) K=R 2/R 1,T=R 2C6.比例+积分环节的模拟电路及其传递函数如图2-6。
图2-6G(S)=K(1+1/TS) K=R 2/R 1, T=R 2C1.比例环节2.惯性环节3.积分环节4.微分环节5.比例+微分环节6.比例+积分环节四、实验结果及总结1.各环节的响应曲线如上所示。
实验体会:通过这次实验,我们学会了如何构成典型环节的模拟电路及用计算机测量各典型环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、典型环节及其阶跃响应
实验目的
1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
实验内容
构成下述典型环节的模拟电路,并测量其阶跃响应。
比例环节的模拟电路及其传递函数示图2-1。
G(S)=-R2/R1
惯性环节的模拟电路及其传递函数示图2-2。
G(S)=-K/TS+1 K=R2/R1 ,T=R2*C
积分环节的模拟电路及其传递函数示图2-3。
G(S)=1/TS T=RC
微分环节的模拟电路及其传递函数示图2-4。
G(S)=-RCS
比例加微分环节的模拟电路及其传递函数示图2-5。
G(S)=-K(TS+1) K=R2/R1 T=R2C 比例加积分环节的模拟电路及其传递函数示图2-6。
G(S)=K(1+1/TS) K=R2/R1,T=R2C
软件使用
1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
实验步骤
1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。
2、启动应用程序,设置T和N。
参考值:T=0.05秒,N=200。
3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。
实验报告
1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节
、积分环节、比例加微分环节的响应曲线。
2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
实验二二阶系统阶跃响应
一、实验目的
1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。
2、进一步学习实验仪器的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验原理及电路
典型二阶系统的闭环传递函数为
其中ζ和ωn对系统的动态品质有决定的影响。
二阶系统模拟电路如图示,经计算得
电路的结构图为
系统闭环传递函数为
式
中 T=RC, K=R2/R1
比较 (1),(2)二式,可得
ζ=1/T=1/RC
ωn
=K/2=R2/R1 (3)
由 (3) 式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。
改变RC值可以改变无阻尼自然频率。
今取R1=200k,R2=0--500KΩ,(R2由电位器调节),可得实验所需的阻尼比,电阻R取100KΩ
三、实验步骤
1、了解实验仪器,熟悉实验仪器的使用方法。
2、取ωn=10 rad/s,即令R=100KΩ,C=1uf;分别取
ζ=0,0.25,0.5,0.7,1,2,即取R1=100KΩ R2 (R2由电位器调节)分别等于0,50 KΩ,100 KΩ,140 KΩ,200 KΩ,400 KΩ。
输入阶跃信号,测量系统阶跃响应,并记录最大超调量Mp和调节时间Ts的数值和响应的动态曲线,并于理论值比较。
3、取ζ=0.5,即取R1=R2=100 KΩ;ωn=100rad/s,即取
R=100 KΩ,C=0.1uf 注意:二个电容值同时改变,测量系统阶跃响应,并记录最大超调量σp和调节时间tn。
4、取R=100 KΩ;C=1uf,R1=100 KΩ,R2=50 KΩ,测量系统阶跃响应,记录响应曲线,特别要记录tp和σp的数值。
四、软件使用
1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
五、实验预习要求
1、通过理论分析分别求出实验步骤中对应的ζ和ωn值下,阶跃响应的最大超调量Mp和调节时间ts以备与实验时比较。
2、通过实验指导书,了解实验目的,要求,实验步骤和实验设备。
六、实验报告
1、画出二阶系统的模拟电路图,并求参数ζ和ωn的表达式。
2、把不同ζ和ωn条件下测量的Mp和ts值列表,根据测量结果得出相应结论。
3、根据步骤3画出系统响应曲线,再由ts和Mp计算出传递函数,并与由模拟电路计算的传递函数相比较。
实验四系统频率特性测量
一、实验目的
1、加深了解系统及元件频率特性的物理概念。
2、掌握系统及元件频率特性的测量方法。
二、实验内容
1、模拟电路图及系统结构图分别于图5和图6。
2、系统传递函数取R3=500KΩ,则系统传递函数为
若输入信号U(1)=U1sinωt,则在稳态时,其输出信号为u2(t)=u2sin(ωt+Ψ)。
改变输入信号角频率ω值,使可测得二组u2/u1和Ψ随ω变化的数值,这个变化规律就是系统的幅频特性和相频特性。
三、软件使用
1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
四、实验报告
1、画出被测系统的模拟电路图,计算其传递函数,根据传递函数绘制Bode图。
2、把上述测量数据列表,根据此数据画Bode图。
3、分析测量误差。