工程光学讲稿[1]
合集下载
1工程光学讲稿(球面)

(2)入射角的正弦与折射角的正弦之比和入射角的大小无关,只与两种
介质的折射率有关。折射定律可表示为:
siInn' 或nsiIn n'siIn ' siIn ' n
I I''
n
在折射定律中,若令n’ = -n,则得到反射定律,因此 n'
I'
可将反射定律看成是折射定律的一个特例。根据这一特点
,在光线反射的情况下,只要令 n’ = -n,所有折射光线传播的计算均适
1工程光学讲稿 (球面)
单击此处添加副标题内容
上篇 几何光学与成像理论
第一章 几何光学基本定律与成像概念
第一节 几何光学的基本定律 第二节 成像的基本概念与完善成像条件 第三节 光路计算与近轴光学系统 第四节 球面光学成像系统
2
一、光学 - 简介
光学真正形成一门科学,应该 从建立反射定律和折射定律的时代 算起,这两个定律奠定了几何光学 的基础。 光学 - 定义
费马原理:
B
s A ndl
dl A
光线从一点传播到另一点,无论经过多少次折射和反射,其
光程为极值(极大、极小、常量),也就是说光是沿着光程为极
值的路径传播。
利用费马原理,可以导出光的直线传播定律和反射、折射定17 律。
利用费马原理证明反射定律 设:A为点光源(x1,0,z1)
B为接受光源(x2,0,z2) P为光线的入射点(x,y,0) 由费马原理求光程的极值得:
合反射光线。
12
例题:一个圆柱形空筒高16cm,直径12cm。人眼若在离筒侧某处能见到筒 底侧的深度为9cm;当筒盛满液体时,则人眼在原处恰能看到筒侧底。求该 液体的折射率。
工程光学讲稿(平面)

经计算,得
Z n 0.8 1.5163 360 ( ) ( )( ) 14 0 d n 1 10 .4 1.5163 1 2
3、应用:将平行玻璃平板简化为一个等效空气平板。
d d l ' d / n
举例:1. 一人站在游泳池旁,垂直注视池底物体,试问物体的视见位置要 比实际位置高多少?(水的折射率为4/3) 解:设游泳池水的实际深度为d,有池底物点A发出的光线,经过水平面折 射后,像点A’相对物点A产生了轴向位移。
棱镜色散、色散曲线、白光光谱的概念。
重点内容
平面镜成像、平行平板的成像性质;
反射棱镜成像方向判别; 反射棱镜在光路中的应用。
教学要求
掌握平面成像的原理、平行平板成像的特性;
掌握反射棱镜成像原理及在光路中的作用;
理解折射棱镜及光楔在光路中的应用。
概述
利用透镜可以组成各种共轴球面系统,以满足不同的成像要求,例如 望远镜和显微镜等,但是,共轴球面系统的特点是所有透镜表面的球心必 须排列在同一条直线上,这往往不能满足很多实际的需要。例如用正光焦 度的物镜和目镜组成的简单望远镜所成的像是倒的,观察起来就很不方便,
y x z
x' y' z'
4)双像棱镜
O’
A’ C A’’
D
F K B
E H
G
A
O
二、棱镜系统的成像方向判断
判断原则:
1.O'Z'坐标轴和光轴的出射方向一致。 2.垂直于主截面的坐标轴O'Z'视屋脊面的个数而定,如果有奇数个屋脊面,
则其像坐标轴方向与物坐标轴OY方向相反;没有屋脊面或屋脊面个数为偶数
∴ θ=2α
Z n 0.8 1.5163 360 ( ) ( )( ) 14 0 d n 1 10 .4 1.5163 1 2
3、应用:将平行玻璃平板简化为一个等效空气平板。
d d l ' d / n
举例:1. 一人站在游泳池旁,垂直注视池底物体,试问物体的视见位置要 比实际位置高多少?(水的折射率为4/3) 解:设游泳池水的实际深度为d,有池底物点A发出的光线,经过水平面折 射后,像点A’相对物点A产生了轴向位移。
棱镜色散、色散曲线、白光光谱的概念。
重点内容
平面镜成像、平行平板的成像性质;
反射棱镜成像方向判别; 反射棱镜在光路中的应用。
教学要求
掌握平面成像的原理、平行平板成像的特性;
掌握反射棱镜成像原理及在光路中的作用;
理解折射棱镜及光楔在光路中的应用。
概述
利用透镜可以组成各种共轴球面系统,以满足不同的成像要求,例如 望远镜和显微镜等,但是,共轴球面系统的特点是所有透镜表面的球心必 须排列在同一条直线上,这往往不能满足很多实际的需要。例如用正光焦 度的物镜和目镜组成的简单望远镜所成的像是倒的,观察起来就很不方便,
y x z
x' y' z'
4)双像棱镜
O’
A’ C A’’
D
F K B
E H
G
A
O
二、棱镜系统的成像方向判断
判断原则:
1.O'Z'坐标轴和光轴的出射方向一致。 2.垂直于主截面的坐标轴O'Z'视屋脊面的个数而定,如果有奇数个屋脊面,
则其像坐标轴方向与物坐标轴OY方向相反;没有屋脊面或屋脊面个数为偶数
∴ θ=2α
工程光学介绍课件

04
继续教育:加强继续教育和 培训,提高工程光学人才的 综合素质和技能水平
谢谢
3
相机:用于记录影像 的仪器,如数码相机、 手机相机等
望远镜:用于观察遥远 天体的仪器,如天文观 测、卫星通信等
2
投影仪:用于显示图像 的仪器,如电影放映、 会议演示等
4
光学测量系统
应用领域:工业、医疗、科研等
01
领域 功能:测量物体的几何形状、尺
02
寸、位置等参数 技术原理:利用光学原理,如激
03
于导航、教育和娱乐
上,用于游戏、电影和训练
4
工程光学的未来 展望
光学技术的创新
超材料:具有特殊 光学性质的人造材 料,如光子晶体、 超透镜等
01
纳米光学:利用纳 米尺度的光学现象, 如表面等离子体、 量子点等
02
04
集成光学:将光学 元件集成在芯片上, 如光子集成电路、 光通信系统等
03
生物光学:研究生 物系统中的光学现 象,如生物成像、 生物传感器等
05
光的衍射:光 在传播过程中 遇到障碍物时
发生衍射
06
光的偏振:光 在传播过程中 具有偏振特性
07
光的吸收与散 射:光在传播 过程中被吸收
或散射
08
光的色散:光 在传播过程中 发生色散,形
成彩色光谱
工程光学的应用领域
01
光学仪器:如显微镜、 望远镜、照相机等
02
光学通信:如光纤通信、 激光通信等
工程光学的应用拓展
虚拟现实(VR)和增强现实(AR)技术:工程光学在虚拟现实 和增强现实技术中发挥着重要作用,如光学元件的设计和制造。
自动驾驶汽车:工程光学在自动驾驶汽车领域具有广泛的应用, 如激光雷达(LiDAR)、摄像头和传感器等。
工程光学基础第一章

基本概念
四. 波面与光束 波面:振动位相相同的各点在某一瞬间时所构成 的曲面。 波面可分为平面波、球面波、任意曲面波。 光束:与波面对应的法线束。 在各向同性的介质中,光能是沿着波面法线方向传 播的。故可认为光波波面的法线就是几何光学中的法线。 平面波对应于平行光束;球面波对应于汇聚光束或发散 光束,汇聚或发散光束又称为同心光束,当光线既不相 交于一点又不平行时,这种光束称为象散光束。
全反射及应用
二. 全反射的应用
全反射及应用
思考题: 在光纤传输中,在光纤某一端面的 入射角为多少时,才可以发生光线在光 纤内全反射并从另一端出射。
§1-4 物象概念
一. 光学系统 光学系统(也称光组)是用于物 体成象的系统,它由一系列光学零件 组成,如:透镜、棱镜、菲聂耳透镜、 球面反射和折射镜、平行平板和平面 反射镜等。对于由轴对称光学零件组 成的光学系统称为共轴光学系统。对 称轴称为光轴。
几何光学基本定律
(二)反射定律 1. 反射光位于入射光线和法线所决定的 平面内。 2. 反射角和入射角的绝对值相同,符号相 反,既: I "= I (1-2) 反射定律可以看成是折射定律在 n=-n′时的一种特殊情况。
几何光学基本定律
折射率是表征透明介质光学性质的重要参 数。我们知道,各种波长的光在介质中的传播 速度会减慢。介质的折射率正是用来描述介质 中光速减慢程度的物理量,即:
几何光学基本定律
三. 折射和反射定律
图 1-2
几何光学基本定律
如图1-2所示,入射光线AO入射到两 种介质的分界面PQ上,在O点发生折反 射,其中,反射光线为OB,折射光线为 OC,NN ' 为界面上O点处的法线。入射 光线、反射光线和折射光线与法线的夹 角 、 和 分别称为入射角、反射角 和折射角,它们均以锐角度量,由光线 转向法线,顺时针方向旋转形成的角度 为正,反之为负。
工程光学讲稿(光阑)

学零件都有一定的大小。因此、从物体发出的光束能够进入系统成像的只
是其中一部分。显然,光学零件起到了限制光束的作用。更确切地说,是 放置光学零件的金属框(如透镜框、棱镜框)限制了成像光束的位置和大
小。因此,我们把系统中起限制成像光束作用的光学零件的金属框称作
“光阑”。 在光学系统中,不单用装夹光学零件的金属框的内孔来限制光束,有
学系统,因此,能被系统成像的物面范围便由极小的入瞳光从与入射窗边
缘的连线(主光线)所决定,主光线便是视场边缘光线。
入窗限制了物平面的成像范围,是因为在所有光孔被其前面光组所成 的像中入射窗对光瞳中心的张角为最小,同样,出射窗之所以限制了像方 视场的大小,也是因为在所有光孔被其后的光组所成的像中,出射窗对出
瞳中心的张角为最小。 这就解释为什么视场光阑能限制物面成像范围的原
因。 入射窗 出瞳 入瞳
L1
-ω'
ω
L2
像
物
主光线
视场光阑 出射窗 孔径光阑
以上只讨论了入射光瞳口径为无限小的情况。实际上,光学系统的入射
光瞳总是有一定大小。有时还可能很大。此时系统小光束被限制的情况就变 得复杂一些。下面我们就一般情况作简要分析。
照相机和光阑的作用
将Dp被后面的光组成像。由高斯公式得:
1 1 1 l ' 20mm l ' 20 10 l' 20 1 2 y' -1 2 2mm l 20
系统的出瞳在L2透镜之后20mm处,大小为2mm。 举例2:在上例中,若物点位于轴上无限远处,试问此时哪一个光阑是系统 的孔径光阑? 解:当物点位于轴上无限远时,从物点向光阑像边缘引伸光线,实际上这 些光线都平行于光轴。所以,此时只须比较位于系统物空间的所有光阑像 的孔径大小,直径最小者就是入瞳,它对应的光阑就是孔径光阑。
工程光学基础教程第一章-精品文档

工程光学
上篇
几何光学与光学设计
几何光学基本定律与成像概念 理想光学系统 平面与平面系统 光学系统中的光束限制 像差 典型光学系统 现代光学系统
第一章:几何光学基本定律与
成像概念
第一节 几何光学的基本定律和原理 一、光波与光线
1、光的本质
光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象, 称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。
决定,即: sinI ' n sinI n'
通常写为: n 'sI i' n n sI in 若在此式中令n'n,则上式成为
I'I,此结果在形式上与反射定律公式
相同。
4. 光路的可逆性
若光线在折射率为 n '的介质中
沿CO方向入射,由折射定律可知,折 射光线必沿OA方向出射。同样,如果 光线在折射率为n的介质中沿BO方向 入射,则由反射定律可知,反射光线 也一定沿OA方向出射。由此可见,光 线的传播是可逆的,这就是光路的可 逆性。
球面光波对应的同心光束按光的传播方向不同又分为 会聚光束和发散光束。如图1-1所示。会聚光束所有光线实 际通过一个点。同心光束经实际光学系统后,由于像差的作 用,将不再是同心光束,与之对应的光波则为非球面光波。 与平面波相对应的源自平行光束,是同心光束的一种特殊形式
波面与光束 a)平面光波与平行光束 b)球面光波与发散光束
利用这一规律,使得对光线传播情况的 研究大为简化。
上篇
几何光学与光学设计
几何光学基本定律与成像概念 理想光学系统 平面与平面系统 光学系统中的光束限制 像差 典型光学系统 现代光学系统
第一章:几何光学基本定律与
成像概念
第一节 几何光学的基本定律和原理 一、光波与光线
1、光的本质
光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象, 称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。
决定,即: sinI ' n sinI n'
通常写为: n 'sI i' n n sI in 若在此式中令n'n,则上式成为
I'I,此结果在形式上与反射定律公式
相同。
4. 光路的可逆性
若光线在折射率为 n '的介质中
沿CO方向入射,由折射定律可知,折 射光线必沿OA方向出射。同样,如果 光线在折射率为n的介质中沿BO方向 入射,则由反射定律可知,反射光线 也一定沿OA方向出射。由此可见,光 线的传播是可逆的,这就是光路的可 逆性。
球面光波对应的同心光束按光的传播方向不同又分为 会聚光束和发散光束。如图1-1所示。会聚光束所有光线实 际通过一个点。同心光束经实际光学系统后,由于像差的作 用,将不再是同心光束,与之对应的光波则为非球面光波。 与平面波相对应的源自平行光束,是同心光束的一种特殊形式
波面与光束 a)平面光波与平行光束 b)球面光波与发散光束
利用这一规律,使得对光线传播情况的 研究大为简化。
工程光学基础教程第一章

PART ONE
工程光学
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
上篇 几何光学与光学设计
第一节 几何光学的基本定律和原理 一、光波与光线 1、光的本质 光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象,称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。
光的直线传播定律
光线的独立传播定律
在各向同性的均匀介质中,光线按直线传播。例子:影子的形成、日食、月蚀等。
不同的光线以不同的方向通过某点时,彼此互不影响,在空间的这点上,其效果是通过这点的几条光线的作用的叠加。 利用这一规律,使得对光线传播情况的研究大为简化。
3.光的折射定律和反射定律
如图所示,入射光线AO入射到两种介质的分界面PQ上,在O点发生折反射,其中,反射光线为OB,折射光线为OC, 为界面上O点处的法线。入射光线、反射光线和折射光线与法线的夹角 、 和 分别称为入射角、反射角和折射角,它们均以锐角度量,由光线转向法线,顺时针方向旋转形成的角度为正,反之为负。
光程为极大、常值的实例
研究一个凹球面镜和一个椭球面: 凹球面镜反射是一个光程为极大值的例子:APB>AQB; 椭球面是光程为常数的例子
人们在研究光的各种传播现象的基础上,设计和制造了各种各样的光学仪器为生产和生活服务,如显微镜、望远镜。 所有的光学仪器中都是应用不同形状的曲面和不同介质做各种光学 零件——反射镜、透镜和棱镜等,如图所示。
工程光学
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
上篇 几何光学与光学设计
第一节 几何光学的基本定律和原理 一、光波与光线 1、光的本质 光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象,称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。
光的直线传播定律
光线的独立传播定律
在各向同性的均匀介质中,光线按直线传播。例子:影子的形成、日食、月蚀等。
不同的光线以不同的方向通过某点时,彼此互不影响,在空间的这点上,其效果是通过这点的几条光线的作用的叠加。 利用这一规律,使得对光线传播情况的研究大为简化。
3.光的折射定律和反射定律
如图所示,入射光线AO入射到两种介质的分界面PQ上,在O点发生折反射,其中,反射光线为OB,折射光线为OC, 为界面上O点处的法线。入射光线、反射光线和折射光线与法线的夹角 、 和 分别称为入射角、反射角和折射角,它们均以锐角度量,由光线转向法线,顺时针方向旋转形成的角度为正,反之为负。
光程为极大、常值的实例
研究一个凹球面镜和一个椭球面: 凹球面镜反射是一个光程为极大值的例子:APB>AQB; 椭球面是光程为常数的例子
人们在研究光的各种传播现象的基础上,设计和制造了各种各样的光学仪器为生产和生活服务,如显微镜、望远镜。 所有的光学仪器中都是应用不同形状的曲面和不同介质做各种光学 零件——反射镜、透镜和棱镜等,如图所示。
工程光学第章典型光学系统课件 (一)

工程光学第章典型光学系统课件 (一)
工程光学部分中,光学系统是一个非常重要的概念。
作为光学系统学习的第一步,我们需要学习典型的光学系统。
在本节课件中,我们将会学到三种典型的光学系统:单透镜系统、双透镜系统和望远镜。
第一,单透镜系统是最简单的光学系统,由一个透镜组成。
在这种情况下,光线从物体经过透镜形成像。
单透镜系统中,我们需要考虑像的位置和大小,物像距离和像的性质,如实际或虚像。
这些性质可以通过把物体图和像的图画在一起来表达。
第二,双透镜系统包括两个透镜,用于对光线进行更复杂的控制。
目光机是双透镜系统的一种,其中一个透镜更接近眼睛,另一个透镜离眼睛更远。
双透镜系统可以具有不同的配置,但是我们通常需要在系统中考虑的属性包括眼睛和物体之间的距离、眼睛所处位置、物体的位置、望远镜的放大率等,这些属性可以帮助我们确定望远镜成像的性质和特征。
第三,望远镜可以用于查看遥远的物体。
望远镜可以看作是双透镜系统的一种特殊情况,其中一个透镜是目镜行星镜,另一个透镜是大反射镜或透镜。
望远镜与单透镜和双透镜系统的不同之处在于,望远镜中透镜的位置和物体和眼睛的距离都有所不同。
在这三种光学系统中,我们学会了处理物体成像和图像特性的能力。
到达像靠近元素也需要一定的反思和技巧。
我们还意识到,光学系统可以有许多乐趣和有趣的应用场景,例如望远镜和显微镜等等。
对于喜欢光学系统的人来说,这是一种非常有趣和有创造性的领域,它可以启发人们的想象力和知识积累,可以帮助人们更好地理解我们周围的世界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•I’ •n •I11
•I2
•2)若棱镜浸入在水中时:
•Im=62.50 •3) 由于光线在玻璃与水面的入射角I1=450小于临界角Im=62.50,所以
不会反射全反射。
PPT文档演模板
工程光学讲稿[1]
三、费马原理 光程:光线在介质中传播的几何距离L与介质折射率n的乘积。 即 S=L×n=L×(c/v)=c×(L/v)=ct 由此可见, 光在某种介质中的光程等于同一时间内光在真空
•光学 - 內容 •几何光学 • 不考虑光的波动性以及光与物质的相互作用,只以光线的概念为基础, 根据实验事实建立的基本定律,通过计算和作图来讨论物体通过光学系统的 成像规律。它得出的结果通常是波动光学在某些条件下的近似或极限。 •物理光学 • 是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以 也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振, 以及光在各向异性的媒质中传插时所表现出的现象。 量子光学 • 量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传 输、检测以及光与物质相互作用中的基础物理问题的一门学科。
§1.1 几何光学的基本定律
一、光波与光线
1、光波
(1)光是一种电磁波,其在空间的传播和在界面的行为遵从电磁波的一般 规律。
•10-10 •10-8 •10-6
•宇宙射线 •Γ射线
•10-4 •10-2 •1 •102 •104 •106
•x射线 •光 波
•短
波
•108 •101
0
•中 •长 •波 波
工程光学讲稿
PPT文档演模板
2020/11/12
工程光学讲稿[1]
•一、光学 - 简介
• 光学真正形成一门科学,应 该从建立反射定律和折射定律的时 代算起,这两个定律奠定了几何光 学的基础。 •光学 - 定义 • 光是一种电磁波,在物理学中, 电磁波由电磁学中的麦克斯韦
•方程组描述。同时,光又具有波粒二象性。
PPT文档演模板
工程光学讲稿[1]
•工程光学 • 将光学理论应用在工程领域的学科——工程光学。
•二、课程的性质、任务和内容
• 工程光学是测控技术与仪器专业必修的技术基础课,在专业培养方案中 是非常重要的技术基础课。本课程主要讲授几何光学中的高斯光学理论、典 型光学系统实例及应用;物理光学中的干涉、衍射、偏振的光学现象、原理 和它们在工程中的应用,通过本课程的学习使学生能够掌握工程光学的基本 概念、基本原理,初步掌握测量仪器的光学元件、光学系统的设计,同时为 专业课的学习打下一个良好的基础。
•三、教学的内容及学时安排
•讲授教材的几何光学和物理光学。 •课堂教学50学时+6学时的实验课,总计56学时。
PPT文档演模板
工程光学讲稿[1]
•第一章 几何光学基本定律与成像概念
•教学内容
几何光学的基本定律:光的直线传播定律、光的独立传播定律、反 射定律和折射定律(全反射及其应用)、光路的可逆性、费马原理(最 短光程原理)。
•实物、实像
PPT文档演模板
•虚物、实像
•实物、虚像 •虚物、虚像
工程光学讲稿[1]
§1.3 光路计算与近轴光学系统
一、基本概念与符号规则
设在空间存在如下一个折射球面:
•-
•φ
•U
U
'
PPT文档演模板
工程光学讲稿[1]
r:折射球面曲率半径 o:顶点 L:物方截距 L':像方截距 u:物方孔径角 u':像方孔径角 符号规则: 光线方向自左向右 (1)沿轴线段:以顶点O为原点,光线到光轴交点或球心,顺光线为正,逆光线
(2)入射角和反射角的绝对值相等而符号相反,即入射光线和反射光线
位于法线的两侧,即: I = - I"
折射定律:
(1)入射光线、折射光线和分界面上入射点的法线三者在同一平面内。
(2)入射角的正弦与折射角的正弦之比和入射角的大小无关,只与两种
介质的折射率有关。折射定律可表示为:
•
••n
在折射定律中,若令n’ = -n,则得到反射定律,因此 •n' 可将反射定律看成是折射定律的一个特例。根据这一• 特点
•在ΔAOD中,根据几何关系有
•A •n2 =1
•n
•9
1
•1
•D
2
•P •I2
•O •I1
•C •B
PPT文档演模板
工程光学讲稿[1]
折射率:折射率是表征透明介质光学性质的重要参数。 表达式:n = c/v 4、全反射及其应用 概念:当光线射至透明介质的光滑分界面而发生折射时,必然会伴随着部分
光线的反射。在一定条件下,该界面可以将全部入射光线反射回原介质而无
• 狭义来说,光学是关于光和视见的科学,早期只用于跟眼睛和视见相 联系的事物。 • 广义来说,是研究从微波、红外线、可见光、紫外线直到X射线的宽 广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质 相互作用的科学。
PPT文档演模板
工程光学讲稿[1]
•光学 - 分类 •人们通常把光学分成几何光学、物理光学和量子光学。
• 几何光学的基本定律; •单个折射球面的符号规定; •单个折射球面的物象位置和大小的关系; •共轴球面系统的物象位置和大小的关系。
•教学要求
•掌握几何光学的基本定律、成象的基本概念; •理解完善像的条件; •掌握单个折射球面的光线光路计算; •掌握球面镜的光学计算。
PPT文档演模板
工程光学讲稿[1]
PPT文档演模板
工程光学讲稿[1]
利用费马原理证明反射定律 设:A为点光源(x1,0,z1)
B为接受光源(x2,0,z2) P为光线的入射点(x,y,0) 由费马原理求光程的极值得:
•A
•z
•B
•i
•i’
•0 •x •P
•x
•-
•x2
x1
PPT文档演模板
工程光学讲稿[1]
将1、2代入3式得:
只有y=0时,上式成立。即入射光线法线及反射线必垂直于反射面的平面。 将1、2代入4式得:
射定律可知当入射角增大到一定程度时,在分界面可看到折射光线沿分界
面射出,此时的入射角为临界角 Im=acrsin(n’/n)
全反射条件:
①光线从光密介质进入光疏介质;
•S1
②入射角大于临界角
应用:光纤、反射棱镜等。
5、光路的可逆性: 光源S1发射的光线经B点折射向C。
若在C点置一光线,光线亦可由C点出 射经B点折射而射向A,即光线是可逆的。
方向为负。
PPT文档演模板
工程光学讲稿[1]
二、实际光线的光路计算
已知:折射球面曲率半径r,介质折射率为n和n’,及物方坐标L和U 求:像方L’和U’
解:△AEC中, 由折射定律:
又
PPT文档演模板
工程光学讲稿[1]
由△A’EC
以上公式被称为子午面光线光路计算公式。
说明:
(1)以上即为子午面内实际光线的光路计算公式,给出U、L,可算出U’、L’,
n1A10 + n1001 + n20102 +…+ n’k0k0’ + n’k0’Ak
= n1A1E + n1EE1 + n2E1E2 +…+ n’kEkE’ + n’kE’A’k = C 表述三:物点及其像点之间任意两条光路的光程相等。
三、物(像)的虚实
实像:由实际光线相交形成。 虚像:由光线的延长线相交形成。
•I •I''
•
•I'
,在光线反射的情况下,只要令 n’ = -n,所有折射•光线传播的计算均适
合反射光线。
•
PPT文档演模板
工程光学讲稿[1]
•例题:一个圆柱形空筒高16cm,直径12cm。人眼若在离筒侧某处能见到 筒底侧的深度为9cm;当筒盛满液体时,则人眼在原处恰能看到筒侧底。求 该液体的折射率。
中所走过的几何路程。
若光线经过介质不连续变化,则光程可用表示:
•B
若光线经过介质连续变化,则光程可用积分表示:
•dl
费马原理:
•A
光线从一点传播到另一点,无论经过多少次折射和反射,其
光程为极值(极大、极小、常量),也就是说光是沿着光程为极
值的路径传播。
利用费马原理,可以导出光的直线传播定律和反射、折射定律。
为负。 (2)垂轴线端:光轴以上为正,光轴以下为负。 (3)光线与光轴夹角:由光轴转向光线锐角,顺时针为正,逆时针为负。 (4)光线与折射面法线的夹角:由光线经锐角转向法线,顺时针为正,逆时针
为负。 (5)光轴与法线的夹角:有光轴经锐角转向法线,顺时针为正逆时针为负。 (6)折射面间隔:d有前一面顶点到后一面顶点方向,顺光线方向为正,逆光线
••S1
•一般情况下,在交汇区总光
强是两束光单独存在时光强
•2
之和。
•I=I1+I2 •1
•
•S2
•若1=2、位相差不随时间变化, 且不是垂直相交此区内的光强分布将 呈现为相干分布。
PPT文档演模板
工程光学讲稿[1]
3、反射定律和折射定律
反射定律:
(1)入射光线、反射光线和分界面上入射点的法线三者在同一平面内
折射光通过,这就是光的全反射现象。
•A
•n>n
'
•I •n
•Im
•I •I’
•P •n'
•0
•0
•Q •0
•I'
•900
PPT文档演模板
工程光学讲稿[1]
光密介质:分界面两边折射率较高的图可知当光从两个光滑分界面(n>n’)的A点以一定的入射角时,由 折