安徽省历届中考数学试题三角形

合集下载

中考数学试题及答案安徽

中考数学试题及答案安徽

中考数学试题及答案安徽一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. 0.33333...C. πD. 0.5答案:C2. 一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:C3. 一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),则该二次函数的对称轴是:A. x = 0B. x = 1C. x = -1D. x = 2答案:A4. 以下哪个图形是中心对称图形?A. 等边三角形B. 圆C. 等腰梯形D. 矩形答案:B5. 计算下列表达式的值:(2x+3)(x-1)-(2x-5)(x+2)A. 4x^2 - 7x + 1B. 4x^2 + x - 7C. 4x^2 + 7x - 1D. 4x^2 - x + 7答案:C6. 如果一个数的平方等于它本身,那么这个数是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A7. 一个圆的半径为r,那么它的面积是:A. πr^2B. 2πrC. πrD. πr^3答案:A8. 一个等腰三角形的底角为45°,那么它的顶角是:A. 45°B. 60°C. 90°D. 120°答案:C9. 一个正数x的算术平方根是3,那么x的立方根是:A. 3B. 9C. 27D. √3答案:D10. 一个数列的前三项为1,2,4,那么这个数列的第四项是:A. 8B. 7C. 6D. 5答案:A二、填空题(每题3分,共15分)11. 一个直角三角形的两条直角边长分别为6和8,那么它的斜边长是________。

答案:1012. 计算(3x^2 - 2x + 1) ÷ (x - 1)的商是________。

答案:3x + 113. 一个等差数列的首项为2,公差为3,那么它的第五项是________。

2024年安徽中考试卷数学

2024年安徽中考试卷数学

1、已知直角三角形的一条直角边长为5,斜边长为13,则另一条直角边的长为:A. 8B. 12C. 15D. 17(答案)B2、下列四组数中,哪一组是勾股数?A. 3, 4, 5B. 6, 7, 8C. 9, 10, 11D. 12, 13, 15(答案)A3、若一个多边形的内角和是外角和的3倍,则这个多边形的边数为:A. 6B. 7C. 8D. 9(答案)C4、已知点A(2,3)和点B(4,1),则线段AB的中点坐标为:A. (3,2)B. (2,3)C. (4,1)D. (5,0)(答案)A5、下列哪个选项描述的是平行线的性质?A. 同位角相等B. 对顶角相等C. 邻补角互补D. 同旁内角互补(答案)D6、一个矩形的周长是20厘米,长是a厘米,则宽是:A. (20 - a)厘米B. (20 - 2a)厘米C. (10 - a)厘米D. 10 - a厘米(答案)C7、若关于x的一元二次方程x2 - 2x + m = 0有两个相等的实数根,则m的值为:A. 0B. 1C. 2D. 3(答案)B8、下列哪个选项是方程x2 - 5x + 6 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 4(答案)B和C(注:此题为多选题形式,但按照题目要求选出一个最符合的解,通常选择第一个正确的,即B。

若实际情况允许多选,则B和C均为正确答案。

)9、已知等腰三角形的底边长为8,腰长为5,则这个等腰三角形的面积为:A. 12B. 16C. 20D. 24(答案)C10、下列哪个选项是正确的因式分解?A. x2 - 4 = (x - 2)2B. x2 - 4 = (x + 2)(x - 2)C. x2 + 4 = (x + 2)2D. x2 + 4 = (x + 2)(x - 2)(答案)B。

安徽省2014年中考数学专题复习课件 第15课时 三角形

安徽省2014年中考数学专题复习课件 第15课时 三角形

4.已知△ABC 的三个内角∠A∶∠B∶∠C=1∶2∶1, 试判断△ABC 的形状,并说明理由.

△ABC 是等腰直角三角形. 理由:设每份为 x°,根据题意, 得 x+2x+x=180, 解得 x=45,2x=90, 所以△ABC 是等腰直角三角形.
皖考解读
考点聚焦
皖考探究
当堂检测
如 图, AE 是△ABC 的角平 分线 ∠ BAE = 1 ∠CAE= ∠BAC. 2 三角形的三条角平分线的交点在三角形的 内 ________ 部.
皖考解读
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
如图,AF 是△ABC 的高∠BFA=∠CFA=90°. 三 角 形 的 高
________ 锐角 三角形的三条高的交点在三角形的内部; 直角 三角形的三条高的交点是直角顶点; ______ 钝角 三 ______ 角形的三条高所在直线的交点在三角形的外部.
皖考解读
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
2. 如图 15-4 所示, ∠A、 ∠1、 ∠2 的大小关系是( B )
图 15-4 A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1
由“三角形的一个外角大于和它不相邻的任 解 析 意内角”可知,∠2>∠1>∠A.故选 B.
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
例 5 [2013· 上海] 当三角形中一个内角 α 是另一个内 角 β 的两倍时, 我们称此三角形为“特征三角形”, 其中 α 称为“特征角”.如果一个“特征三角形”的“特征角” 为 100°,那么这个“特征三角形”的最小内角的度数为 30° . ________

安徽省2014年中考数学专题复习课件 第17课时 等腰三角形

安徽省2014年中考数学专题复习课件 第17课时 等腰三角形

皖考解读
考点聚焦
皖考探究
当堂检测
第17课时┃等腰三角形
3.如图 17-5,△ABC 中,AB=AC=6,BC=8,AE 平 分∠BAC 交 BC 于点 E, 点 D 为 AB 的中点, 连接 DE, 则△BDE 的周长是________ 10 .
图 17-5
皖考解读
考点聚焦
皖考探究
当堂检测
第17课时┃等腰三角形
探究三 等腰三角形的多解问题
命题角度: 1.遇到等腰三角形的问题时,注意边有腰与底之分, 角有底角和顶角之分; 2.遇到三角形的高线的问题要考虑高在形内、形上 和形外等多种情况.
皖考解读
考点聚焦
皖考探究
当堂检测
第17课时┃等腰三角形
例 3 [2013· 白银] 等腰三角形的周长为 16,其一边长 为 6,则另两边长为____________________ . 5,5或6,4
第17课时 等腰三角形
第17课时┃ 等腰三角形
皖 考 解 读
考纲 要求 了解 掌握 2010 填空题 5 分 2012 选择题 4 分 2013 解答题 5 分
考点 等腰三角形 有关概念 等腰三角 形的性质 和判定
年份
题型
分值 预测热度 ★ ★★★★
皖考解读
考点聚焦
皖考探究
读 考点聚焦 皖考探究 当堂检测
第17课时┃等腰三角形
(1) 根据等腰三角形“三线合一”可得 BD = 解 析 CD,AD⊥BC,再根据全等三角形的判定定理 SSS 或 HL 可 以证得△ABD≌△ACD; (2)利用(1)中已证 AD 是 BC 的垂直平分线可证 BE=CE.

证明:(1)∵D 是 BC 的中点,∴BD=CD. 在△ABD 和△ACD 中, BD=CD,AB=AC,AD=AD(公共边), ∴△ABD≌△ACD(SSS). (2)∵AB=AC,D 是 BC 的中点, ∴AD⊥BC,BD=CD, ∴BE=CE(线段垂直平分线上的点到线段两端的距离相等).

安徽省2014年中考数学专题复习课件 第19课时 相似三角形及其应用

安徽省2014年中考数学专题复习课件 第19课时 相似三角形及其应用

皖考解读
考点聚焦
皖考探究
当堂检测
第19课时┃ 相似三角形及其应用
皖 考 探 究
探究一 比例线段
命题角度: 1.比例线段; 2.黄金分割在实际生活中的应用; 3.平行线分线段成比例定理.
皖考解读
考点聚焦
皖考探究
当堂检测
第19课时┃ 相似三角形及其应用
例 1 [2013· 上海] 如图 19-1,已知在△ABC 中,点 D、 E、F 分别是边 AB、AC、BC 上的点,DE∥BC,EF∥AB, 且 AD∶DB=3∶5,那么 CF∶CB 等于 ( A)
皖考解读 考点聚焦 皖考探究 当堂检测
第19课时┃ 相似三角形及其应用
考点7 相似三角形的应用
几何图 形的证 明与计算 相似三角 形在实际 生活中的 应用
证明线段的数量关系,求线段的长度,图形的 面积等. 首先根据题中的条件,找出相似三角形,再利 用相似三角形的性质解答. (1)利用投影、平行线、标杆等构造相似三角形 求解; (2)测量底部可以到达的物体的高度; (3)测量底部不可以到达的物体的高度; (4)测量河的宽度.
皖考解读
考点聚焦
皖考探究
当堂检测
第1:(1)先找两对对应角相 等;(2)若只能找到一对对应角相等,则判断夹相等的角的两 边是否对应成比例; (3)若找不到角相等,就判断三边是否对 应成比例.
皖考解读
考点聚焦
皖考探究
当堂检测
第19课时┃ 相似三角形及其应用
皖考解读
考点聚焦
皖考探究
当堂检测
第19课时┃ 相似三角形及其应用
例 3 [2013· 南充] 如图 19-3, 等腰梯形 ABCD 中, AD∥BC, AD=3, BC=7, ∠B=60°, P 为 BC 边上一点(不与 B, C 重合), 过点 P 作∠APE=∠B,PE 交 CD 于 E. (1)求证:△APB∽△PEC; (2)若 CE=3,求 BP 的长.

2021年安徽省中考一轮复习九年级数学:三角形

2021年安徽省中考一轮复习九年级数学:三角形

2021年安徽省中考一轮复习九年级数学:三角形一、选择题(每小题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.下列事例应用了三角形稳定性的有( )①人们通常会在栅栏门上斜着钉上一根木条;②新植的树木,常用一些粗木与之成角度的支撑起来防止倒斜;③四边形模具.A.1个B.2个C.3个D.0个3.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长的差是( )A.2 B.3 C.6 D.不能确定,第3题图),第7题图) 4.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A.45°B.135°C.45°或67.5°D.45°或135°5.根据下列已知条件,能画出唯一△ABC的是( )A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=66.若△ABC和△DEF全等,A和E,B和D分别是对应顶点,则下列结论错误的是( ) A.BC=EF B.∠B=∠DC.∠C=∠F D.AC=EF7.如图,在△ABC与△DEF中,给出以下六个条件:①AB=DE;②BC=EF;③AC =DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.以其中三个条件作为已知,不能判定△ABC 与△DEF全等的是( )A.①②⑤B.①②③C.①④⑥D.②③④8.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A.80°B.100°C.60°D.45°,第8题图),第10题图) 9.已知三角形两边的长分别是3和8,则此三角形的周长取值范围是( )A.3<C<8 B.5<C<11C.16<C<22 D.11<C<1610.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于( ) A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.如图,AB=AC,点D在AB上,点E在AC上,要使△ABE≌△ACD,则还需补充条件.,第11题图),第12题图),第13题图)12.如图,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是13.如图,点A在线段ED上,AC=CD,BC=CE,∠1=∠2,如果AB=7,AD=5,那么AE=14.如图,在△ABC中,点P是△ABC三条角平分线的交点,则∠PBC+∠PCA+∠PAB =.,第14题图,第15题图,第16题图15.如图,△ABC三边的中线AD,BE,CF的公共点为G,若S△ABC=12,则图中阴影部分面积是16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC和∠A1CD的平分线交于点A2,得∠A2……∠A2018BC和∠A2018CD的平分线交于点A2019,则∠A2019=.三、解答题(共72分)17.(6分)已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:要保留作图痕迹,不写作法.)18.(6分)在△ABC中,AD⊥BC于D,∠B=∠1,∠C=65°.求∠B,∠BAC的度数.19.(6分)如图,A,B两个建筑分别位于河的两岸,要测得它们之间距离,可以从B 出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E,A,C在同一条直线上,则DE长就是A,B之间的距离,请你说明道理.20.(6分)如图:(1)在△ABC中,BC边上的高是AB;(2)在△AEC中,AE边上的高是CD;(3)在△FEC中,EC边上的高是EF;(4)若AB=CD=2 cm,AE=3 cm,求△AEC的面积及CE的长.21.(8分)如图,已知AD∥CE,∠1=∠2.(1)试说明AB∥CD;(2)若点D为线段BE中点,试说明△ABD≌△CDE.22.(8分)如图,已知AB=CD,AD=BC,AE=CF.试说明点O是AC的中点.23.(10分)如图,在△ABC中,AD⊥BC,垂足为D,E为BD上的一点,EG∥AD,分别交AB和CA的延长线于点F,G,∠AFG=∠G.(1)试说明△ABD≌△ACD;(2)若∠B=40°,求∠G和∠FAG的大小.24.(10分)如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,延长AE交BC的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,则BE⊥AF吗?为什么?25.(12分)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图①所示放置,使得一直角边重合,连接BD,CE.(1)试说明:BD=CE;(2)延长BD交CE于点F,求∠BFC的度数;(3)若如图②放置,上面的结论还成立吗?请简单说明理由.答案一、选择题(每小题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是(A)A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.下列事例应用了三角形稳定性的有(B)①人们通常会在栅栏门上斜着钉上一根木条;②新植的树木,常用一些粗木与之成角度的支撑起来防止倒斜;③四边形模具.A.1个B.2个C.3个D.0个3.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长的差是(A)A.2 B.3 C.6 D.不能确定,第3题图),第7题图) 4.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为(D)A.45°B.135°C.45°或67.5°D.45°或135°5.根据下列已知条件,能画出唯一△ABC的是(C)A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=66.若△ABC和△DEF全等,A和E,B和D分别是对应顶点,则下列结论错误的是(A) A.BC=EF B.∠B=∠DC.∠C=∠F D.AC=EF7.如图,在△ABC与△DEF中,给出以下六个条件:①AB=DE;②BC=EF;③AC =DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.以其中三个条件作为已知,不能判定△ABC 与△DEF全等的是(D)A.①②⑤B.①②③C.①④⑥D.②③④8.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为(A)A.80°B.100°C.60°D.45°,第8题图),第10题图)9.已知三角形两边的长分别是3和8,则此三角形的周长取值范围是(C)A.3<C<8 B.5<C<11C.16<C<22 D.11<C<1610.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于(B)A.1 B.2 C.3 D.4点拨:∵EC=2BE,∴S△AEC=23S△ABC=23×12=8,∵点D是AC的中点,∴S△BCD=12S△ABC =12×12=6,∴S△AEC-S△BCD=2,即S△ADF+S四边形CEFD-(S△BEF+S四边形CEFD)=2,∴S△ADF-S△BEF=2二、填空题(每小题3分,共18分)11.如图,AB=AC,点D在AB上,点E在AC上,要使△ABE≌△ACD,则还需补充条件AE=AD或∠B=∠C等.,第11题图),第12题图),第13题图)12.如图,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是50°.13.如图,点A在线段ED上,AC=CD,BC=CE,∠1=∠2,如果AB=7,AD=5,那么AE=2.14.如图,在△ABC中,点P是△ABC三条角平分线的交点,则∠PBC+∠PCA+∠PAB =90度.,第14题图),第15题图),第16题图)15.如图,△ABC三边的中线AD,BE,CF的公共点为G,若S△ABC=12,则图中阴影部分面积是4.16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC和∠A1CD的平分线交于点A2,得∠A2……∠A2018BC和∠A2018CD的平分线交于点A2019,则∠A2019=122019m度.三、解答题(共72分)17.(6分)已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:要保留作图痕迹,不写作法.)解:如图所示,∠BAC 即为所求18.(6分)在△ABC 中,AD ⊥BC 于D ,∠B =∠1,∠C =65°.求∠B ,∠BAC 的度数.解:∵AD ⊥BC ,∠B =∠1, ∴∠B =45°,∴∠BAC =180°-∠B -∠C =180°-45°-65°=70°19.(6分)如图,A ,B 两个建筑分别位于河的两岸,要测得它们之间距离,可以从B 出发沿河岸画一条射线BF ,在BF 上截取BC =CD ,过D 作DE ∥AB ,使E ,A ,C 在同一条直线上,则DE 长就是A ,B 之间的距离,请你说明道理.解:∵DE ∥AB , ∴∠A =∠E ,在△ABC 和△EDC 中,⎩⎨⎧∠A =∠E ,∠ACB =∠ECD ,BC =DC ,∴△ABC ≌△EDC (AAS ), ∴AB =DE ,即DE 长就是A ,B 之间距离20.(6分)如图:(1)在△ABC 中,BC 边上的高是AB ; (2)在△AEC 中,AE 边上的高是CD ; (3)在△FEC 中,EC 边上的高是EF ;(4)若AB =CD =2 cm ,AE =3 cm ,求△AEC 的面积及CE 的长.解:S △AEC =3 cm 2,CE =3 cm21.(8分)如图,已知AD ∥CE ,∠1=∠2. (1)试说明AB ∥CD ;(2)若点D 为线段BE 中点,试说明△ABD ≌△CDE.解:(1)∵AD ∥CE ,∴∠ADC =∠2, ∵∠1=∠2,∴∠ADC =∠1,∴AB ∥CD (2)∵AD ∥CE ,∴∠ADB =∠CED , ∵D 是BE 中点,∴BD =DE ,在△ABD 和△CDE 中,⎩⎨⎧∠1=∠2,∠ADB =∠CDE ,BD =DE ,∴△ABD ≌△CDE(AAS )22.(8分)如图,已知AB =CD ,AD =BC ,AE =CF. 试说明点O 是AC 的中点.解:在△ABC 和△CDA 中,⎩⎨⎧AB =CD ,BC =DA ,AC =CA ,∴△ABC ≌△CDA(SSS ), ∴∠DAC =∠BCA.在△AOE 和△COF 中,⎩⎨⎧∠DAC =∠BCA ,∠AOE =∠COF ,AE =CF ,∴△AOE ≌△COF(AAS ),∴OA =OC ,∴点O 是AC 的中点23.(10分)如图,在△ABC 中,AD ⊥BC ,垂足为D ,E 为BD 上的一点,EG ∥AD ,分别交AB 和CA 的延长线于点F ,G ,∠AFG =∠G.(1)试说明△ABD ≌△ACD ;(2)若∠B =40°,求∠G 和∠FAG 的大小.解:(1)∵AD ⊥BC ,∴∠ADB =∠ADC =90°, ∵GE ∥AD ,∴∠CAD =∠AGF ,∠BFE =∠BAD , ∵∠BFE =∠AFG ,∠AFG =∠AGF , ∴∠CAD =∠BAD ,在△ABD 和△ACD 中,⎩⎨⎧∠CDA =∠BDA ,AD =AD ,∠CAD =∠BAD ,∴△ABD ≌△ACD(ASA )(2)∵∠B =40°,∠BEG =90°, ∴∠BFE =∠AFG =50°, ∵∠AFG =∠G ,∴∠G =50°,∠GAF =180°-50°-50°=80°24.(10分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE ,BE ,延长AE 交BC 的延长线于点F.(1)判断FC 与AD 的数量关系,并说明理由; (2)若AB =BC +AD ,则BE ⊥AF 吗?为什么?(1)解:结论:CF =AD.理由:∵AD ∥BC ,∴∠ADC =∠ECF , ∵E 是CD 的中点,∴DE =EC , ∵在△ADE 与△FCE 中,⎩⎨⎧∠ADC =∠ECF ,ED =EC ,∠AED =∠CEF ,∴△ADE ≌△FCE(ASA ),∴FC =AD(2)结论:BE ⊥AF.理由:由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF , ∵AB =BC +AD ,∴AB =BC +CF , 即AB =BF ,∵△ADE ≌△FCE ,∴AE =EF ,∴BE ⊥AE25.(12分)以点A 为顶点作两个等腰直角三角形(△ABC ,△ADE),如图①所示放置,使得一直角边重合,连接BD ,CE.(1)试说明:BD =CE ;(2)延长BD 交CE 于点F ,求∠BFC 的度数;(3)若如图②放置,上面的结论还成立吗?请简单说明理由.解:(1)易得△ADB ≌△AEC(SAS ),∴BD =CE (2)∵△ADB ≌△AEC ,∴∠DBA =∠ECA ,∴∠BFC =180°-∠ACE -∠CDF =180°-∠DBA -∠BDA =∠DAB =90° (3)同样成立,BD =CE 且∠BFC =90°.理由:∵△ABC ,△ADE 是等腰直角三角形, ∴AB =AC ,AD =AE ,且∠BAC =∠EAD , ∴∠BAD =∠CAE ,∴△ADB ≌△AEC ,∴BD =CE ,∠ABF =∠ACF ,∴∠BFC =∠BAC =90°。

天利38套之2017安徽省中考数学试题与答案

天利38套之2017安徽省中考数学试题与答案

2017年安徽省初中学业水平考试数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分) 1.12的相反数是A .21B .12-C .2D .2-2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a 3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为A .101610⨯B .101.610⨯C .111.610⨯D .120.1610⨯ 5.不等式420x ->的解集在数轴上表示为 ( )6.直角三角板和直尺如图放置,若120=︒∠A .60︒B .50︒C .40︒D .30︒7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 A .280 B .240C .300D .260 8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐A . B . A . B . C . D .)第7题图标为1.则一次函数y bx ac=+的图象可能是10.如图,矩形ABCD中,53AB AD==,.动点P满足13PAB ABCD SS∆=矩形.则点P到A B,两点距离之和PA PB+的最小值为()A.29B.34C.52D.41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是____________ .12.因式分解:244a b ab b-+=____________ .13.如图,已知等边ABC△的边长为6,以AB为直径的⊙O与边AC BC,分别交于D E,两点,则劣弧的»DE的长为____________ .14.在三角形纸片ABC中,903030cmA C AC∠=︒∠=︒=,,,将该纸片沿过点E的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去CDE△后得到双层BDE△(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm.三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。

2023年安徽省中考数学一轮复习专题训练:三角形综合-试卷

2023年安徽省中考数学一轮复习专题训练:三角形综合-试卷

安徽省2023年中考数学一轮复习专题训练:三角形综合一、选择题(本大题共12小题,每小题5分,满分60分)1. (2020湛江)如图,在△ABC 中,∠A=30o ,∠B=50o ,CD 平分∠ACB,则∠ADC 的度数是( )A.80oB.90oC.100oD.110o2. (2020•鄂州)如图,a ∥b,一块含45°的直角三角板的一个顶点落在其中一条直线上,若∠1=65°,则∠2的度数为( )A.25°B.35°C.55°D.65°3. (2022·安徽·合肥)如图是一款手推车的平面示意图,其中AB ∥CD,3=150∠︒,1=30∠︒,则2∠的大小是( )A.60︒B.70︒C.80︒D.90︒4. (2022·安徽合肥)如图,一块含有60°角的直角三角板放置在两条平行线上,若∠α=24°,则∠β为( )A.106°B.96°C.104°D.84°5. (2021·恩施州)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E 为BD 与正方形网格线的交点,下列结论正确的是( )A.CE ≠12BD B.△ABC ≌△CBD C.AC =CD D.∠ABC =∠CBD 6. (2022·安徽合肥·二模)一副直角三角板如图摆放,点F 在BC 的延长线上,∠B=∠DFE=90°,若DE ∥BF,则∠CDF 的度数为( )A.10°B.15°C.20°D.25°7. (2022·安徽·合肥市)如图,直线l 1∥l 2,线段AB 交l 1,l 2于D,B 两点,过点A 作AC ⊥AB,交直线l 1于点C,若∠1=15︒,则∠2=( )A.95︒B.105︒C.115︒D.125︒8. (2021·广州模拟)如图,AB 是河堤横断面的迎水坡.坡高AC =5 m,水平距离BC =5 3 m,则斜坡AB 的坡度为( )A.33B. 3C.30°D.60° 9. 【2021.内蒙古包头市】如图,在△ABC 中,AB =AC,△DBC 和△ABC 关于直线BC 对称,连接AD,与BC 相交于点O,过点C 作CE ⊥CD,垂足为C,AD 相交于点E,若AD =8,BC =6,则BDAE OE 2+的值为( )A. B. C. D.10. (2020•泰安)如图,点A,B 的坐标分别为A(2,0),B(0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM,则OM 的最大值为( )A.2+1B.2+C.22+1 D.2- 11. (2020•襄州区模拟)《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )21221A.3B.5C.4.2D.412. (2022·安徽合肥·二模)设P 1,P 2,…,Pn 为平面内的n 个点,在平面内的所有点中,若点P 到点P 1,P 2,…,Pn 的距离之和最小,则称点P 为点P 1,P 2,…,Pn 的一个“最佳点”,例如,线段AB 上的任意点都是端点A,B 的“最佳点”,现有下列命题:①若三个点A,B,C 共线,C 在线段AB 上,则C 是A,B,C 的“最佳点”;②若四个点A,B,C,D 共线,则它们的“最佳点”存在且唯一:③直角三角形斜边的中点是该直角三角形三个顶点的“最佳点”;④平行四边形对角线的交点是其四个顶点的唯一“最佳点”.其中的真命题是( )A.①②B.①④C.②③④D.①③④二、填空题(本大共8小题,每小题5分,满分40分)13. (2022·北京大兴·一模)在△ABC 中,D,E 分别是边AB,AC 的中点,若DE=2,则BC=___.14. (2022北京房山)如图,在△ABC 中,AB =AC,AB 的垂直平分线 MN 交 AC 于 D 点.若 BD 平分∠ABC, 则∠A =________________ °.15. (2021·常州)如图,在△ABC 中,点D,E 分别在BC,AC 上,∠B =40°,∠C =60°.若DE ∥AB,则∠AED = .16. (2020•乐平市一模)如图,△ABC 是边长为8的等边三角形,点P 从点A 出发,沿AB 向终点B 运动.作PD//BC,DA 、DP 的中点分别是E 、F.点P 全程运动过程中,EF 扫过的面积为__________.17. (2021•山东聊城)如图,在△ABC 中,AD ⊥BC,CE ⊥AB,垂足分别为点D 和点E,AD 与CE 交于点O,连接BO 并延长交AC 于点F,若AB =5,BC =4,AC =6,则CE:AD:BF 值为 .18. (2021·益阳)如图,Rt △ABC 中,∠BAC =90°,tan ∠ABC =32,将△ABC 绕A 点顺时针方向旋转角α(0°<α<90°)得到△AB ′C ′,连结BB ′,CC ′,则△CAC ′与△BAB ′的面积之比等于 .19. (2020•天河区一模)如图,在正方形ABCD 中,对角线AC,BD 交于点O ,点E,F 分别在AB,BD 上,且△ADE ≌△FDE,DE 交AC 于点G,连接GF.得到下列四个结论:①∠ADG=22.5o ;②S △AGD =S △OGD ;③BE=2OG;④四边形AEFG 是菱形,其中正确的结论是__________.(填写所有正确结论的序号)20. (2022·安徽合肥·二模)如图,在钝角三角形ABC 中,AB =6cm,AC =12cm,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1cm/秒,点E 运动的速度为2cm/秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与ABC 相似时,运动的时间是__.三、解答题(本大题共6道小题,每小题6-12分)21. (6分)(2021·鞍山模拟)如图,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是10米,梯坎坡长BC 是10米,梯坎坡度i BC =1:43,求大楼AB 的高.22. (6分)(2021·遂宁中考)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A 处看到B,C 处各有一棵被湖水隔开的银杏树,他在A 处测得B 在北偏西45°方向,C 在北偏东30°方向,他从A 处走了20米到达B 处,又在B 处测得C 在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B,C之间的距离(结果保留根号).23. (6分)(2021湖北武汉)问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE于点F.线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD 与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24. (8分)(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90o,∠BAC=30o.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P为AD的中点,连接PE,PF,EF.(1)如图1,当点D 与点B 重合时,写出线段PE 与PF 之间的位置关系与数量关系;(2)如图2,当点D 与点B,C 不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.25. (12分)(2020·山东烟台·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF,连接CF.(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE,CF 与CD 之间存在怎样的数量关系?并说明理由.26. (12分)(2021湖北十堰)已知等边三角形ABC,过A 点作AC 的垂线l,点P 为l 上一动点(不与点A 重合),连接CP,把线段CP 绕点C 逆时针方向旋转60°得到CQ,连QB.(1)如图1,直接写出线段AP 与BQ 的数量关系;(2)如图2,当点P 、B 在AC 同侧且AP =AC 时,求证:直线PB 垂直平分线段CQ;(3)如图3,若等边三角形ABC 的边长为4,点P 、B 分别位于直线AC 异侧,且△APQ 的面积等于43,求线段AP 的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007-2013年安徽省中考数学试题分类解析汇编(12专题)专题9:三角形一、选择题1. (2007安徽省4分)如图,已知AB∥CD,AD 与BC 相交于点P ,AB=4,CD=7,AD=10,则AP=【 】A . 4011B .407C .7011D .704 【答案】A 。

【考点】相似三角形的判定和性质。

【分析】∵AB∥CD,∴△APB∽△DPC。

∴AB AP CD DP=。

∵ AB=4,CD=7,AD=10,DP=10AP -, ∴4AP 710AP =-,解得AP=4011。

故选A 。

2. (2008安徽省4分)如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN⊥AC 于点N ,则MN 等于【 】A.65B. 95C. 125D. 165【答案】C 。

【考点】等腰三角形的性质,勾股定理。

【分析】如图,连接AM .∵AB=AC=5,BC=6,点M 为BC 的中点,∴AM⊥CM,AM=BM=3。

∴AM=22 534-=。

∵ 12AM•MC= 12AC•MN,∴AM CM 4312MN AC 55⋅⋅===。

故选C 。

3. (2009安徽省4分)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△AC D的内切圆圆心,则∠AIB的度数是【】A.120° B.125° C.135° D.150°二、填空题1. (2009安徽省5分)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了▲ m。

【答案】2322【考点】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值。

【分析】由题意知:平滑前梯高为24sin45422⋅︒==,平滑后高为34sin604232⋅︒=⋅=,∴梯子的顶端沿墙面升高了2322-m。

2. (2009安徽省5分)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是▲ 。

(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.【答案】②③④。

【考点】等腰三角形的判定和性质,勾股定理。

【分析】①当∠BAD=∠ACD时,得不到AB=AC。

②当∠BAD=∠CAD时,AD是∠BAC的平分线,且AD是BC边上的高,∴△BAC是等腰三角形(等腰三角形三线合一)。

③延长DB至E,使BE=AB;延长DC至F,使CF=AC,连接AE、AF。

∵AB+BD=CD+AC,∴DE=DF。

又AD⊥BC;∴△AEF是等腰三角形。

∴∠E=∠F。

∵AB=BE,∴∠ABC=2∠E。

同理,得∠ACB=2∠F∴∠ABC=∠ACB。

∴AB=AC,即△ABC是等腰三角形。

④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD)。

∵AB﹣BD=AC﹣CD,∴AB+BD=AC+CD。

∴两式相加得,2AB=2AC,∴AB=AC,即△ABC是等腰三角形。

故能推出△ABC是等腰三角形的是②③④。

三、解答题1. (2007安徽省10分)如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度。

(取3≈1.73,计算结果保留整数)【答案】解:∵AB=8,BE=15,∴AE=23。

在Rt△AED中,∠DAE=45°,∴DE=AE=23。

在Rt△BEC中,∠CBE=60°,∴CE=BE•tan60°=153。

∴CD=CE-DE=153-23≈2.95≈3。

∴这块广告牌的高度约为3米。

【考点】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值。

【分析】分析图形:根据题意构造直角三角形,利用其公共边构造三角关系,从而可求出答案。

2. (2007安徽省10分)如图,DE分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE的周长相等。

设BC=a,AC=b,AB=c。

(1)求AE和BD的长;(2)若∠BAC=90°,△ABC的面积为S,求证:S=AE•BD。

【答案】解:(1)∵△ABD与△ACD的周长相等,BC=a,AC=b,AB=c,∴AB+BD=AC+CD=a b c2++。

∴BD=a b c a b cc22+++--=。

同理AE=a b c2-+。

(2)证明:∵∠BAC=90°,∴c2+b2=a2,S=12 bc。

由(1)知AE•BD=()()22222a b c b c b ca b c a b c1===bc 22442--+---++-⋅。

∴S=AE•BD。

【考点】勾股定理,代数式变换。

【分析】(1)根据,△ABD与△ACD的周长相等,可得:AB+BD=AC+CD,等式的左右边正好是三角形ABC周长的一半,即a b c2++,由AB,AC的值,即可求出BD和AE的长。

(2)根据(1)中求出的AE,BD的值,先求出AE•BD是多少,在化简过程中,可以利用一些已知条件比如勾股定理等,来使化简的结果和三角形ABC的面积得出的结果相同。

3. (2008安徽省8分)小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度。

(计算结果精确到0.1米,3 1.732≈)【答案】解:在Rt△BCD 3=103。

又DE=AB=1.5,∴CE=CD+DE=CD+AB=103+1.5=18.8(米)。

∴此时风筝离地面高度不18.8米。

【考点】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值。

【分析】由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答。

4. (2008安徽省12分)已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB =OC。

(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示。

【答案】解:(1)证明:过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知,OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC(HL)。

∴∠B=∠C,∴AB=AC。

(2)过点O分别作OE⊥AB,OF⊥AC,EF分别是垂足,由题意知,OE=OF。

在Rt△OEB和Rt△OFC中,∵OE=OF,OB=OC,∴Rt△OEB≌Rt△OFE(HL)。

∴∠OBE=∠OCF.又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACD。

∴AB=AC。

(3)不一定成立。

如图,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC。

【考点】全等三角形的判定和性质,等腰三角形的判定和性质。

【分析】(1)先利用斜边直角边定理证明△OEC和△OFB全等,根据全等三角形对应角相等得到∠B=∠C,再根据等角对等边的性质即可得到AB=AC。

(2)过O作OE⊥AB,OF⊥AC,与(1)的证明思路基本相同。

(3)当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC。

5. (2009安徽省12分)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=42,AF=3,求FG的长.6. (2009安徽省8分)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分。

(参考数据:3≈1.7)【答案】解:如图,过点B作BC垂直于河岸,垂足为C。

在Rt△ACB中,BC=900,∠BAC=60°,∴BC900AB6003 sin BAC sin60===∠︒。

∴6003t22 3.4560==≈⨯(分)。

∴船从A处到B处约需3.4分。

【考点】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值。

【分析】要求出AB的长,可过B作河对岸的垂线,在构建的直角三角形中,根据河岸的宽度即AB与河岸的夹角,通过解直角三角形求出AB的长,进而根据时间=路程÷速度得出结果。

7. (2009安徽省14分)如图,已知△ABC∽△A 1B 1C 1,相似比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1。

(1)若c=a 1,求证:a=kc ;(2)若c=a 1,试给出符合条件的一对△ABC 和△A 1B 1C 1,使得a 、b 、c 和a 1、b 1、c 1都是正整数,并加以说明;(3)若b=a 1,c=b 1,是否存在△ABC 和△A 1B 1C 1使得k=2?请说明理由。

【答案】解:(1)证明:∵△ABC∽△A 1B 1C 1,且相似比为k (k >1), ∴1a k a =,a=ka 1。

又∵c=a 1,∴a=kc。

(2)取a=8,b=6,c=4,同时取a 1=4,b 1=3,c 1=2, 此时111a b c ==2a b c =,∴△ABC∽△A 1B 1C 1且c=a 1。

(3)不存在这样的△ABC 和△A 1B 1C 1。

理由如下:若k=2,则a=2a 1,b=2b 1,c=2c 1。

又∵b=a 1,c=b 1,∴a=2a 1=2b=4b 1=4c 。

∴b=2c。

∴b+c=2c+c<4c ,4c=a ,而b+c <a 。

故不存在这样的△ABC 和△A 1B 1C 1,使得k=2。

【考点】相似三角形的性质,三角形三边关系。

【分析】(1)已知了两个三角形的相似比为k ,则对应边a=ka 1,将所给的条件等量代换即可得到所求的结论。

(2)此题是开放题,可先选取△ABC 的三边长,然后以c 的长作为a 1的值,再根据相似比得到△A 1B 1C 1的另外两边的长,只要符合两个三角形的三边及相似比都是整数即可。

(3)根据已知条件求出a 、b 与c 的关系,然后根据三角形三边关系定理来判断题目所给出的情况是否成立。

8. (2011安徽省10分)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(3≈1.73). 【答案】解:在△ACO 中,∠ACO=900-∠DCA=900-600=300,∴03tan 1500tan30150050033OA OC ACO =⋅∠=⨯=⨯=。

相关文档
最新文档