新版高中数学人教A版必修4习题:第三章三角恒等变换3-1-3(1)

合集下载

人教A版高中数学必修4第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式导学案

人教A版高中数学必修4第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式导学案

3.1.3.二倍角的正弦、余弦、正切公式 学习目标.1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一.二倍角公式的推导思考1.二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?答案.sin 2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α;cos 2α=cos(α+α)=cos αcos α-sin αsin α=cos 2α-sin 2α;tan 2α=tan(α+α)=2tan α1-tan 2α. 思考2.根据同角三角函数的基本关系式sin 2α+cos 2α=1,你能否只用sin α或cos α表示cos 2α?答案.cos 2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;或cos 2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二.二倍角公式的变形1.公式的逆用2sin αcos α=sin 2α,sin αcos α=12sin 2α, cos 2α-sin 2α=cos 2α,2tan α1-tan 2α=tan 2α. 2.二倍角公式的重要变形——升幂公式和降幂公式升幂公式1+cos 2α=2cos 2α,1-cos 2α=2sin 2α,1+cos α=2cos2α2,1-cos α=2sin 2α2. 降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.类型一.给角求值例1.求下列各式的值:(1)cos 72°cos 36°;(2)13-23cos 215°; (3)1-tan 275°tan 75°;(4)1sin 10°-3cos 10°. 解.(1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36° =2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14. (2)13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36. (3)1-tan 275°tan 75°=2·1-tan 275°2tan 75°=2·1tan 150°=-2 3. (4)1sin 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10° =4(sin 30°cos 10°-cos 30°sin 10°)2sin 10° cos 10° =4sin 20°sin 20°=4. 反思与感悟.对于给角求值问题,一般有两类:(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1.求下列各式的值:(1)cos 2π7cos 4π7cos 6π7; (2)1sin 50°+3cos 50°.解.(1)原式=2sin 2π7cos 2π7cos 4π7cos 6π72sin 2π7=sin 4π7cos 4π7cos 6π72sin 2π7=sin 8π7cos 6π74sin 2π7=sin π7cos π74sin 2π7=sin 2π78sin 2π7=18. (2)原式=cos 50°+3sin 50°sin 50°cos 50°=2(12cos 50°+32sin 50°)12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.类型二.给值求值例2.(1)若sin α-cos α=13,则sin 2α= . 答案.89解析.(sin α-cos α)2=sin 2α+cos 2α-2sin αcos α =1-sin 2α=⎝ ⎛⎭⎪⎫132⇒sin 2α=1-⎝ ⎛⎭⎪⎫132=89. (2)若tan α=34,则cos 2α+2sin 2α等于(..) A.6425B.4825C.1D.1625答案.A解析.cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α. 把tan α=34代入,得 cos 2α+2sin 2α=1+4×341+⎝ ⎛⎭⎪⎫342=42516=6425.故选A.引申探究在本例(1)中,若改为sin α+cos α=13,求sin 2α. 解.由题意,得(sin α+cos α)2=19, ∴1+2sin αcos α=19, 即1+sin 2α=19, ∴sin 2α=-89. 反思与感悟.(1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练2.已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解.(1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α =2tan αtan 2α+tan α-2=2×24+2-2=1. 类型三.利用倍角公式化简例3.化简2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α.解.方法一.原式=2cos 2α-12·sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α =2cos 2α-12·sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2α-1sin ⎝ ⎛⎭⎪⎫π2-2α =cos 2αcos 2α=1. 方法二.原式=cos 2α2·1-tan α1+tan α⎝ ⎛⎭⎪⎫22sin α+22cos α2 =cos 2αcos α-sin αcos α+sin α(sin α+cos α)2 =cos 2α(cos α-sin α)(cos α+sin α)=cos 2αcos 2α-sin 2α=1. 反思与感悟.(1)对于三角函数式的化简有下面的要求:①能求出值的应求出值;②使三角函数种数尽量少;③使三角函数式中的项数尽量少;④尽量使分母不含有三角函数;⑤尽量使被开方数不含三角函数.(2)化简的方法:①弦切互化,异名化同名,异角化同角. ②降幂或升幂.③一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练3.化简下列各式:(1)π4<α<π2,则1-sin 2α= ; (2)α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α= . 答案.(1)sin α-cos α.(2)0解析.(1)∵α∈(π4,π2),∴sin α>cos α, ∴1-sin 2α=1-2sin αcos α=sin 2α-2sin αcos α+cos 2α=(sin α-cos α)2=sin α-cos α.(2)∵α为第三象限角,∴cos α<0,sin α<0, ∴1+cos 2αcos α- 1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0.1.12sin π12cos π12的值等于(..) A.14B.18C.116D.12 答案.B解析.原式=14sin π6=18. 2.sin 4π12-cos 4π12等于(..) A.-12 B.-32 C.12 D.32答案.B解析.原式=⎝ ⎛⎭⎪⎫sin2π12+cos 2π12·⎝ ⎛⎭⎪⎫sin 2π12-cos 2π12 =-⎝ ⎛⎭⎪⎫cos2π12-sin 2π12=-cos π6=-32. 3.tan 7.5°1-tan 27.5°= . 答案.1-32 解析.tan 7.5°1-tan 27.5°=12·2tan 7.5°1-tan 27.5°=12tan 15°=1-32. 4.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是 . 答案. 3解析.∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈⎝ ⎛⎭⎪⎫π2,π, ∴sin α≠0,2cos α+1=0即cos α=-12, sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 5.已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值. 解.原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x . ∵sin ⎝ ⎛⎭⎪⎫π4-x =cos ⎝ ⎛⎭⎪⎫π4+x =513,且0<x <π4, ∴π4+x ∈⎝ ⎛⎭⎪⎫π4,π2, ∴sin ⎝ ⎛⎭⎪⎫π4+x = 1-cos 2⎝ ⎛⎭⎪⎫π4+x =1213, ∴原式=2×1213=2413.1.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n =2·α2n +1(n ∈N *). 2.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:①1+cos 2α=2cos 2α;②cos 2α=1+cos 2α2;③1-cos 2α=2sin 2α;④sin 2α=1-cos 2α2. 课时作业一、选择题1.已知α是第三象限角,cos α=-513,则sin 2α等于(..) A.-1213B.1213C.-120169D.120169答案.D解析.由α是第三象限角,且cos α=-513, 得sin α=-1213,所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-1213×⎝ ⎛⎭⎪⎫-513=120169,故选D. 2.若tan θ=-13,则cos 2θ等于(..) A.-45 B.-15 C.15 D.45答案.D解析.tan θ=-13,则cos 2θ=cos 2θ-sin 2θ =cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45. 3.已知x ∈(-π2,0),cos x =45,则tan 2x 等于(..) A.724 B.-724 C.247 D.-247答案.D解析.由cos x =45,x ∈(-π2,0),得sin x =-35, 所以tan x =-34, 所以tan 2x =2tan x 1-tan 2x =2×(-34)1-(-34)2=-247,故选D.4.已知sin 2α=23,则cos 2⎝⎛⎭⎪⎫α+π4等于(..) A.16B.13C.12D.23 答案.A解析.因为cos 2⎝⎛⎭⎪⎫α+π4=1+cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π42 =1+cos ⎝ ⎛⎭⎪⎫2α+π22=1-sin 2α2, 所以cos 2⎝⎛⎭⎪⎫α+π4=1-sin 2α2=1-232=16,故选A. 5.如果|cos θ|=15,5π2<θ<3π,则sin θ2的值是(..) A.-105B.105C.-155D.155 答案.C解析.∵5π2<θ<3π,|cos θ|=15, ∴cos θ<0,cos θ=-15. 又∵5π4<θ2<3π2,∴sin θ2<0. ∴sin 2θ2=1-cos θ2=35, sin θ2=-155. 6.已知α为第二象限角,sin α+cos α=33,则cos 2α等于(..) A.-53 B.-59 C.59 D.53答案.A解析.由题意得(sin α+cos α)2=13, ∴1+sin 2α=13,sin 2α=-23. ∵α为第二象限角,∴cos α-sin α<0. 又∵sin α+cos α>0,∴cos α<0,sin α>0,且|cos α|<|sin α|, ∴cos 2α=cos 2α-sin 2α<0,∴cos 2α=- 1-sin 22α=- 1-⎝ ⎛⎭⎪⎫-232=- 1-49=-53,故选A. 7.若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α等于(..) A.725B.15C.-15D.-725 答案.D解析.因为sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α =2cos 2⎝ ⎛⎭⎪⎫π4-α-1, 又因为cos ⎝ ⎛⎭⎪⎫π4-α=35, 所以sin 2α=2×925-1=-725,故选D. 二、填空题8.2sin 222.5°-1= .答案.-22 解析.原式=-cos 45°=-22. 9.sin 6°sin 42°sin 66°sin 78°= .答案.116解析.原式=sin 6°cos 48°cos 24°cos 12°=sin 6°cos 6°cos 12°cos 24°cos 48°cos 6° =sin 96°16cos 6°=cos 6°16cos 6°=116. 10.设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan 2α= . 答案.247解析.cos α=x x 2+42=x 5, ∴x 2=9,x =±3.又∵α是第二象限角,∴x =-3,∴cos α=-35,sin α=45, ∴tan α=-43,tan 2α=2×(-43)1-(-43)2=-831-169=-83-79=7221=247. 11.已知tan x =2,则tan 2(x -π4)= . 答案.34 12.若tan α+1tan α=103,α∈⎝ ⎛⎭⎪⎫π4,π2,则sin ⎝⎛⎭⎪⎫2α+π4+2cos π4cos 2α= . 答案.0 解析.由tan α+1tan α=103, 得tan α=13或tan α=3. 又∵α∈⎝ ⎛⎭⎪⎫π4,π2,∴tan α=3. ∴sin α=310,cos α=110. ∴sin ⎝⎛⎭⎪⎫2α+π4+2cos π4cos 2α =sin 2αcos π4+cos 2αsin π4+2cos π4cos 2α=22×2sin αcos α+22(2cos 2α-1)+2cos 2α =2sin αcos α+22cos 2α-22 =2×310×110+22×⎝ ⎛⎭⎪⎫1102-22 =5210-22=0. 三、解答题13.已知角α在第一象限且cos α=35,求1+2cos (2α-π4)sin (α+π2)的值. 解.∵cos α=35且α在第一象限,∴sin α=45. ∴cos 2α=cos 2α-sin 2α=-725, sin 2α=2sin αcos α=2425, ∴原式=1+2(cos 2αcos π4+sin 2αsin π4)cos α=1+cos 2α+sin 2αcos α=145. 四、探究与拓展14.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为 . 答案.459解析.设A 是等腰△ABC 的顶角,则cos B =23, sin B =1-cos 2B = 1-(23)2=53. 所以sin A =sin(180°-2B )=sin 2B =2sin B cos B =2×53×23=459. 15.已知π<α<32π,化简:1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α. 解.∵π<α<32π,∴π2<α2<34π, ∴1+cos α=2|cos α2|=-2cos α2, 1-cos α=2|sin α2|=2sin α2. ∴1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α =1+sin α-2(cos α2+sin α2)+1-sin α2(sin α2-cos α2) =(cos α2+sin α2)2-2(cos α2+sin α2)+(sin α2-cos α2)22(sin α2-cos α2) =-2cos α2.。

高中数学第三章三角恒等变换3.1.3二倍角的正弦、余弦、正切公式课时提升作业1新人教A版必修4

高中数学第三章三角恒等变换3.1.3二倍角的正弦、余弦、正切公式课时提升作业1新人教A版必修4

二倍角的正弦、余弦、正切公式(25分钟60分)一、选择题(每小题5分,共25分)1.下列各式中,值为的是( )A.2sin 15°cos 15°B.cos215°-sin215°C.2sin215°D.sin215°+cos215°【解析】选B.cos215°-sin215°=cos 30°=.2.已知sin=,cos=-,则角α所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选C.因为sinα=2sin cos=2××=-<0,cosα=cos2-sin2=-=-<0,所以α是第三象限角.3.(2015·乐山高一检测)若tanα=3,则的值等于( )A.2B.3C.4D.6【解析】选D.==2tanα=2×3=6.【延伸探究】若本题条件不变,则的值如何?【解析】==2+2tanα=2+2×3=8.4.已知α∈R,sinα+2cosα=,则tan2α=( )A. B. C.- D.-【解析】选C.本题考查三角函数同角间的基本关系.将sinα+2cosα=两边平方可得sin2α+4sinαcosα+4cos2α=.将左边分子分母同除以cos2α得,=,解得tanα=3或-,所以tan2α==-.5.(2015·成都高一检测)在△ABC中,若||=2sin15°,||=4cos15°,且∠ABC=30°,则·的值为( )A. B.- C.2 D.-2【解析】选B.因为||=2sin15°,||=4cos15°,且∠ABC=30°,所以·=||||cos150°=2sin15°·4cos15°·=-2sin30°=-2×=-.二、填空题(每小题5分,共15分)6.(2015·合肥高一检测)已知α∈,sinα=,则tan2α=________.【解析】由α∈,sinα=,得cosα=-,tanα==-,tan2α==-.答案:-7.化简:tan70°cos10°·(tan20°-1)的结果是________.【解析】原式=·cos10°=cos10°-cos10°·=cos10°-====-1.答案:-1【误区警示】解答本题在切化弦通分后易忽视应用辅助角公式进一步化简.【补偿训练】计算cos·cos·cos=________.【解析】原式======.答案:8.已知角α的终边经过点(-8,-6),则=________.【解题指南】先利用定义求出α的三角函数,而后化简所求式即可.【解析】因为点(-8,-6)到原点的距离r==10,所以sinα==-,cosα==-.==-2cosα-2sinα=-2×-2×=.答案:三、解答题(每小题10分,共20分)9.(2015·泰州高一检测)已知α为第二象限角,且sinα=,求的值. 【解析】原式==.因为α为第二象限角,且sinα=,所以sinα+cosα≠0,cosα=-,所以原式==-.【补偿训练】已知sin sin=,α∈,求sin4α的值.【解析】因为sin sin=sin cos=,所以sin=,即cos2α=.因为α∈,所以2α∈(π,2π).所以sin2α=-=-.所以sin4α=2sin2αcos2α=2××=-.10.(2015·吉林高一检测)已知向量m=(cosα-,-1),n=(sinα,1),m与n为共线向量,且α∈.(1)求sinα+cosα的值.(2)求的值.【解析】(1)因为m与n为共线向量,所以×1-(-1)×sinα=0,即sinα+cosα=.(2)因为1+sin2α=(sinα+cosα)2=,所以sin2α=-,因为(sinα+cosα)2+(sinα-cosα)2=2,所以(sinα-cosα)2=2-=.又因为α∈,所以sinα-cosα<0,sinα-cosα=-.因此,=.(20分钟40分)一、选择题(每小题5分,共10分)1.若α∈,且sin2α+cos2α=,则tanα的值等于( )A. B. C. D.【解析】选D.由二倍角公式可得sin2α+1-2sin2α=,即-sin2α=-,sin2α=,又因为α∈,所以sinα=,即α=,所以tanα=.2.(2015·昆明高一检测)若=-,则sinα+cosα的值为( )A.-B.-C.D.【解析】选C.cos2α=sin=-sin=-sin2=-2sin·cos,==-,所以2cos=1,展开得2=1,即cosα+sinα=.二、填空题(每小题5分,共10分)3.(2015·黄冈高一检测)若sin=,则cos=________.【解析】已知sin=,且+=,则cos=sin=,故cos=2cos2-1=-.答案:-4.已知θ是第三象限角,且sin4θ+cos4θ=,那么sin2θ等于________.【解析】sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-sin22θ,又sin4θ+cos4θ=,所以1-sin22θ=,即sin22θ=,因为θ是第三象限角.所以2kπ+π<θ<2kπ+(k∈Z),所以4kπ+2π<2θ<4kπ+3π(k∈Z),所以sin2θ>0,所以sin2θ=.答案:【延伸探究】若cos2θ=,试求sin4θ+cos4θ.【解析】因为cos2θ=,所以sin22θ=.所以sin4θ+cos4θ=1-2sin2θcos2θ=1-sin22θ=.三、解答题(每小题10分,共20分)5.已知向量a=(1+sin2x,sinx-cosx),b=(1,sinx+cosx),函数f(x)=a·b.(1)求f(x)的最大值及相应的x值;(2)若f(θ)=,求cos2的值.【解题指南】用向量数量积表示出f(x)转化成三角函数问题求解.【解析】(1)因为a=(1+sin2x,sinx-cosx),b=(1,sinx+cosx),所以f(x)=1+sin2x+sin2x-cos2x=1+sin2x-cos2x=sin+1.因此,当2x-=2kπ+,即x=kπ+(k∈Z)时,f(x)取得最大值+1.(2)由f(θ)=1+sin2θ-cos2θ及f(θ)=得sin2θ-cos2θ=,两边平方得1-sin4θ=,即sin4θ=. 因此,cos2=cos=sin4θ=.6.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)请根据②式求出这个常数.(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【解析】方法一:(1)计算如下:sin215°+cos215°-sin15°cos15°=1-sin30°=1-=.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)=sin2α+cos2α+sinαcosα+sin2α-sinαcosα-sin2α=sin2α+cos2α=.方法二:(1)同方法一.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=+-sinα(cos30°cosα+sin30°sinα)=-cos2α++(cos60°cos2α+sin60°·sin2α)-sinαcosα-sin2α=-cos2α++cos2α+sin2α-sin2α-(1-cos2α)=1-cos2α-+cos2α=.。

2019_2020学年高中数学第三章三角恒等变换3.1.3二倍角的正弦、余弦、正切公式限时规范训练新人教A版必修4

2019_2020学年高中数学第三章三角恒等变换3.1.3二倍角的正弦、余弦、正切公式限时规范训练新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式【基础练习】1.(2019年河南安阳模拟)已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过点(-4,3),则sin 2α-cos 2α=( )A .-1725B .-3125C .-53D .75【答案】B【解析】由三角函数的定义,可得sin α=35,cos α=-45,所以sin 2α=2sin αcosα=-2425,cos 2α=cos 2α-sin 2α=725,sin 2α-cos 2α=-3125.故选B .2.对于函数f (x )=2sin x cos x ,下列选项中正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫π4,π2上是递增的 B .f (x )的图象关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2【答案】B【解析】因为f (x )=2sin x cos x =sin 2x ,所以f (x )是奇函数,即f (x )的图象关于原点对称.故选B .3.(2019年安徽马鞍山模拟)已知cos ⎝ ⎛⎭⎪⎫π6-α=23,则sin ⎝ ⎛⎭⎪⎫5π3+2α的值为( ) A .59 B .19 C .±459D .-59【答案】C【解析】因为cos ⎝ ⎛⎭⎪⎫π6-α=23,所以cos ⎝ ⎛⎭⎪⎫α-π6=23,sin ⎝ ⎛⎭⎪⎫α-π6=±53.所以sin ⎝⎛⎭⎪⎫5π3+2α=sin ⎝ ⎛⎭⎪⎫2α-π3=2sin ⎝ ⎛⎭⎪⎫α-π6cos ⎝ ⎛⎭⎪⎫α-π6=2×⎝ ⎛⎭⎪⎫±53×23=±459.故选C . 4.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α=( )A .-13B .-79C .79 D .13【答案】B 【解析】cos ⎝ ⎛⎭⎪⎫2π3+2α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=2cos 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α-1=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=29-1=-79. 5.(2017年福建莆田一模)已知sin ⎝ ⎛⎭⎪⎫π2-α=14,则cos 2α的值是( )A .78 B .-78C .89D .-89【答案】B【解析】∵sin ⎝ ⎛⎭⎪⎫π2-α=14,∴cos α=14,∴cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫142-1=-78.故选B .6.(2019年广东佛山期末)已知tan ⎝ ⎛⎭⎪⎫α+π6=2,则tan ⎝ ⎛⎭⎪⎫2α+7π12=________. 【答案】-17【解析】由tan ⎝ ⎛⎭⎪⎫α+π6=2,可得tan ⎝ ⎛⎭⎪⎫2α+π3=2×21-22=-43,则tan ⎝ ⎛⎭⎪⎫2α+7π12=tan ⎝ ⎛⎭⎪⎫2α+π3+π4=-43+11-⎝ ⎛⎭⎪⎫-43×1=-17.7.已知sin(α-45°)=-210且0°<α<90°,则cos 2α的值为________. 【答案】725【解析】由于sin(α-45°)=-210且0°<α<90°,则-45°<α-45°<45°,cos(α-45°)=1-⎝ ⎛⎭⎪⎫-2102=7210, ∴cos α=cos(α-45°+45°)=cos(α-45°)cos 45°-sin(α-45°)sin 45°=7210×22-⎝ ⎛⎭⎪⎫-210×22=45,则cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫452-1=725.8.已知1-tan α2+tan α=1,求证:3sin 2α=-4cos 2α.【证明】因为1-tan α2+tan α=1,所以tan α=-12.tan 2α=2tan α1-tan 2α=-43,即sin 2αcos 2α=-43, 所以3sin 2α=-4cos 2α.9.已知cos α=17,cos(α-β)=1314且0<β<α<π2,求:(1)tan 2α的值; (2)β的大小.【解析】(1)由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫172=437.所以tan α=sin αcos α=43,于是tan 2α=2tan α1-tan 2α=2×431-432=-8347. (2)由0<β<α<π2,得0<α-β<π2.因为cos(α-β)=1314,所以sin(α-β)=3314.所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=12,所以β=π3.【能力提升】10.(2018年四川模拟)若1+sin 2x =2cos 2x2,x ∈(0,π),则tan 2x 的值构成的集合为( )A .{3}B .{-3,3}C .{-3,0,3}D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-33,0,33【答案】C【解析】∵1+sin 2x =2cos 2x2,∴2sin x cos x =2cos 2x2-1=cos x .∴cos x =0或sinx =12.又x ∈(0,π),∴x =π2,π6,5π6.∴2x =π,π3,5π3.∴tan 2x =0或±3,则tan 2x的值构成的集合为{-3,0,3},故选C .11.已知cos 2θ=23,则sin 4θ+cos 4θ的值为( ) A .1318 B .1118 C .79 D .-1【答案】B【解析】sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-12sin 22θ=1-12(1-cos 22θ)=1118.12.已知θ∈(0,π)且sin ⎝ ⎛⎭⎪⎫θ-π4=210,则tan 2θ=________. 【答案】-247【解析】∵sin ⎝⎛⎭⎪⎫θ-π4=22(sin θ-cos θ)=210,∴sin θ-cos θ=15.∴1-2sin θcos θ=125,2sin θcos θ=2425>0.依题意知,θ∈⎝⎛⎭⎪⎫0,π2,又(sin θ+cos θ)2=1+sin 2θ=4925,∴sin θ+cos θ=75.∴sin θ=45,cos θ=35.∴cos 2θ=2cos 2θ-1=-725,∴tan 2θ=sin 2θcos 2θ=-247.13.已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫ax -π4cos ⎝ ⎛⎭⎪⎫ax -π4+2cos 2⎝ ⎛⎭⎪⎫ax -π4(a >0),且函数的最小正周期为π2.(1)求a 的值;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.【解析】(1)函数f (x )=23sin ⎝ ⎛⎭⎪⎫ax -π4cos ⎝ ⎛⎭⎪⎫ax -π4+2cos 2⎝⎛⎭⎪⎫ax -π4(a >0),化简可得f (x )=3sin ⎝⎛⎭⎪⎫2ax -π2+cos ⎝⎛⎭⎪⎫2ax -π2+1=-3cos 2ax +sin 2ax +1 =2sin ⎝⎛⎭⎪⎫2ax -π3+1. ∵函数的最小正周期为π2,即T =π2,∴T =2π2a =π2,可得a =2.∴a 的值为2.(2)由(1)得f (x )=2sin ⎝⎛⎭⎪⎫4x -π3+1. x ∈⎣⎢⎡⎦⎥⎤0,π4时,4x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.当4x -π3=-π3时,函数f (x )取得最小值为1-3;当4x -π3=π2时,函数f (x )取得最大值为2×1+1=3,∴f (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值为3,最小值为1- 3.。

高中数学 第三章 三角恒等变换 3-1-3二倍角的正弦、余弦、正切公式 新人教A版必修4

高中数学 第三章 三角恒等变换 3-1-3二倍角的正弦、余弦、正切公式 新人教A版必修4

π 2
(k∈Z),且

α≠kπ+4π(k≠Z).当α=kπ+π2时,求tan2α应使用诱导公式.请
读者自己寻求tan2α=2tanα的条件.
3.使用二倍角公式应注意的问题
(1)对“二倍角”应该有广义上的理解,不仅局限于2α是α
的2倍.只要公式中等号左边的角是右边角的2倍,就可以使用
二倍角公式,如3α与
自 (1)2sinαcosα S2α 我 (2)cos2α-sin2α 2cos2α-1 1-2sin2α C2α

2tanα
对 (3)1-tan2α T2α
思考探究 上述公式如何推导得到? 提示 在两角和的正弦、余弦、正切公式中,令β=α即可 得到.
名师点拨 1.对“倍角”的理解 (1)本节所说的“倍角”专指“二倍角”,遇到“三倍 角”等名词时,“三”字不能省略. (2)“倍”是描述两个数量关系的,2α是α的二倍,4α是2α 的二倍,α2是α4的二倍,这里蕴含着换元思想.
变式训练2 求下列各式的值:(1)cos215°-sin215°; (2)cos1π2cos152π;(3)sin150°+cos530°.

(1)原式=cos(2×15°)=cos30°=
3 2.
(2)原式=cos1π2sin1π2=12sin6π=14.
(3)原式=coss5in05°+0°co3ss5i0n°50°
第三章 三角恒等变换
§3.1 两角和与差的正弦、余弦和正切公式
3.1.3 二倍角的正弦、余弦、正切公式
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
学习目标 1.理解并掌握二倍角的正弦、余弦、正切公式. 2.正确运用二倍角的正弦、余弦、正切公式进行化简、 求值、证明.

【新】版高中数学第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式学案新人教A版必修4

【新】版高中数学第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式学案新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.(重点)2.能利用两角和与差的正切公式进行化简、求值、证明.(难点)3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.(易错点)[基础·初探]教材整理 二倍角的正弦、余弦、正切公式 阅读教材P 132~P 133例5以上内容,完成下列问题. 1.二倍角的正弦、余弦、正切公式2.3.正弦的二倍角公式的变形(1)sin αcos α=12sin 2α,cos α=sin 2α2sin α.(2)1±sin 2α=(sin α±cos α)2.1.判断(正确的打“√”,错误的打“×”)(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( )【解析】 (1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π4+k π(k ∈Z ),故此说法错误.(2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-32时,cos 2α=2cos α.【答案】 (1)× (2)√ (3)×2.已知cos α=13,则cos 2α等于________.【解析】 由cos α=13,得cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫132-1=-79.【答案】 -79[小组合作型]利用二倍角公式化简三角函数式化简求值.(1)cos 4 α2-sin 4 α2;(2)sin π24·cos π24·cos π12;(3)1-2sin 2750°;(4)tan 150°+1-3tan 2150°2tan 150°.【精彩点拨】 灵活运用倍角公式转化为特殊角或产生相消项,然后求得.【自主解答】 (1)cos 4 α2-sin 4 α2=⎝⎛⎭⎪⎫cos 2 α2-sin 2 α2⎝ ⎛⎭⎪⎫cos 2 α2+sin 2 α2=cos α.(2)原式=12⎝ ⎛⎭⎪⎫2sin π24cos π24·cos π12=12sin π12·cos π12=14⎝ ⎛⎭⎪⎫2sin π12·cos π12=14sin π6=18.∴原式=18.(3)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.∴原式=12.(4)原式=2tan 2150°+1-3tan 2150°2tan 150°=1-tan 2150°2tan 150°=1tan 2×150°=1tan 300°=1tan360°-60°=-1tan 60°=-33.∴原式=-33.二倍角公式的灵活运用:(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2 α-sin 2α=cos 2α,2tan α1-tan α=tan 2α. (2)公式的变形:公式间有着密切的联系,这就要求思考时要融会贯通,有目的地活用公式.主要形式有:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,1+cos 2α=2cos 2α,cos 2 α=1+cos 2α2,sin 2α=1-cos 2α2.[再练一题] 1.求下列各式的值: (1)sin π12cos π12;(2)2tan 150°1-tan 2150°;(3)1sin 10°-3cos 10°; (4)cos 20°cos 40°cos 80°.【解】 (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=tan(2×150°)=tan 300°=tan(360°-60°) =-tan 60°=- 3.(3)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=-2sin 10°cos 10°=4sin 20°sin 20°=4.(4)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.利用二倍角公式解决求值问题(1)已知sin α=3cos α,那么tan 2α的值为( ) A.2 B.-2 C.34D.-34(2)已知sin ⎝ ⎛⎭⎪⎫π6+α=13,则cos ⎝ ⎛⎭⎪⎫2π3-2α的值等于( ) A.79 B.13 C.-79D.-13(3)已知cos α=-34,sin β=23,α是第三象限角,β∈⎝ ⎛⎭⎪⎫π2,π. ①求sin 2α的值;②求cos(2α+β)的值.【精彩点拨】 (1)可先求tan α,再求tan 2α;(2)可利用23π-2α=2⎝ ⎛⎭⎪⎫π3-α及π3-α=π2-⎝ ⎛⎭⎪⎫π6+α求值; (3)可先求sin 2α,cos 2α,cos β,再利用两角和的余弦公式求cos(2α+β). 【自主解答】 (1)因为sin α=3cos α, 所以tan α=3,所以tan 2α=2tan α1-tan 2 α=2×31-32=-34. (2)因为cos ⎝ ⎛⎭⎪⎫π3-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π6+α=13,所以cos ⎝⎛⎭⎪⎫2π3-2α=2cos 2⎝ ⎛⎭⎪⎫π3-α-1=2×⎝ ⎛⎭⎪⎫132-1=-79.【答案】 (1)D (2)C(3)①因为α是第三象限角,cos α=-34,所以sin α=-1-cos 2α=-74, 所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-74×⎝ ⎛⎭⎪⎫-34=378. ②因为β∈⎝ ⎛⎭⎪⎫π2,π,sin β=23, 所以cos β=-1-sin 2β=-53, cos 2α=2cos 2α-1=2×916-1=18, 所以cos(2α+β)=cos 2αcos β-sin 2αsin β=18×⎝ ⎛⎭⎪⎫-53-378×23=-5+6724.直接应用二倍角公式求值的三种类型(1)sin α(或cos α)――→同角三角函数的关系cos α(或sin α)――→二倍角公式sin 2α(或cos 2α).(2)sin α(或cos α)――→二倍角公式cos 2α=1-2sin 2 α(或2cos 2α-1). (3)sin α(或cos α)――→同角三角函数的关系⎩⎨⎧cos α或sin α,tan α――→二倍角公式tan 2α.[再练一题] 2.(1)已知α∈⎝ ⎛⎭⎪⎫π2,π,sinα=55,则sin 2α=______,cos 2α=________,tan 2α=________.(2)已知sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=16,且α∈⎝ ⎛⎭⎪⎫π2,π,求tan 4α的值. 【导学号:70512043】【解析】 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-255,所以sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,tan 2α=sin 2αcos 2α=-43.【答案】 -45 35 -43(2)因为sin ⎝ ⎛⎭⎪⎫π4-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫π4+α, 则已知条件可化为sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=16,即12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+α=16, 所以sin ⎝ ⎛⎭⎪⎫π2+2α=13,所以cos 2α=13.因为α∈⎝ ⎛⎭⎪⎫π2,π,所以2α∈(π,2π),从而sin 2α=-1-cos 22α=-223,所以tan 2α=sin 2αcos 2α=-22,故tan 4α=2tan 2α1-tan 22α=-421--222=427.利用二倍角公式证明求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ; (2)cos 2θ(1-tan 2θ)=cos 2θ.【精彩点拨】 (1)可考虑从左向右证的思路:先把左边降幂扩角,再用余弦的和、差角公式转化为右边形式.(2)证法一:从左向右:切化弦降幂扩角化为右边形式; 证法二:从右向左:利用余弦二倍角公式升幂后向左边形式转化. 【自主解答】 (1)左边=1+A +2B2-1-A -2B2=cos2A +2B +cos 2A -2B2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边, ∴等式成立.(2)法一:左边=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ =cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边.证明问题的原则及一般步骤:观察式子两端的结构形式,一般是从复杂到简单,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角”、“异名化同名”、“变量集中”等原则,设法消除差异,达到证明的目的.[再练一题]3.证明:1+sin 2α2cos 2α+sin 2α=12tan α+12. 【导学号:00680072】 【证明】 左边=sin 2α+cos 2α+2sin αcos α2cos 2α+2sin αcos α=α+cos α22cos αα+cos α=sin α+cos α2cos α=12tan α+12=右边.所以1+sin 2α2cos 2α+sin 2α =12tan α+12成立. [探究共研型]倍角公式的灵活运用探究1 请利用倍角公式化简:2+2+2cos α(2π<α<3π). 【提示】 ∵2π<α<3π, ∴π<α2<3π2,π2<α4<3π4,∴2+2+2cos α=2+4cos2α2=2-2cos α2=4sin2α4=2sin α4. 探究2 如何求函数f (x )=2cos 2x -1-23·sin x cos x (x ∈R )的最小正周期? 【提示】 求函数f (x )的最小正周期,可由f (x )=(2cos 2x -1)-3×(2sin x cos x )=cos 2x -3sin 2x =2sin ⎝ ⎛⎭⎪⎫π6-2x ,知其最小正周期为π.求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,7π24的最小值,并求其单调减区间.【精彩点拨】 化简f x 的解析式→f x =A ωx +φ+B→ωx +φ的范围→求最小值,单调减区间【自主解答】 f (x )=53·1+cos 2x 2+3·1-cos 2x2-2sin 2x=33+23cos 2x -2sin 2x =33+4⎝⎛⎭⎪⎫32cos 2x -12sin 2x=33+4⎝ ⎛⎭⎪⎫sin π3cos 2x -cos π3sin 2x =33+4sin ⎝⎛⎭⎪⎫π3-2x =33-4sin ⎝⎛⎭⎪⎫2x -π3.∵π4≤x ≤7π24,∴π6≤2x -π3≤π4, ∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤12,22,∴当2x -π3=π4,即x =7π24时,f (x )取最小值为33-2 2.∵y =sin ⎝⎛⎭⎪⎫2x -π3在⎣⎢⎡⎦⎥⎤π4,7π24上单调递增,∴f (x )在⎣⎢⎡⎦⎥⎤π4,7π24上单调递减.本题考查二倍角公式,辅助角公式及三角函数的性质.解决这类问题经常是先利用公式将函数表达式化成形如y =Aωx +φ的形式,再利用函数图象解决问题.[再练一题]4.求函数y =sin 4x +23sin x cos x -cos 4x 的最小正周期和最小值,并写出该函数在[0,π]上的单调递减区间.【解】 y =sin 4x +23sin x cos x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )+23sin x cos x =-cos 2x +3sin 2x =2⎝⎛⎭⎪⎫32sin 2x -12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6,所以T =2π2=π,y min =-2.由2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,得k π+π3≤x ≤k π+5π6,k ∈Z ,又x ∈[0,π],所以令k =0,得函数的单调递减区间为⎣⎢⎡⎦⎥⎤π3,5π6.1.sin 22°30′·cos 22°30′的值为( ) A.22 B.24C.-22D.12【解析】 原式=12sin 45°=24.【答案】 B2.已知sin x =14,则cos 2x 的值为( )A.78B.18C.12D.22【解析】 因为sin x =14,所以cos 2x =1-2sin 2x =1-2×⎝ ⎛⎭⎪⎫142=78.【答案】 A3.⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12的值为( ) 【导学号:00680073】 A.-32B.-12C.12D.32【解析】 原式=cos 2π12-sin 2π12=cos π6=32. 【答案】 D4.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.【解析】 sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.小中高 精品 教案 试卷制作不易 推荐下载 11 【答案】 -565.求下列各式的值:(1)cos π5cos 2π5; (2)12-cos 2π8. 【解】 (1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sin π54sin π5=14. (2)原式=1-2cos 2π82=-2cos 2π8-12=-12cos π4=-24.。

高中数学 第三章 三角恒等变换 3.1.3 二倍角的正弦、余弦、正切公式课时作业(含解析)新人教A版

高中数学 第三章 三角恒等变换 3.1.3 二倍角的正弦、余弦、正切公式课时作业(含解析)新人教A版

课时作业27 二倍角的正弦、余弦、正切公式——基础巩固类——一、选择题1.已知sin α-cos α=2,α∈(0,π),则sin2α等于( A ) A .-1 B .-22C .22D .1解析:因为sin α-cos α=2,所以(sin α-cos α)2=2,所以sin2α=-1,故选A . 2.cos 275°+cos 215°+cos75°cos15°的值等于( C ) A .62B .32C .54D .1+34解析:利用诱导公式变形产生平方关系式和倍角公式的形式,从而有原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=1+14=54.3.已知sin α=55,则sin 4α-cos 4α的值为( A ) A .-35B .-15C .15D .35解析:sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α) =-(cos 2α-sin 2α)=-cos2α=-(1-2sin 2α)=-35.4.化简tan14°1-tan 214°·cos28°的结果为( A )A .sin28°2B .sin28°C .2sin28°D .sin14°cos28°解析:tan14°1-tan 214°·cos28°=12×2tan14°1-tan 214°·cos28°=12tan28°cos28°=sin28°2. 5.已知α是第二象限角,sin α+cos α=33,则cos2α=(A) A .-53B .-59C .59 D .53解析:由sin α+cos α=33, 平方得1+2sin αcos α=39=13,∴2sin αcos α=-23.∴(cos α-sin α)2=1-2sin αcos α=53.∵α是第二象限角,∴sin α>0,cos α<0. ∴cos α-sin α=-153, ∴cos2α=cos 2α-sin 2α=(cos α+sin α)·(cos α-sin α)=-53. 6.函数f (x )=sin 2x +3sin x cos x 在区间[π4,π2]上的最大值是(C)A .1B .1+32C .32D .1+ 3解析:∵f (x )=1-cos2x 2+32sin2x =32sin2x -12cos2x +12=sin(2x -π6)+12,且π4≤x ≤π2,∴π3≤2x -π6≤56π.从而可得y max =1+12=32.二、填空题7.已知tan(x +π4)=2,则tan x tan2x 的值为49 .解析:∵tan(x +π4)=2,∴tan x +11-tan x=2,∴tan x =13.∴tan x tan2x =tan x2tan x1-tan 2x=1-tan 2x 2=1-192=49.8.化简:sin 235°-12sin10°cos10°=-1 .解析:原式=2sin 235°-12sin10°cos10°=-cos70°sin20°=-cos70°sin (90°-70°)=-1.9.已知sin ⎝⎛⎭⎫α+π4+sin ⎝⎛⎭⎫α-π4=23, 则sin ⎝⎛⎭⎫α-π41-cos2α-sin2α=4.解析:∵sin ⎝⎛⎭⎫α+π4+sin ⎝⎛⎭⎫α-π4=23, ∴sin αcos π4+cos αsin π4+sin αcos π4-cos αsin π4=2sin α=23,∴sin α=13.从而sin ⎝⎛⎭⎫α-π41-cos2α-sin2α=sin αcos π4-cos αsinπ4(1-cos2α)-sin2α=22(sin α-cos α)2sin 2α-2sin αcos α=2(sin α-cos α)4sin α(sin α-cos α)=24sin α=24×13=324. 三、解答题10.已知sin x 2-2cos x2=0.(1)求tan x 的值; (2)求cos2xcos (5π4+x )sin (π+x )的值.解:(1)由sin x 2-2cos x 2=0,知cos x2≠0,∴tan x2=2,∴tan x =2tanx21-tan 2x 2=2×21-22=-43.(2)由(1),知tan x =-43,∴cos2x cos (5π4+x )sin (π+x )=cos2x-cos (π4+x )(-sin x )=cos 2x -sin 2x (22cos x -22sin x )sin x =(cos x -sin x )(cos x +sin x )22(cos x -sin x )sin x=2×cos x +sin x sin x =2×1+tan x tan x =24.11.已知函数f (x )=2sin x 2cos x 2-2sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值. 解:(1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝⎛⎭⎫x +π4-22, 所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4.当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间[-π,0]上的最小值为f ⎝⎛⎭⎫-3π4=-1-22. ——能力提升类——12.已知tan θ=13,则cos 2θ+12sin2θ的值为( B )A .-65B .65C .-45D .45解析:cos 2θ+12sin2θ=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=1+131+19=65.故选B .13.若α∈⎝⎛⎭⎫0,π2,且cos 2α+cos ⎝⎛⎭⎫π2+2α=310,则tan α的值为( C ) A .12B .14C .13D .13或-7解析:cos 2α+cos ⎝⎛⎭⎫π2+2α=cos 2α-sin2α=cos 2α-2sin αcos α=cos 2α-2sin αcos αsin 2α+cos 2α=1-2tan αtan 2α+1=310,整理得3tan 2α+20tan α-7=0,解得tan α=13或tan α=-7.又α∈⎝⎛⎭⎫0,π2,所以tan α=13.14.若0<θ<π2,则化简1+sin θ-1-sin θ的结果是2sin θ2.解析:原式=sin 2θ2+cos 2θ2+2sin θ2cos θ2-sin 2θ2+cos 2θ2-2sin θ2cos θ2=⎝⎛⎭⎫sin θ2+cos θ22-⎝⎛⎭⎫sin θ2-cos θ22=⎪⎪⎪⎪sin θ2+cos θ2-⎪⎪⎪⎪sin θ2-cos θ2. 因为θ∈⎝⎛⎭⎫0,π2,所以θ2∈⎝⎛⎭⎫0,π4.所以cos θ2>sin θ2>0.所以此时原式=sin θ2+cos θ2-cos θ2+sin θ2=2sin θ2.15.已知函数f (x )=4cos 4x -2cos2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x .(1)求f ⎝⎛⎭⎫-11π12的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求函数g (x )=12f (x )+sin2x 的最大值和最小值. 解:(1)f (x )=(1+cos2x )2-2cos2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x=cos 22xsin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x=2cos 22x sin ⎝⎛⎭⎫π2+2x =2cos 22x cos2x =2cos2x ,所以f ⎝⎛⎭⎫-11π12=2cos ⎝⎛⎭⎫-11π6=2cos π6= 3. (2)g (x )=cos2x +sin2x =2sin ⎝⎛⎭⎫2x +π4. 因为x ∈⎣⎡⎭⎫0,π4,所以2x +π4∈⎣⎡⎭⎫π4,3π4, 所以当x =π8时,g (x )max =2,当x =0时,g (x )min =1.。

高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A必修4 (1)

高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A必修4 (1)
解析答案
类型二 逆用公式化简与求值
2 例2 (1)sin(70°-x)cos(25°-x)-cos(70°-x)sin(155°+x)= 2 .
解析 ∵(20°+x)+(70°-x)=90°, (25°-x)+(155°+x)=180°, ∴原式=cos(20°+x)cos(25°-x)-cos[90°-(20°+x)]·sin[180°
∴T=2ωπ=2π,值域[-2,2].
由-π2+2kπ≤x-π6≤π2+2kπ 得,递增区间[-π3+2kπ,23π+2kπ],k∈Z.
解析答案
类型三 公式的变形应用 例 3 已知 sin(α+β)=12,sin(α-β)=13,求ttaann αβ的值.
解 ∵sin(α+β)=12,∴sin αcos β+cos αsin β=12.

cos 20°
=cosc2o0s°s2i0n°30°=sin 30°=12.
重点难点 个个击破
解析答案
(2)若 sin34π+α=153,cosπ4-β=35,且 0<α<π4<β<34π,求 cos(α+β)的值. 解 ∵0<α<π4<β<34π, ∴34π<34π+α<π,-π2<π4-β<0.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 两角和的余弦公式
思考 如何由两角差的余弦公式得到两角和的余弦公式?
答 用-β代换cos(α-β)=cos αcos β+sin αsin β便可得到.
公式 简记符号
cos(α+β)=
cos αcos β-sin αsin β Cα+β
使用条件
方法一
原式=2cosπ3sin

高中数学 第三章 三角恒等变换 3_1-3_1.3 二倍角的正弦、余弦、正切公式练习 新人教A版必修4

高中数学 第三章 三角恒等变换 3_1-3_1.3 二倍角的正弦、余弦、正切公式练习 新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式A 级 基础巩固一、选择题1.sin 15°sin 75° 的值为( ) A.12 B.32 C.14 D.34解析:原式=sin 15°cos 15°=12(2sin 15°cos 15°)=12sin 30°=14. 答案:C2.已知sin α=23,则cos (π-2α)=( ) A .-53 B .-19 C.19 D.53 解析:因为sin α=23, 所以cos (π-2α)=-cos 2α=-(1-2sin 2 α)=-1+2×⎝ ⎛⎭⎪⎫232=-19. 答案:B3.1-sin 24°等于( )A.2cos 12° B .2cos 12° C .cos 12°-sin 12° D .sin 12°-cos 12°解析:1-sin 24°=sin 2 12°-2sin 12°cos12°+cos 212°= (sin 12°-cos 12°)2=|sin 12°-cos 12°|=cos 12°-sin 12°.答案:C4.已知cos ⎝ ⎛⎭⎪⎫α+π4=14,则sin 2α的值为( )A.78 B .-78 C.34 D .-34解析:因为cos ⎝ ⎛⎭⎪⎫α+π4=14,所以sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4=1-2cos 2⎝ ⎛⎭⎪⎫α+π4=1-116×2=78.答案:A5.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2 α+cos 2α=14,则tan α的值等于()A.22 B.33 C. 2 D.3解析:因为sin 2 α+cos 2α=14,所以sin 2 α+cos 2 α-sin 2 α=cos 2 α=14所以cos α=±12.又α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=12,sin α=32.所以tan α= 3.答案:D二、填空题 6.已知tan α=-13,则sin 2α -cos 2 α1+cos 2α=________. 解析:sin 2α-cos 2 α1+cos 2α=2sin αcos α-cos 2 α1+2cos 2α-1= 2sin αcos α-cos 2 α2cos 2 α=tan α-12=-56. 答案:-56 7.已知sin θ2+cos θ2=233,那么sin θ=________,cos 2θ=________. 解析:因为sin θ2+cos θ2=233, 所以⎝ ⎛⎭⎪⎫sin θ2+cos θ22=43, 即1+2sin θ2cos θ2=43,所以sin θ=13, 所以cos 2θ=1-2sin 2 θ=1-2×⎝ ⎛⎭⎪⎫132=79. 答案:13 798.已知sin ⎝ ⎛⎭⎪⎫π4-x =35,则sin 2x 的值等于________. 解析:法一:因为sin ⎝ ⎛⎭⎪⎫π4-x =35,所以cos ⎝ ⎛⎭⎪⎫π2-2x =1-2sin 2⎝ ⎛⎭⎪⎫π4-x =1-2×⎝ ⎛⎭⎪⎫352=725, 所以 sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =725. 法二:由sin ⎝ ⎛⎭⎪⎫π4-x =35,得22(sin x -cos x )=-35, 所以sin x -cos x =-325,两边平方得 1-sin 2x =1825, 所以sin 2x =725. 答案:725三、解答题9.化简:tan 70°cos 10°(3tan 20°-1). 解:原式sin 70°cos 70°·cos 10°·⎝ ⎛⎭⎪⎫3sin 20°cos 20°-1= sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20°= sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°= -sin 70°cos 70°·sin 20°cos 20°=-1. 10.已知tan α=17,tan β=13,并且α、 β均为锐角,求α+2 β的值. 解:因为tan β=13,所以tan 2 β=2tan β1-tan 2 β=2×131-⎝ ⎛⎭⎪⎫132=34,所以tan(α+2 β )=tan α+tan 2 β1-tan αtan 2 β=17+341-17×34=1. 0<tan α=17<1,0<tan β=13<1, 又已知α, β均为锐角,所以0<α<π4,0< β <π4,0<2 β <π2, 所以0<α+2 β <3π4. 又tan(α+2 β )=1,所以α+2 β=π4. B 级 能力提升1.函数y =12sin 2x +sin 2 x ,x ∈R 的值域是( ) A.⎣⎢⎡⎦⎥⎤-12,32 B.⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎢⎡⎦⎥⎥⎤-22+12,22+12 D.⎣⎢⎢⎡⎦⎥⎥⎤-22-12,22-12 解析:y =12sin 2x +1-cos 2x 2= 22⎝⎛⎭⎪⎪⎫22sin 2x -22cos 2x +12= 22sin ⎝ ⎛⎭⎪⎫2x -π4+12. 因为x ∈R,所以2x -π4∈R ,sin ⎝⎛⎭⎪⎫2x -π4∈[-1,1], 所以函数y 的值域是⎣⎢⎢⎡⎦⎥⎥⎤-22+12,22+12.答案:C2.已知等腰三角形底角的余弦值等于45,则这个三角形顶角的正弦值为________. 解析:设此三角形的底角为α,顶角为 β,则cos α=45,sin α=35, 所以sin β=sin (π-2α)=sin 2α=2sin αcos α=2×35×45=2425. 答案:24253.(2014·江苏卷)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55. (1)求sin ⎝ ⎛⎭⎪⎫π4+α的值; (2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值. 解:(1)由题意知cos α=- 1-⎝ ⎛⎭⎪⎪⎫552=-255, 所以sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α= 22×⎝ ⎛⎭⎪⎪⎫-255+22×55=-1010. (2)sin 2α=2sin αcos α=-45, cos 2α=2cos 2 α-1=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=-32×35+12×⎝ ⎛⎭⎪⎫-45=-33+410.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以f(x)的最大值
∴2sinAsinB+cosAcosB-sinAsinB
=cosAcosB+sinAsinB=cos(A-B)=1.
∵-π<A-B<π,
∴A-B=0,即A=B.
∴△ABC是等腰三角形.
能力提升
1函数y=si
A
解析:y=si
=si
所以该函数的周期答Fra bibliotek:A2已知向量a
A
解析:|a|cos2θ
所以cos2θ=2cos2θ-1=
3
课时过关·能力提升
基础巩固
A
解析:原
答案:D
2已知sinα-cosα∈(0,π),则sin 2α=()
A.-1B.
解析:将sinα-cosα,
(sinα-cosα)2=2,整理得1-2sinαcosα=2,
于是sin2α=2sinαcosα=-1,故选A.
答案:A
3若tanθ
A
解析:由tanθ

答案:D
4若x
A
解析:当x,cos2x-sin2x=cos2x
=co
答案:D
5化
A.si
C.2si
答案:B
解析:原
答案:
7在△ABC中,cosA
解析:∵0<A<π,∴sinA
∴sin2A=2sinAcosA
cos2A=2cos2A-1=22A
答案:
8已知cos 2θ
解析:cos4θ+sin4θ=(cos2θ+sin2θ)2-2sin2θcos2θ
∴sin10°sin30°sin50°sin70°
答案:
7已知函数f(x)=sinx-
(1)求f(x)的最小正周期;
(2)求f(x)在区
解(1)因为f(x)=sinxx
=2sin
所以f(x)的最小正周期为2π.
(2)因为0≤x≤
所≤x≤π.
当xx,f(x)取得最小值.
所以f(x)在区
★ 8设向量a=b=(cosx,sinx),x∈
答案:C
3若si
A.
C
解析:co
=-co
=2sin
答案:A
4已
A.1B
解析:tanθ
∴sin2θ+sin2θ
答案:A
5已知P(1,-3)是
解析:∵点P(1,-3)是,∴cocosα=2cos
答案:
★ 6sin 10°sin 30°sin 50°sin 70°的值等于.
解析:sin10°sin50°sin70°
=1
=1
答案:
9已知函数f(x)=sin2x+2sinxcosx+3cos2x,x∈R,求f(x)的周期及值域.
解f(x)2x
=2+sin2x+cos2x=2
∴函数f(x)的周期为π,值域为[2
10在△ABC中,若sinAsinB=cos△ABC的形状.
解sinAsinB=cos
即2sinAsinB+cos(A+B)=1,
(1)若|a|=|b|,求x的值;
(2)设函数f(x)=a·b,求f(x)的最大值.
解(1)由|a|2=x)2+sin2x=4sin2x,
|b|2=cos2x+sin2x=1,
及|a|=|b|,得4sin2x=1.
又x∈sinx
所以x
(2)f(x)=a·bx·cosx+sin2x
2x2x
当x,si1.
相关文档
最新文档