2009年安徽中考数学试卷 - 蚌埠五中

合集下载

安徽2009年中考真题

安徽2009年中考真题

2009年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.(-3)2的值是A.9B.-9C.6D.-62.如图,直线l1∥l2,则∠α为A.150°B.140°C.130°D.120°3.下列运算正确的是A.a2·a3=a6B.(-a)4=a4C.a2+a3=a5D.(a2)3=a54.甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工作效率相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是A.8B.7C.6D.55.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为A.3,2B.2,2C.3,2D.2,36.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是A. B. C. D.7.某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2·x%D.(1+12%)(1+7%)=(1+x%)28.已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是9.如图,弦CD垂直于☉O的直径AB,垂足为H,且CD=2则AB的长为A.2B.3C.4D.510.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是A.120°B.125°C.135°D.150°二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为.12.因式分解:a2-b2-2b-1= .13.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙升高了m.14.已知二次函数的图象经过原点及点(-,-),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为.三、(本大题共2小题,每小题8分,满分16分)15.计算:|-2|+2sin 30°-(-)2+(tan 45°)-1.16.如图,MP切☉O于点M,直线PO交☉O于点A、B,弦AC∥MP.求证:MO∥BC.四、(本大题共2小题,每小题8分,满分16分)17.观察下列等式:1×=1-,2×=2-,3×=3-,…(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性.18.如图,在对Rt△OAB依次进行位似、轴对称和平移变换后得到Rt△O'A'B'.(1)在坐标纸上画出这几次变换相应的图形;(2)设P(x,y)为△OAB边上任一点,依次写出这几次变换后点P对应点的坐标.五、(本大题共2小题,每小题10分,满分20分)19.学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm,如图所示.已知每个菱形图案的边长为10 cm,其一个内角为60°.(1)若d=26,则该纹饰要用231个菱形图案,求纹饰的长度L;(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?20.如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图;(2)求的值.六、(本题满分12分)21.某校九年级学生共900人,为了解这个年级学生的体能情况,从中随机抽取部分学生进行1 min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试的数据作出整理.下面是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于105次的同学占96%;丙:第①②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②③④组的频数之比为4∶17∶15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1 min跳绳次数的平均值.七、(本题满分12分)22.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG.如果α=45°,AB=4,AF=3,求FG的长.八、(本题满分14分)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①②两段函数图象的实际意义.图(1) 图(2)(2)写出批发该水果的资金金额w(元)与批发量n(kg)之间的函数关系式;在图(2)所示的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(3)所示.该经销商拟每日售出60 kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.图(3)2009年安徽省初中毕业学业考试1.A 由指数为2可判断幂为正,再计算32为9,故最终结果为9.2.D 如图,由题意可得,∠ACB=180°-∠ACE=180°-130°=50°,而∠ABD为△ABC的外角,故∠ABD=∠ACB+∠BAC=50°+70°=120°.因为l1∥l2,所以∠α=∠ABD=120°.3.B 由幂的运算法则可得:a2·a3=a2+3=a5;(-a)4=a4;a2与a3不是同类项,不能合并;(a2)3=a2×3=a6.故选项B 正确.4.A 设甲志愿者计划用x天完成此项工作,则他每天完成总工作量的,前2天干了×2,由于乙志愿者与甲志愿者的工作效率相同,则从第三天起两人每天完成总工作量的×2,两人一共干了(x-2-3)天,由此可列方程×2+(×2)(x-2-3)=1,解得x=8,故甲志愿者计划用8天完成此项工作.5.C 由主视图可知,这个长方体的高为3,底面正方形对角线的长为2,易得这个正方形的边长为2.6.B 从五名同学中选出两名同学共有=10种选法,而恰为一男一女的选法有3×2=6种,故P(一男一女)==.7.D 设2007年的国内生产总值为a,则2008年的国内生产总值为a(1+12%),2009年的国内生产总值为a(1+12%)(1+7%).由于这两年的年平均增长率为x%,则2009年的国内生产总值为a(1+x%)(1+x%)=a(1+x%)2,所以a(1+12%)(1+7%)=a(1+x%)2,即(1+12%)(1+7%)=(1+x%)2.8.C 由y=kx+b的图象可知b=1,而|2k|>|k|,所以y=2kx+b的图象与y轴交于(0,1),且直线y=2kx+b的倾斜程度大于直线y=kx+b的倾斜程度,故选C.9.B 由垂径定理得DH=CD=×2=,由勾股定理得HB=-=1.连接AC,由△BHD∽△CHA,得HD2=HB·HA,所以HA==2,所以AB=HA+HB=2+1=3.10.C 连接AI、CI、DI.∵I为△ADC的内心,∴∠DAI=∠CAI=∠DAC,∠ACI=∠DCI=∠ACD.在Rt△ADC 中,∠DAC+∠ACD=180°-90°=90°,∴∠CAI+∠ACI=∠DAC+∠ACD=×90°=45°.在△AIC中,∠AIC=180°-(∠CAI+∠ACI)=180°-45°=135°.∵∠DAI=∠CAI,AB=AC,∴AI所在的直线垂直平分BC,∴△AIC与△AIB关于直线AI对称,∴∠AIB=∠AIC=135°.11.72°360°×(1-45%-31%-4%)=360°×20%=72°.12.(a+b+1)(a-b-1) a2-b2-2b-1=a2-(b2+2b+1)=a2-(b+1)2=[a+(b+1)][a-(b+1)]=(a+b+1)(a-b-1).13.2(-)(约0.64) 当梯子与地面成45°角时,梯子顶端离地面的高度为4sin 45°=4×=2;当梯子与地面成60°角时,梯子顶端离地面的高度为4sin 60°=4×=2.所以梯子顶端上升了2-2=2(-)≈0.64(m).14.y=x2+x,y=-x2+x 由于该二次函数的图象经过原点,所以可设该二次函数的解析式为y=ax2+bx,由于它的图象与x轴的另一交点到原点的距离为1,则另一交点的坐标为(1,0)或(-1,0).当另一交点的坐标为(1,0)时,则抛物线y=ax2+bx过(1,0)、(-,-)两点,将这两点的坐标代入y=ax2+bx,得到方程组--解这个方程组,得当另一交点的坐标为(-1,0)时,则抛物线y=ax2+bx过(-1,0)、(-,-)两点,将这两点的坐标代入y=ax2+bx,得到方程组---解这个方程组,得故该二次函数的解析式为y=x2+x,y=-x2+x.15.原式=2+1-3+1(6分)=1.(8分)16.∵AB是☉O的直径,∴∠ACB=90°.∵MP为☉O的切线,∴∠PMO=90°.(4分)∵MP∥AC,∴∠P=∠CAB.∴∠MOP=∠CBA.(6分)∴MO∥BC.(8分)17.(1)猜想:n·=n-.(3分)(2)证明:∵右边===左边,(6分)∴n·=n-.(8分)18.(1)如图.(4分) (2)设坐标纸中方格的边长为1个单位长度,则P(x,y)(2x,2y)(-2x,2y)(-2x+4,2y)(-2x+4,2y+5).所以几次变换后点P对应点的坐标为(-2x+4,2y+5).(8分)19.(1)菱形图案水平方向的对角线长为10×cos 30°×2=30(cm).由题意,知L=30+26×(231-1)=6 010(cm).(5分)(2)当d=20 cm时,设需x个菱形图案,根据题意,有30+20×(x-1)=6 010.(8分)解得x=300.即需300个这样的菱形图案.(10分)20.(1)简图如图所示.(5分)说明:其他正确拼法可相应赋分.(2)解法一由拼图前后的面积相等,得[(x+y)+y]y=(x+y)2.(8分)因为y≠0,所以整理得()2+-1=0,解得=-(=--<0,舍去).(10分)解法二由拼成的矩形可知:=.(8分)以下同解法一.(10分)21.(1)第①组频率为1-96%=0.04,(1分)∴第②组频率为0.12-0.04=0.08,从而,总人数为12÷0.08=150(人).(3分)又②③④组的频数之比为4∶17∶15,故可算得第①~⑥组的人数分别为6、12、51、45、24、12.(6分) (2)第⑤⑥两组的频率之和为0.16+0.08=0.24.由样本是随机抽取的,估计全年级有900×0.24=216人达到优秀.(9分)(3)==127(次).(12分)22.(1)△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM等.(写出两对即可)(2分)以下证明△AMF∽△BGM.由题知∠A=∠B=∠DME=α,而∠AFM=∠DME+∠E,又∠BMG=∠A+∠E,∴∠AFM=∠BMG.∴△AMF∽△BGM.(6分)(2)当α=45°时,可得AC⊥BC且AC=BC.∵M为AB的中点,∴AM=BM=2.(7分)由△AMF∽△BGM,得AF·BG=AM·BM,∴BG=.(9分)又AC=BC=4cos 45°=4,∴CG=4-=,CF=4-3=1,∴FG==.(12分)23.(1)①段表示批发量不少于20 kg且不多于60 kg的该种水果,可按5元/kg批发;②段表示批发量高于60 kg的该种水果,可按4元/kg批发.(3分)(2)由题意得≤w=图象如图所示.(7分)由图可知,资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果.(8分) (3)解法一设当日零售价为x元,由图可得当日最高销量n=320-40x,当n>60时,x<6.5.由题意,销售利润为y=(x-4)(320-40x)=40(x-4)(8-x)=40[-(x-6)2+4].(12分)=160.此时,n=80.当x=6时,y最大值即经销商应批发80 kg该种水果,日零售价定为6元/kg时,当日可得最大利润160元.(14分) 解法二设日最高销量为x(x>60) kg,则由图知日零售价p满足x=320-40p,于是p=.销售利润y=x(-4)=x(160-x)=-(x-80)2+160.(12分)当x=80时,y=160.此时,p=6.最大值即经销商应批发80 kg该种水果,日零售价定为6元/kg时,当日可得最大利润160元.(14分)。

2009年安徽省数学试题

2009年安徽省数学试题

2009年安徽省中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.2(3)-的值是【 】A .9 B.-9 C .6 D .-62.如图,直线l 1∥l 2,则α为…………………………………………【 】 A .150° B .140° C .130° D .120° 3.下列运算正确的是……………………………………………………【 】 A .234a a a =B .44()a a -=C .235a a a +=D .235()a a =4.甲志愿者计划用若干个工作日完成社区某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】 A .8 B.7 C .6 D .55.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为…………………………【 】 A .3, B .2, C .3,2 D .2,36.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演 出专场的主持人,则选出的恰为一男一女的概率是…………【 】A .45B .35C .25D .157.某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是【 】 A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+8.【9.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD=BD 则AB 的长为【 】A .2B .3C .4D .510.△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是【 】A .120°B .125°C .135°D .150°二、填空题(本大题共4小题,每小题5分,满分20分)11的扇形圆心角的度数为 .12.因式分解:2221a b b ---= .13.长为4m 的梯子搭在墙上与地面成45°角,作业时调整为6014点的距离为1三.(本大题共215.计算:|2-|o 2o 12sin30((tan45)-+-+【解】16.如图,MP 切⊙O 于点M ,直线PO 交⊙O 于点A 、B ,弦AC ∥MP ,求证:MO ∥BC . 【证】四、(本大题共2小题,每小题8分,满分16分) 17.观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,…… (1)猜想并写出第n 个等式; 【猜想】(2)证明你写出的等式的正确性. 【证】18.如图,在对Rt △OAB (1(2)设P (x ,y )为△OAB 边上任一点,依次写出这几次变换后点P 对应点的坐标. 【解】130°70°αl 1 l 2第2题图第5题图主视图左视图俯视图第8题图A B D第11题图第13题图P第16题图第23题图(1)第23题图(2)五、(本大题共2小题,每小题10分,满分20分)19.学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ; 【解】(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案? 【解】20.如图,将正方形沿图中虚线(其中x <y )剪成①②③④四块图形,用这四块图形恰. 能拼成一个.....矩形(非正方形). (1)画出拼成的矩形的简图; 【解】(2)求x y的值. 【解】 六、(本题满分12分) 21.某校九年级学生共900部分学生进行1min 的跳绳测试,并指定甲、乙、丙、丁四名同学对这次 测试结果的数据作出整理,下图是这四名同学提供的部分信息: 甲:将全体测试数据分成6组绘成直方图(如图); 乙:跳绳次数不少于105次的同学占96%; 丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4:17:15. 根据这四名同学提供的材料,请解答如下问题: (1)这次跳绳测试共抽取多少名学生?各组有多少人? 【解】 (2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少? 【解】 (3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min 跳绳次数的平均值. 【解】七、(本题满分12分)22.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对; 【证】 (2)连结FG ,如果α=45°,AB =AF =3,求FG 的长.【解】八、(本题满分14分)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg 么范围内,以同样的资金可以批发到较多数量的该种水果. 【解】(3数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大. 【解】 第19题图yx 第20题图 第21题图 A MFGDEC第22题图)2009数学试题参考答案及评分标准二.填空题(本大题共4小题,每小题5分,满分20分)11.72° 12.(1)(1)a b a b ++-- 13. 14.2y x x =+,21133y x =-+三.(本大题共2小题,每小题8分,满分16分)15.解:原式=2131+-+………………………………………………………6分=1…………………………………………………………………8分16.证:∵AB 是⊙O 的直径,∴∠ACB =90°∵MP 为⊙O 的切线,∴∠PMO =90° ∵MP ∥AC ,∴∠P =∠CAB∴∠MOP =∠B …………………………………………………………6分 故MO ∥BC .……………………………………………………………8分四、(本大题共2小题,每小题8分,满分16分)17.(1)猜想:11⨯=-++n nn n n n ……………………………………………3分 (2)证:右边=12+-+n n n n =12+n n =左边,即11⨯=-++n nn n n n ……8分 18.解:(1)……………………4分(2)设坐标纸中方格边长为单位1,则P (x ,y )2O 以为位似中心放大为原来的倍(2x ,2y )y 经轴翻折(-2x ,2y )4向右平移个单位(24x -+,2y )5向上平移个单位(24x -+,25y +) (8)分说明:如果以其它点为位似中心进行变换,或两次平移合并,或未设单位长,或(2)中直接写出各项变换对应点的坐标,只要正确就相应赋分.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)菱形图案水平方向对角线长为230cos 310o ⨯⨯=30cm按题意,6010)1231(2630=-⨯+=L cm ……………………………5分(2)当=d 20cm 时,设需x 个菱形图案,则有:6010)1(2030=-⨯+x …………………………………………………8分解得300=x即需300个这样的菱形图案.…………………………………………10分20.解:(1) …………………………5分说明:其它正确拼法可相应赋分.(2)解法一:由拼图前后的面积相等得:2)(])[(y x y y y x +=++………………8分因为y ≠0,整理得:01)(2=-+yxy x解得:215-=y x (负值不合题意,舍去)……………………………………10分 解法二:由拼成的矩形可知:yxy y x y x =+++)(…………………………………8分以下同解法一.……………………………………………………………………10分六、(本题满分12分) 21.解:(1)第①组频率为:196%0.04-=∴第②组频率为:0.120.040.08-=这次跳绳测试共抽取学生人数为:120.08150÷=人∵②、③、④组的频数之比为4:17:15可算得第①~⑥组的人数分别为6、12、51、45、24、12.………6分 (2)第⑤、⑥两组的频率之和为0.160.080.24=+=由于样本是随机抽取的,估计全年级有9000.24216⨯=人达到跳绳优秀………9分③④① ②(3)10061101212051130451402415012150x ⨯+⨯+⨯+⨯+⨯+⨯=≈127次 (12)分 七、(本题满分12分) 22.(1)证:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM (写出两对即可)……2分以下证明△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B∴△AMF ∽△BGM .………………………………………………………………6分(2)解:当α=45°时,可得AC ⊥BC 且AC =BC∵M 为AB 的中点,∴AM =BM=7分又∵AMF ∽△BGM ,∴AF BMAM BG=∴283AM BM BGAF ===……………………………………………9分 又4AC BC ===,∴84433CG =-=,431CF=-=∴53FG =………………………………………12分八、(本题满分14分) 23.(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.………………………………………………………………7分由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分)。

2009年安徽省初中毕业学业考试 数学

2009年安徽省初中毕业学业考试  数学

2009年安徽省初中毕业学业考试数 学本试卷共8大题,计23小题,满分150分,考试时间120分钟 题号一二三四五六七八 总分 得分一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选茁的代号超过一个的(不论是否写在括号内)一律得0分.1、(-3)2的的值是…………………………………………【 】 A 、9 B 、-9 C 、6 D 、-6 【解析】主要考幂的意义:负数的偶次幂. 选A2、如图,直线l 1∥l 2,则∠α为…………………………【 】 A 、150° B 、140° C 、130° D 、120° 【解析】主要考察:相交线与平行线的有关知识.选 D3、下列运算正确的是……………………………………【 】A 、a 2·a 3=a 6B 、(-a )4=a 4C 、a 2+a 3=a 5D 、(a 2)3=a 5【解析】主要考察:整式的运算与第1题在知识点上有重复,(-3)2=32=9,(-a )4=a 4.选B4、甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是………………………………………………………………………………………【 】A 、8B 、7C 、6D 、5 【解析】主要考察:分式方程的应用.设甲志愿者计划完成此项工作需x 天,则351x x x x--+=解得x=8,选 A. 5、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为…………………【 】A 、3,22B 、2,22C 、3,2D 、2,3【解析】主要考察:三视图以及学生的空间想象能力.设底面边长为x,则x2+x2=()222,解得x=2,选C6、某校决定从三名男生和两名女生中选出两名同学担任校艺术节演出专场的主持人,则选出的恰好为一男一女的概率是…………………………【】A、45B、35C、25D、15【解析】主要考察:用列表或树形图来求解常见的概率.男1 男2 男3 女1 女2男1 --√√男2 --√√男3 --√√女1 √√√-女2 √√√-∴P(一男一女)=205=,选B7、某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,对预计今年比2008年增长7%。

2009--2013年安徽中考数学试题逐题分析

2009--2013年安徽中考数学试题逐题分析

2009-2009年安徽中考数学一、选择题(40分)1、代数:求一个数的平方2、几何:平行线、对顶角的性质3、代数:幂的运算4、代数:应用题(工程问题)5、几何:三视图的有关计算6、概率的计算7、代数:列方程式8、代数:有关一次函数图象9、几何:求圆的半径10、几何:三角形内心的性质代数:几何:统计=5:4:1二、填空题(20分)11、统计:有关扇形统计图的计算12、代数:因式分解13:几何:解直角三角形14、代数:求二次函数解析式代数:几何:统计=2:1:1三、共2小题每小题8分,共16分15、代数:代数式的化简16、几何:以圆为条件,证线平行四、共2小题每小题8分,共16分17、代数:规律性题18、几何:作图(平移、位似、平移)五、共2小题每小题10分,共20分19、几何:应用题20、几何:图形割补六、本题题12分21、统计七、本题题12分22、几何:找相似三角形、求线段长八、本题满分14分23、代数:关于分段函数(从图象中获取数代数:几何:统计=3:5:1代数:几何:统计=10:10:32009--2013年安徽2010年安徽中考数学一、选择题(40分)1、代数:数的分类2、代数:单项式的除法3、几何:平行线的性质、三角形内角和定理4、代数:科学计数法5、几何:三视图6、统计:概率的计算7、代数:二次函数一般解析式的8、几何:求圆的半径9、代数:找规律题10、代数:函数图像的判断代数:几何:统计=6:3:1二、填空题(20分)11、代数:实数的运算12、代数:解不等式组13、几何:圆中有关角的计算14、几何:开放题(选择条件证三角形为等代数:几何:统计=2:2:0三、共2小题每小题8分,共16分15、代数:代数式的化简求值16、几何:解直角三角形的应用四、共2小题每小题8分,共16分17、代数:求一次函数解析式18、几何:作图(旋转、轴对称)五、共2小题每小题10分,共20分19、代数:列方程解应用题-平均降低20、几何:证菱形、三角形全等六、本题题12分21、代数:列方程解应用题-方案设计七、本题题12分22、代数:列函数关系式求最大值八、本题满分14分23、几何:相似三角形的性质应用代数:几何:统计=5:4:0代数:几何:统计=13:9:1年安徽中考数学试2011年安徽中考数学一、选择题(40分)1、代数:找最大数2、代数:科学计数法3、几何:三视图4、代数:估算(二次根式)5、统计:概率6、几何:中位线定理的应用7、几何:求弧长8、代数:关于一元二次方程的根9、几何:求线段的长10、几何:相似形代数:几何:统计=4:5:1二、填空题(20分)11、代数:因式分解12、代数:新概念题13、几何:求圆的半径14、代数:新定义的理解与应用代数:几何:统计=3:1:0三、共2小题每小题8分,共16分15、代数:代数式的化简16、代数:列方程解应用题四、共2小题每小题8分,共16分17、几何:作图(平移、位似)18、几何:规律性题五、共2小题每小题10分,共20分19、几何:解直角三角形及其应用20、统计:平均数、中位数、归纳总结六、本题题12分21、代数:函数综合一次函数、反比例函数七、本题题12分22、几何:旋转性质的应用八、本题满分14分23、几何:平行线为情境证线段相代数:几何:统计=3:5:1代数:几何:统计=10:11:2数学试题逐题分析2012年安徽中考数学一、选择题(40分)1、代数:找相反数2、几何:三视图3、代数:积的乘方运算4、代数:因式分解5、代数:百分比应用(关于增长)6、代数:分式的化简7、几何:求阴影部分的面积(割补法)8、统计:概率计算9、几何:求圆中的函数关系式10、几何:图形割补计算代数:几何:统计=5:4:1二、填空题(20分)11、代数:科学计数法12、统计:给出方差判断波动性13、几何:圆的有关计算14、几何:关于矩形中三角形面积计算与证明代数:几何:统计=1:2:1三、共2小题每小题8分,共16分15、代数:整式的化简16、代数:解一元二次方程四、共2小题每小题8分,共16分17、几何:规律性题目18、几何:作图-全等三角形、轴对称、旋转五、共2小题每小题10分,共20分19、几何:解直角三角形及其应用20、统计:频数、百分数计算、样六、本题题12分21、代数:简单计算、列函数关系式七、本题题12分22、几何:利用周长相等求线段长、八、本题满分14分23、代数:二次函数的应用代数:几何:统计=4:4:1代数:几何:统计=10:10:3题分析2013年安徽中考数学一、选择题(40分)1、代数:求倒数2、代数:科学计数法3、几何:三视图4、代数:整式运算5、代数:不等式组解集在数轴上表示6、几何:利用平行线性质和三角形外角求角度7、代数:利用平均增长率列方程8、统计:求概率(物理情境)9、几何:综合题10、几何:三角形的外接圆代数:几何:统计=5:4:1二、填空题(20分)11、代数:二次根式有意义求字母取值范围12、代数:因式分解13、几何:求两个三角形面积和14、几何:矩形折叠问题代数:几何:统计=2:2:0三、共2小题每小题8分,共16分15、代数:特殊角的三角函数值、绝对值、平方的化简16、代数:求二次函数解析式四、共2小题每小题8分,共16分17、几何:作图(关于坐标原点的中心对称)18、几何:图形变化规律五、共2小题每小题10分,共20分19、几何:解直角三角形及其应用20、代数:列代数式、列分式方程六、本题题12分21、统计:中位数、众数、估计人数七、本题题12分22、代数:分段函数,求最大利润八、本题满分14分23、几何:新概念题代数:几何:统计=4:4:1代数:几何:统计=11:10:2。

2009年安徽中考数学试卷

2009年安徽中考数学试卷

2009年安徽省初中毕业学业考试数学试题注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内。

每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.(-3)2的值是……………………………………………………………………………………………【】A.9 B.-9 C.6 D.-62.如图,直线l1∥l2,则α为…………………………………………【】A.150° B.140° C.130° D.120°3.下列运算正确的是……………………………………………………【】A.a2 a3=a4 B.(-a4)=a4C.a2+a3=a5 D.(a2)3=a5 ° l1 l2 第2题图4.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【】A.8 B.7 C.6 D.55.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为…………………………【】A.3, B.2, C.3,2 D.2,36.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是…………【】A.45第5题图主视图左视图 B.35 C.25 D.15 俯视图7.某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是…………………………【】A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2 x% D.(1+12%)(1+7%)=(1+x%)28y=kx+by=2kx+b 】第8题图 A B C D 9.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=BD 则AB的长为…………【】A.2 B.3 C.4 D.5第9题图10.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是……………………………………………【】 A.120°B.125° C.135° D.150°二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为. 12.因式分解:a2-b2-2b-1=13.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m. 14.已知二次函数的图象经过原点及点(-12第11题图,-14),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为三.(本大题共2小题,每小题8分,满分16分)15.计算:|-2|+2sin30o-(2+(tan45o)-1 【解】第13题图16.如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥BC.【证】P四、(本大题共2小题,每小题8分,满分16分)17.观察下列等式:1⨯12=1-12=3-34,2⨯23=2-23,3⨯34,……第16题图(1)猜想并写出第n个等式;【猜想】(2)证明你写出的等式的正确性.【证】18.如图,在对Rt△OAB依次进行位似、轴对称和平移变换后得到△O′A′B′.(1(2)设P(x,y)为△OAB写出这几次变换后点P对应点的坐标.【解】五、(本大题共2小题,每小题10分,满分20分)19.学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长cm,其一个内角为60°.第19题图(1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L;【解】(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?【解】20.如图,将正方形沿图中虚线(其中x<y=剪成①②③④四块图形,用这四块图形恰.能拼成一个矩形(非正方形)......(1)画出拼成的矩形的简图;【解】(2)求【解】xyx的值.y六、(本题满分12分)21.某校九年级学生共900部分学生进行1min测试结果的数据作出整理,下图是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于106次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是丁:第②、③、④组的频数之比为4:17:15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?第21题图【解】(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?【解】(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min跳绳次数的平均值.【解】七、(本题满分12分)22.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;【证】(2)连结FG,如果α=45°,AB=AF=3,求FG的长.【解】B D八、(本题满分14分)第22题图 E23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】)第23题图(1)(2)写出批发该种水果的资金金额w(元)与批发量m(kg么范围内,以同样的资金可以批发到较多数量的该种水果.【解】(3数关系如图(2)所示,该经销商拟每日售出60kg使得当日获得的利润最大.【解】第23题图(2)数学试题参考答案及评分标准二.填空题(本大题共4小题,每小题5分,满分20分)11.72° 12.(a+b+1)(a-b-1) 13.2-14.y=x2+x,y=-13x+213三.(本大题共2小题,每小题8分,满分16分)15.解:原式=2+1-3+1………………………………………………………6分=1…………………………………………………………………8分16.证:∵AB是⊙O的直径,∴∠ACB=90°∵MP为⊙O的切线,∴∠PMO=90°∵MP∥AC,∴∠P=∠CAB∴∠MOP=∠B…………………………………………………………6分故MO∥BC.……………………………………………………………8分四、(本大题共2小题,每小题8分,满分16分)17.(1)猜想:n⨯nn+1n2=n-nn+1……………………………………………3分n2(2)证:右边=18.解:(1)+n-nn+1=n+1=左边,即n⨯nn+1=n-nn+1……8分……………………4分P(x,y)(2x,2y)(-2x,2y)(-2x+4,2y)(-2x+4,2y+5)…………8分说明:如果以其它点为位似中心进行变换,或两次平移合并,或未设单位长,或(2)中直接写出各项变换对应点的坐标,只要正确就相应赋分.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)菱形图案水平方向对角线长为103⨯cos30o⨯2=30cm按题意,L=30+26⨯(231-1)=6010cm……………………………5分(2)当d=20cm 时,设需x个菱形图案,则有:30+20⨯(x-1)=6010…………………………………………………8分解得x=300即需300个这样的菱形图案.…………………………………………10分20.解:(1)④说明:其它正确拼法可相应赋分.(2)解法一:由拼图前后的面积相等得:[(x+y)+y]y=(x+y)2………………8分因为y≠0,整理得:()2+yxxy-1=0 ①②③ …………………………5分解得:xy=5-12(负值不合题意,舍去)……………………………………10分 x+y(x+y)+y=xy解法二:由拼成的矩形可知:…………………………………8分以下同解法一.……………………………………………………………………10分六、(本题满分12分)21.解:(1)第①组频率为:1-96%=0.04∴第②组频率为:0.12-0.04=0.08这次跳绳测试共抽取学生人数为:12÷0.08=150人∵②、③、④组的频数之比为4:17:15可算得第①~⑥组的人数分别为6、12、51、45、24、12.………6分(2)第⑤、⑥两组的频率之和为=0.16+0.08=0.24由于样本是随机抽取的,估计全年级有900⨯0.24=216人达到跳绳优秀………9分(3)x=100⨯6+110⨯12+120⨯51+130⨯45+140⨯24+150⨯12150≈127次…………12分七、(本题满分12分)22.(1)证:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM(写出两对即可)……2分以下证明△AMF∽△BGM.∵∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B∴△AMF∽△BGM.………………………………………………………………6分(2)解:当α=45°时,可得AC⊥BC且AC=BC∵M为AB的中点,∴AM=BM=7分又∵AMF∽△BGM,∴∴BG=AM BMAF=AFAM=BMBG=83………………………………………………9分83=433又AC=BC=45 =4,∴CG=4-∴FG=,CF=4-3=153……………………………………………12分八、(本题满分14分)23.(1)解:图①表示批发量不少于20kg且不多于60kg可按5元/kg批发;……3分图②表示批发量高于60kg的该种水果,可按4元/kg批发.………………………………………………………………3分(2)解:由题意得:w=⎨⎧5m (20≤m≤60)⎩4m (m>60),函数图象如图所示.………………………………………………………………7分由图可知资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x元,由图可得日最高销量w=320-40m当m>60时,x<6.5由题意,销售利润为2y=(x-4)(320-40m)=40[-(x-6)+4]………………………………12分当x=6时,y最大值=160,此时m=80即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.……………………………………………14分解法二:设日最高销售量为xkg(x>60)则由图②日零售价p满足:x=320-40p,于是p=销售利润y=x(320-x40-4)=-140(x-80)+1602) 320-x40 ………………………12分当x=80时,y最大值=160,此时p=6即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.……………………………………………14分。

安徽省2009-2011年中考数学试卷及答案

安徽省2009-2011年中考数学试卷及答案

2009年安徽省初中毕业学业考试数 学 试 题注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内。

每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.2(3)-的值是……………………………………………………………………………………………【】 A .9 B.-9 C .6 D .-6 2.如图,直线l 1∥l 2,则α为…………………………………………【】 A .150° B .140° C .130° D .120° 3.下列运算正确的是……………………………………………………【】 A .234a a a = B .44()a a -= C .235a a a +=D .235()a a =4.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【】 A .8 B.7 C .6 D .55.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为…………………………【】 A .3, B .2, C .3,2 D .2,36.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演 出专场的主持人,则选出的恰为一男一女的概率是…………【】A .45B .35C .25D .157.某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是…………………………【】 A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+8b29.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD AB 的长为…………【】130°70°αl 1 l 2第2题图第5题图主视图左视图俯视图第8题图A B C DA .2B .3C .4D .510.△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是……………………………………………【】 A .120° B .125°C .135°D .150°二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为. 12.因式分解:2221a b b ---=.13.长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了m . 14.已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为.三.(本大题共2小题,每小题8分,满分16分)15.计算:|2-|o 2o 12sin30((tan45)-+-+ 【解】16.如图,MP 切⊙O 于点M ,直线PO 交⊙O 于点A 、B ,弦AC ∥MP ,求证:MO ∥BC .【证】四、(本大题共2小题,每小题8分,满分16分)17.观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……(1)猜想并写出第n 个等式;【猜想】(2)证明你写出的等式的正确性. 【证】18.如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到△O ′A ′B ′. (1)在坐标纸上画出这几次变换相应的图形;第9题图第11题图第13题图P 第16题图(2)设P (x ,y )为△OAB 边上任一点,依次写出这几次变换后点P 对应点的坐标. 【解】五、(本大题共2小题,每小题10分,满分20分)19.学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ; 【解】(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案? 【解】20.如图,将正方形沿图中虚线(其中x <y )剪成①②③④四块图形,用这四块图形恰. 能拼成一个.....矩形(非正方形). (1)画出拼成的矩形的简图; 【解】 (2)求xy的值. 【解】六、(本题满分12分)21.某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min 的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息: 甲:将全体测试数据分成6组绘成直方图(如图); 乙:跳绳次数不少于106次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12; 丁:第②、③、④组的频数之比为4:17:15. 根据这四名同学提供的材料,请解答如下问题: (1)这次跳绳测试共抽取多少名学生?各组有多少人? 【解】 (2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少? 【解】(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min 跳绳次数的平均值. 【解】七、(本题满分12分)22.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,第19题图yx第20题图第21题图第23题图(1)第23题图(2)且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对; 【证】(2)连结FG ,如果α=45°,AB =AF =3,求FG 的长.【解】八、(本题满分14分)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg 么范围内,以同样的资金可以批发到较多数量的该种水果. 【解】(3数关系如图(2)所示,该经销商拟每日售出60kg 使得当日获得的利润最大.【解】A BM FGDEC 第22题图)数学试题参考答案及评分标准一.选择题(本题共10小题,每小题4分,满分40分)二.填空题(本大题共4小题,每小题5分,满分20分)11.72° 12.(1)(1)a b a b ++--13. 14.2y x x =+,21133y x =-+ 三.(本大题共2小题,每小题8分,满分16分)15.解:原式=2131+-+………………………………………………………6分=1…………………………………………………………………8分16.证:∵AB 是⊙O 的直径,∴∠ACB =90°∵MP 为⊙O 的切线,∴∠PMO =90° ∵MP ∥AC ,∴∠P =∠CAB∴∠MOP =∠B …………………………………………………………6分 故MO ∥BC .……………………………………………………………8分四、(本大题共2小题,每小题8分,满分16分)17.(1)猜想:11⨯=-++n nn n n n ……………………………………………3分 (2)证:右边=12+-+n n n n =12+n n =左边,即11⨯=-++n nn n n n ……8分 18.解:(1) ……………………4分(2)设坐标纸中方格边长为单位1,则P (x ,y )2O以为位似中心放大为原来的倍(2x ,2y )y 经轴翻折(-2x ,2y )4 向右平移个单位(24x -+,2y )5向上平移个单位(24x -+,25y +)…………8分 说明:如果以其它点为位似中心进行变换,或两次平移合并,或未设单位长,或(2)中直接写出各项变换对应点的坐标,只要正确就相应赋分.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)菱形图案水平方向对角线长为230cos 310o ⨯⨯=30cm按题意,6010)1231(2630=-⨯+=L cm ……………………………5分 (2)当=d 20cm 时,设需x 个菱形图案,则有:6010)1(2030=-⨯+x …………………………………………………8分解得300=x即需300个这样的菱形图案.…………………………………………10分20.解:(1) …………………………5分说明:其它正确拼法可相应赋分.(2)解法一:由拼图前后的面积相等得:2)(])[(y x y y y x +=++………………8分因为y ≠0,整理得:01)(2=-+yxy x解得:215-=y x (负值不合题意,舍去)……………………………………10分 解法二:由拼成的矩形可知:yxy y x y x =+++)(…………………………………8分以下同解法一.……………………………………………………………………10分 六、(本题满分12分) 21.解:(1)第①组频率为:196%0.04-=∴第②组频率为:0.120.040.08-=这次跳绳测试共抽取学生人数为:120.08150÷=人∵②、③、④组的频数之比为4:17:15可算得第①~⑥组的人数分别为6、12、51、45、24、12.………6分 (2)第⑤、⑥两组的频率之和为0.160.080.24=+=由于样本是随机抽取的,估计全年级有9000.24216⨯=人达到跳绳优秀………9分 (3)10061101212051130451402415012150x ⨯+⨯+⨯+⨯+⨯+⨯=≈127次…………12分七、(本题满分12分) 22.(1)证:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM (写出两对即可)……2分以下证明△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B∴△AMF ∽△BGM .………………………………………………………………6分③④① ②(2)解:当α=45°时,可得AC ⊥BC 且AC =BC∵M 为AB 的中点,∴AM =BM=7分又∵AMF ∽△BGM ,∴AF BMAM BG=∴83AM BM BG AF === ………………………………………………9分又4AC BC === ,∴84433CG =-=,431CF =-=∴53FG =……………………………………………12分八、(本题满分14分) 23.(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.………………………………………………………………7分由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分)2010年安徽中考数学试题及答案A BCD E FGH A C OCD 2011年安徽省中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分) 1.-2、0、2、-3这四个数中最大的是【】A .2B .0C .-2D .-32.我省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千.正确的是【】 A .3804.2×103 B .380.42×104 C .3.8042×106 D .3.8042×107 3.下图是五个相同的小正方体搭成的几何体,其左视图是【】4.设a =19-1,a 在两个相邻整数之间,则这两个整数是【】A .1和2B .2和3C .3和4D .4和5 5.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是【】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为1 5 D .事件M 发生的概率为256.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是【】A .7B .9C .10D .11 7.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠BAC =36°, 则劣弧BC 的长是【】A .π51B .π52C .π53D .π548.一元二次方程x (x -2)=2-x 的根是【】A .-1B .2C .1和2D .-1和2 9.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为23,则点P 的个数为【】A .1B .2C .3D .410.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【】A .B .C .D .ACDMN PAB CDEO二、填空题(本大题共4小题,每小题5分,满分20分) 11.因式分解:a 2b +2ab +b =.12.根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放出的相对能量是7级地震所释放出的相对能量的倍数是.13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD , CE =1,DE =3,则⊙O 的半径是. 14.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的四个结论:①2⊗(-2)=6 ②a ⊗b =b ⊗a③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ④若a ⊗b =0,则a =0. 其中正确结论的序号是(填上你认为所有正确结论的序号). 三、(本大题共2小题,每小题8分,满分16分) 15.先化简,再求值:12112---x x ,其中x =-2. 【解】16.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 【解】 四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2:(1)将△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 4(,)、A 8(,)、A 12(,); (2)写出点A 4n 的坐标(n 是正整数); 【解】(3)指出蚂蚁从点A 100到点A 101的移动方向. 【解】 五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(3≈1.73).【解】20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:(1)(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由./分【解】六、(本题满分12分)21.如图,函数y 1=k 1x +b 的图象与函数y 2=k 2x(x >0)的图象交于点A (2,1)、B ,与y 轴交于点C (0,3).(1)求函数y 1的表达式和点B 的坐标;【解】(2)观察图象,比较当x >0时y 1与y 2的大小. 【解】七、(本题满分12分) 22.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A 1B 1C .(1)如图1,当AB ∥CB 1时,设A 1B 1与BC 相交于点D .证明:△A 1CD 是等边三角形; 【证】(2)如图2,连接AA 1、BB 1,设△ACA 1和△BCB 1的面积分别为S 1、S 2.求证:S 1∶S 2=1∶3; 【证】A A C C CA 1A 1BBB1B 1E P图1图2图3θl l l l(3)如图3,设AC 的中点为E ,A 1B 1的中点为P ,AC =a ,连接EP .当 =°时,EP 的长度最大,最大值为. 八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 2; 【证】(2)设正方形ABCD 的面积为S ,求证:S =(h 1+h 2)2+h 12; 【证】(3)若32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积S 随h 1的变化情况.【解】2011年安徽省初中毕业学业考试数学参考答案1~10 ACACB DBDBC11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为xkg ,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000kg. 17. 如下图A A 1BC B 1C 1 A 2B 2C 2 · O18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯= , OB=OC=1500,∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7;乙组:平均数7,中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组。

2009年安徽省中考数学试卷及解析

2009年安徽省中考数学试卷及解析

2009年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)(﹣3)2的值是()A.9 B.﹣9 C.6 D.﹣62.(4分)如图,直线l1∥l2,则∠α为()A.150°B.140°C.130°D.120°3.(4分)下列运算正确的是()A.a2•a3=a6B.(﹣a)4=a4C.a2+a3=a5D.(a2)3=a54.(4分)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8 B.7 C.6 D.55.(4分)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3,B.2,C.3,2 D.2,36.(4分)某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.7.(4分)武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的影响,预计今年比2010年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x% D.(1+12%)(1+7%)=(1+x%)28.(4分)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.9.(4分)如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB 的长为()A.2 B.3 C.4 D.510.(4分)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°二、填空题(共4小题,每小题5分,满分20分)11.(5分)如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为度.12.(5分)分解因式:a2﹣b2﹣2b﹣1=.13.(5分)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了m.14.(5分)已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.三、解答题(共9小题,满分90分)15.(8分)计算:|﹣2|+2sin30°﹣(﹣)2+(tan45°)﹣1.16.(8分)如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥BC.17.(8分)观察下列等式:1×=1﹣,2×=2﹣,3×=3﹣,…(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性.18.(8分)如图,在对Rt△OAB依次进行位似、轴对称和平移变换后得到△O′A′B′.(1)在坐标纸上画出这几次变换相应的图形;(2)设P(x,y)为△OAB边上任一点,依次写出这几次变换后点P对应点的坐标.19.(10分)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长cm,其一个内角为60度.(1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L;(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?20.(10分)如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图;(2)求的值.21.(12分)某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于105次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4:17:15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min跳绳次数的平均值.22.(12分)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中两对相似三角形;(2)连接FG,如果α=45°,AB=,AF=3,求FG的长.23.(14分)已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.2009年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)【考点】有理数的乘方.【分析】本题考查有理数的乘方运算,(﹣3)2表示2个(﹣3)的乘积.【解答】解:(﹣3)2=9.故选A.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.2.(4分)【考点】平行线的性质;对顶角、邻补角;同位角、内错角、同旁内角.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行做题.【解答】解:∵l1∥l2,∴130°所对应的同旁内角为∠1=180°﹣130°=50°,又∵∠α与(70°+∠1)的角是对顶角,∴∠α=70°+50°=120°.故选:D.【点评】本题重点考查了平行线的性质及对顶角相等,是一道较为简单的题目.3.(4分)【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据幂的运算性质和合并同类项法则,对各选项分析判断后利用排除法求解.【解答】解:A、应为a2•a3=a5,故本选项错误;B、(﹣a)4=a4,正确;C、a2和a3不是同类项不能合并,故本选项错误;D、应为(a2)3=a2×3=a6,故本选项错误.故选B.【点评】本题主要考查:合并同类项,同底数幂的乘法,幂的乘方的性质,熟练掌握法则和运算性质是解题的关键,要注意不是同类项的不能合并.4.(4分)【考点】分式方程的应用.【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:设甲志愿者计划完成此项工作需x天,故甲、乙的工效都为:,甲前两个工作日完成了,剩余的工作日完成了,,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.5.(4分)【考点】由三视图判断几何体;简单几何体的三视图.【分析】由俯视图和主视图知道棱柱顶的正方形对角线长是,根据勾股定理列出方程求解.【解答】解:设底面边长为x,则x2+x2=,解得x=2,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2,只能选C,故选C.【点评】考查三视图以及学生的空间想象能力.6.(4分)【考点】列表法与树状图法.【分析】列举出所有情况,看恰为一男一女的情况占总情况的多少即可.【解答】解:男1 男2 男3 女1 女2男1 一一√√男2 一一√√男3 一一√√女1 √√√一女2 √√√一∴共有20种等可能的结果,P(一男一女)=.故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(4分)【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2009年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2010年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.8.(4分)【考点】一次函数的图象.【分析】由图知,函数y=kx+b图象过点(0,1),即k>0,b=1,再根据一次函数的特点解答即可.【解答】解:∵由函数y=kx+b的图象可知,k>0,b=1,∴y=2kx+b=2kx+1,2k>0,∴2k>k,可见一次函数y=2kx+b图象与x轴的夹角,大于y=kx+b图象与x轴的夹角.∴函数y=2kx+1的图象过第一、二、三象限且与x轴的夹角大.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.(4分)【考点】垂径定理;勾股定理;相交弦定理.【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选B.【点评】本题主要考查:垂径定理、勾股定理或相交弦定理.10.(4分)【考点】三角形的内切圆与内心;三角形内角和定理;全等三角形的判定与性质.【分析】本题求的是∠AIB的度数,而题目却没有明确告诉任何角的度数,因此要从隐含条件入手;CD是AB边上的高,则∠ADC=90°,那么∠BAC+∠ACD=90°;I是△ACD的内心,则AI、CI分别是∠DAC和∠DCA的角平分线,即∠IAC+∠ICA=45°,由此可求得∠AIC的度数;再根据∠AIB和∠AIC的关系,得出∠AIB.【解答】解:如图.∵CD为AB边上的高,∴∠ADC=90°,∴∠BAC+∠ACD=90°;又∵I为△ACD的内切圆圆心,∴AI、CI分别是∠BAC和∠ACD的角平分线,∴∠IAC+∠ICA=(∠BAC+∠ACD)=×90°=45°,∴∠AIC=135°;又∵AB=AC,∠BAI=∠CAI,AI=AI;∴△AIB≌△AIC(SAS),∴∠AIB=∠AIC=135°.故选:C.【点评】本题主要考查等腰三角形的性质、三角形内切圆的意义、三角形内角和定理、直角三角形的性质;难点在于根据题意画图,由于没任何角的度数,需要充分挖掘隐含条件.此类题学生丢分率较高,需注意.二、填空题(共4小题,每小题5分,满分20分)11.(5分)【考点】扇形统计图.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1.则短信费占总体的百分比为:1﹣4%﹣43%﹣33%=20%,乘以360°即可得到所对圆心角的度数.【解答】解:由图可知,短信费占总体的百分比为:1﹣4%﹣43%﹣33%=20%,故其扇形圆心角的度数为20%×360°=72°.【点评】本题主要考查扇形统计图的定义及扇形圆心角的计算.12.(5分)【考点】因式分解-分组分解法.【分析】首先将后三项组合利用完全平方公式分解因式,进而利用平方差公式分解即可.【解答】解:a2﹣b2﹣2b﹣1=a2﹣(b2+2b+1)=a2﹣(b+1)2=(a+b+1)(a﹣b﹣1).故答案为:(a+b+1)(a﹣b﹣1).【点评】此题主要考查了分组分解法分解因式,熟练利用公式是解题关键.13.(5分)【考点】解直角三角形的应用-坡度坡角问题.【分析】利用所给角的正弦函数求两次的高度,相减即可.【解答】解:由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了2()m.故答案为:2()【点评】本题重点考查了三角函数定义的应用.14.(5分)【考点】待定系数法求二次函数解析式.【分析】由于点(,)不在坐标轴上,与原点的距离为1的点有两种情况:点(1,0)和(﹣1,0),所以用待定系数法求解需分两种情况:(1)经过原点及点(,)和点(1,0),设y=ax(x+1),可得y=x2+x;(2)经过原点及点(,)和点(﹣1,0),设y=ax(x﹣1),则得y=x2+x.【解答】解:根据题意得,与x轴的另一个交点为(1,0)或(﹣1,0),因此要分两种情况:(1)过点(﹣1,0),设y=ax(x+1),则,解得:a=1,∴抛物线的解析式为:y=x2+x;(2)过点(1,0),设y=ax(x﹣1),则,解得:a=,∴抛物线的解析式为:y=x2+x.【点评】本题主要考查二次函数的解析式的求法.解题的关键利用了待定系数法确定函数的解析式.三、解答题(共9小题,满分90分)15.(8分)【考点】特殊角的三角函数值;实数的运算;负整数指数幂.【分析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+1﹣3+1=1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.16.(8分)【考点】切线的性质;平行线的判定.【分析】证MO∥BC,只需证明同位角∠MOP=∠B即可.【解答】证明:∵AB是⊙O的直径,∠ACB是直径所对的圆周角,∴∠ACB=90°.∵MP为⊙O的切线,∴∠PMO=90°.∵MP∥AC,∴∠P=∠CAB.∴∠MOP=∠B.故MO∥BC.。

2009年安徽省初中毕业九年级数学学业考试试卷详细解析及内容分布分析(完整word版)

2009年安徽省初中毕业九年级数学学业考试试卷详细解析及内容分布分析(完整word版)

2009年某某省初中毕业学业考试数学本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选茁的代号超过一个的(不论是否写在括号内)一律得0分.1、(-3)2的的值是…………………………………………【】A、9B、-9C、6D、-6【解析】主要考幂的意义:负数的偶次幂. 选A2、如图,直线l1∥l2,则∠α为…………………………【】A、150°B、140°C、130°D、120°【解析】主要考察:相交线与平行线的有关知识.选D3、下列运算正确的是……………………………………【】A、a2·a3=a6B、(-a)4=a4C、a2+a3=a5D、(a2)3=a5【解析】主要考察:整式的运算与第1题在知识点上有重复,(-3)2=32=9,(-a)4=a4.选B 4、甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是………………………………………………………………………………………【】A、8B、7C、6D、5【解析】主要考察:分式方程的应用.设甲志愿者计划完成此项工作需x天,则351x xx x--+=解得x=8,选A.5、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为…………………【】A、3,B、2,C、3,2D、2,3【解析】主要考察:三视图以及学生的空间想象能力.设底面边长为x,则x2+x2=(2,解得x=2,选C6、某校决定从三名男生和两名女生中选出两名同学担任校艺术节演出专场的主持人,则选出的恰好为一男一女的概率是…………………………【】A、45B、35C、25D、15【解析】主要考察:用列表或树形图来求解常见的概率.∴P(一男一女)=12205=,选B7、某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,对预计今年比2008年增长7%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年安徽中考数学试卷
——空间与图形试题分析
安徽蚌埠第五中学 杨明正
2009年中考已过去,但人们研究中考的热情依然高涨,通过对中考试卷的分析和思考,然后取其精华,为我所用。

同时通过研究中考试卷为我们把握考纲提供参考,指导我们平时的教学。

下面就2009年安徽中考数学卷中空间与图形类试题做一小结,供参考。

一、知识点分布表
学习领域题型
题号考 查 的 主 要 知 识分值
空间与图形选择题
2相交线与平行线4
5三视图4
9垂径定理等的应用4
10
等腰三角形的性质、内切圆

4填空题13解直角三角形5解答题
16圆的切线及性质8
18图形的变换与坐标8
20矩形、正方形及拼图10
22解相似三角形12
合计共9题59
此外,第19题以植物园沿路护栏的图案为背景,主要考察一元一次方程及其应用和图形中规律的探索,让考生既在图案对称美的赏析中探究潜在规律并将规律代数化,同时兼顾考查了菱形性质与三角函数等知识点。

二、深度剖析
1、从上表可以看到空间与图形类直接考查的知识点的分数是59分,再加上第19题,总分在60分多点,占试卷满分150分的比重约为40%,这要比考试大纲里提到的约占35%偏高一点。

2、空间与图形领域是《数学课程标准》中四大领域(包括课题学习)之一,其主要包括图形的认识、图形与变换、图形与坐标和图形与证明四块内容,我们可以看到,本套中考试卷对这四块内容都有不同程度的考查。

期中涉及圆的有第9、10、16三题,题量和分值都比往年略多。

3、9个题目都需要借助图形方能解决,其中第10题试卷没有给出图形,第20题也需要学生正确做出图形后才能进行,如此一来试题的难度很快提高,很多同学缺乏作图的能力。

可笑的是,很多考生在考场上急中生智,他们利用尺规精确做出第10题的图形后,利用量角器直接测出了∠AIB=135°,不知大家对此有何看法。

4、试题有很多亮点,首先,除个别题外基本上是按照从易到难的顺序排列,符合学生的认知规律;其次,第13和19题以生活实际问题为背景,体现了几何与生活的紧密联系,重视对学生运用数学的思维方式观察、分析、解决日常生活中问题能力的评价;再者,第20题源自沪科版九年级数学课本下的课题学习《问题出在哪里》,源于课本高于课本,是个动手实践题,力求体现《数学课程标准》所倡导的“中考试卷要有效发挥开放性问题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致”的精神。

5、不足与商榷,所考9个题目没有一眼就能看出答案的,都需要动笔去运算,足见试题有一定的难度,对稳定学生情绪不利;第9题考查垂径定理、勾股定理的应用,我们知道新教材已经删去了“直角三角形中成比例线段定理(射影定理)”,从现在的解法来看,本题的解答显然没有用射影定理解决的顺利,本题似乎给人有点“舍近求远”之嫌;第10题由于需要考生画图、题干中又没任何角的度数,学生大多感到很
难,甚至难于第16题那个8分题。

三、教学建议
1、吃透课标,研究考纲。

虽然今年试卷偏难,但没有超纲,比如说第20题,很多师生都认为只有在数学竞赛中才会出现此类题目,认为超纲,其实是误解,前面说了它就源于书本。

2、立足课本,不留盲点。

课本是教学、考试的核心材料,很多试题就是课本例习题的某种变式,所以我们还是抓住教材,避免题海战术。

尤其值得一提的是今年有部分试题来自课本中的《课题学习》领域,这应该引起广大老师的注意,正是由于不少同学甚至老师不重视课本上的《课题学习》,教师对教材资源的发掘不够,才导致学生在考场上思维受阻,感觉题目“较难”。

3、强化双基,培养能力。

对于考试要求的所有知识点要不折不扣的掌握,公式、定理、性质、特殊的数据都要熟记于胸,如第13题有的同学不知道角的三角函数值导致丢分,教学中还要加强数学思想方法和数学能力的提高,“空间与图形”显然离不开图形,要识图,还要会画图,善于运用数形结合的思想解题,平时注重培养对图形的认知和空间想象能力以及对手实践和操作能力。

4、关注细节,培养品质。

一要认真审题,有些学生,为了节约时间往往审题不仔细,看错数据、抄错数字等,第5题三视图有的同学没有把所给数据很好的对号入座,第20题没注意“恰能拼成一个矩形”等导致错误;二要答题要规范,答题时表述要规范、推理要有据、计算要仔细,试题基本完成后,不要忘记检验;三要培养良好的心态,由于试卷几乎没有一眼就能看出答案的题目,所以一定要稳重情绪,有的同学一开就慌了手脚,尤其是后面第22题,对相似三角形相关知识的考查,第(1)小问有两组相似三角形容易找到,第三组不好找,正是不好找的这一组又恰恰影响第(2)小题的解答,本来第(2)问就有一定的难度,再加上有不少考生此时已经感到没有足够的时间思考了,便造成了心理上莫大的恐慌和烦躁,也影响了最后一题的解答。

以上是笔者的浅见,请批评指正。

相关文档
最新文档