数学分析第四章函数的连续性

合集下载

高等数学-函数的连续性课件.ppt

高等数学-函数的连续性课件.ppt
(1)在x=1处有定义;
(2)函数在x=1处的左右极限相等,即函数在x=1处的极限存在,且等于2,但不等于f (1)
导致函数图象断开的原因:
1、函数在 处没有定义
2、函数在 时极限不存在
函数值不等
3、函数在 处的极限值和
o
x
y
1
2
1
2
o
x
y
2.5
y
x
o
1
2


二、 函数的间断点
但是由于
x
y
O
1
右极限存在,
因为,如果修改定义 f (0) = 1,
在 x = 0 连续.
则函数
x
y
O
1
内容小结
左连续
右连续
第一类间断点
可去间断点:
跳跃间断点: 左右极限不相等
第二类间断点
无穷间断点:
振荡间断点: 函数值在 的去心邻域
(左右极限至少有一个不存在)
在点
间断的类型
在点
连续的等价形式
一、 函数连续性的定义
1.变量的增量
设变量 从它的一个初值 变到终值 终值与初
值的差 就叫做变量u的增量 记作

注:
不表示某个变量 与u的乘积,而是一个
整体不可分割的记号.
设函数y = f (x)在点 的某一个邻域内是有定义的
当自变量 在这邻域内从 变到 时函数y相应
思考题
间断点的类型.
解: 间断点
为无穷间断点;

为跳跃间断点.
1. P49 题 5
2. 确定函数
分析 所给函数是极限的形式,首先应求出不同区间的极限,给出函数的分段函数表达式,然后再研究间断点及其类型。

数学分析PPT课件第四版华东师大研制 第4章 函数的连续性

数学分析PPT课件第四版华东师大研制  第4章 函数的连续性
§1 连续函数的概念
一、函数在一点的连续性 二、间断点的分类 三、区间上的连续函数
前页 后页 返回
一、函数在一点的连续性
定义1 设函数 f ( x)在点 x0 的某邻域内有定义 , 且
lim
x x0
f (x)
f ( x0 ),
(1)
则称 f ( x)在点 x0 连续.
由定义1知,我们是通过函数的极限来定义连续
对任意的e 0, 存在 0,当 x x0 , 时 f ( x) f ( x0 ) e ,
则称 f ( x) 在点 x0 连续. 为了更好地刻划函数在点x0的连续性, 下面引出 连续性的另外一种表达形式. 设 x x x0,
y y y0 f ( x) f ( x0 ) f ( x0 x) f ( x0 ).
又如:函数
x,
f
(
x
)
a,
x0 (a 0)
x0
在 x 0 处不连续, 这是因为 lim f ( x) 0 f (0). x0 y
a
O
x
前页 后页 返回
函数 f ( x) sgn x 在点 x 0 处不连续, 这是因为
极限 limsgn x 不存在. x0
由极限的定义,定义1可以叙述为:对于任意正数e ,
x0
1
所以 x 0 是 f ( x) 的
一个可去间断点 .
O
x
前页 后页 返回
注 1. 对于任意函数 g( x) ,若它在 x x0 处连续 , 那么函数
g( x),
F(x)
一个可去间断点.
前页 后页 返回
2. 跳跃间断点:若
lim f ( x) A,
x x0
lim f ( x) B

《数学分析》第四章 函数的连续性

《数学分析》第四章 函数的连续性

第四章 函数的连续性(计划课时:1 2 时)§1 函数的连续性 ( 2时 )一. 函数在一点的连续性:1. 连续的直观图解:由图解引出解析定义.2. 函数在一点连续的定义: 设函数)(x f 在点0x 某邻域有定义. 定义 (用).()(lim 00x f x f x x =→)定义 (“δε-”定义.)定义 (用0lim 0=∆→∆y x ) 先定义x ∆和.y ∆例1 函数12)(+=x x f 在点20=x 连续.例2 函数⎪⎩⎪⎨⎧=≠=.0,0,0,1sin )(x x xx x f 在点00=x 连续. 例3 函数)()(x xD x f =在点00=x 连续.注: 若函数)(x f 在点0x 连续,则)()(lim 00x f x f x x =→,又因00l i mx x x x =→,从而)lim ()(lim 0x f x f x x x x →→=,即在)(x f 的连续点处极限符号与函数符号可交换运算的次序.3. 单侧连续: 定义单侧连续, 并图解.Th1 (单、双侧连续的关系)例4 ⎪⎩⎪⎨⎧<-=>+=.0 ,2,0,,0 ,2)(x x x A x x x f 讨论函数)(x f 在点00=x 的连续或单侧连续性. 二.间断点及其分类: 图解介绍间断点的分类.跳跃间断点和可去间断点统称为第一类间断点, 其他情况(即)0(0+x f 或)0(0-x f 中至少有一个不存在)称为第二类间断点. 例5 讨论函数x x f sgn )(=的间断点类型.例6 延拓函数,sin )(xxx f = 使在点00=x 连续. 例7 讨论函数][)(x x f =的间断点类型.例8讨论函数xx f 1sin )(=的间断点类型.例9讨论Dirichlet 函数)(x D 和Riemann 函数)(x R 的连续性. 三.区间上的连续函数:开区间上连续, 闭区间上连续, 按段连续.Ex [1]P 73 1—5.§2 连续函数的性质一、连续函数的局部性质:叙述为Th 1—4.1. 局部有界性:2. 局部保号性:3. 四则运算性质:4. 复合函数连续性:Th 4 若函数f 在点0x 连续,函数g 在点0u 连续,且)(00x f u =,则复合函数f g 在点0x 连续. ( 证 )注: Th 4 可简写为 ()().)()lim ()(lim )(lim 0000x f g x f g x f g x f g x x x x x x =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=→→→例1 求极限 ).1sin(lim 21x x -→例2 求极限:⑴ ;s i n 2l i m 0x x x -→ ⑵ .s i n 2l i m xxx -∞→例3 求极限 .)1ln(lim0xx x +→ (x ln 的连续性见后).二、闭区间上连续函数的基本性质:1. 最值性: 先定义最值. Th 5 ( 最值性 ) 系 ( 有界性 )2. 介值性: 定义介值. Th 6 ( 介值性 )连续函数的值域, 连续的单调函数的值域. 系 ( 零点定理 )例4 证明: 若,0>r n 为正整数,则存在唯一正数0x ,使得r x n=0(0x 称为r 的n 次正根(即算术根),记作n r x =0).例5 设f 在],[b a 上连续,满足],[]),([b a b a f ⊂,证明:],,[0b a x ∈∃使得00)(x x f =.二. 反函数的连续性:Th 7 若函数f 在],[b a 上严格递增( 或减 )且连续, 则其反函数1-f 在相应的定义域[])(),(b f a f (或[])(),(a f b f )上连续. ( 证 )关于函数αx x x y , , arcsin =等的连续性Ex [1]P 80—81 1—10四. 函数的整体连续性 —— 一致连续: 1. 连续定义中δ对0x 的依赖性 :例6 考查函数xx f 1)(=在区间] 1 , 0 (上的连续性.对], 1 , 0 (0∈∀x 作限制,120≤<x x 就有 . 2211 20000000x x x x x x x xx x x x x -=-≤-=- 对0>∀ε , 取 }. 2, 2 min{020xx εδ=这里δ与0x 有关, 有时特记为),(0x εδ. 本例中不存在可在区间] 1 , 0 (上通用的δ, 即不存在最小的( 正数 )δ.例6 考查函数xx f 1)(=在区间) , [∞+c )0(>c 上的连续性.本例中可取得最小的, 也就是可通用的 }. 2, 2 min{2cc εδ= 该δ却与0x 无关, 可 记为)(εδ.2. 一致连续性:定义 ( 一致连续 ) 顺便介绍一致连续与连续的关系.用定义验证一致连续的方法: 对0>∀ε, 确证)0(>δ存在. 为此, 从不失真地放大 式 )()( x f x f ''-'入手, 使在放大后的式子中, 除因子 x x ''-'之外, 其余部分中不含 有x '和x '', 然后使所得式子ε<, 从中解出.x x ''-'例8 验证函数 )0( )(≠+=a b ax x f 在) , (∞+∞-内一致连续.例9 验证函xx f 1sin )(=在区间 )10( ) 1 , (<<c c 内一致连续. 证 ,c o s 2s i n 2 1s i n 1s i n 22121212121212121c x x x x x x x x x x x x x x x x -≤-≤+-=-例10 若函数)(x f 在有限区间),(b a 内一致连续, 则)(x f 在),(b a 内有界.3. 一致连续的否定: 否定定义. 例11 证明函数xx f 1)(=在区间) 1 , 0( 内非一致连续. 证法一 ( 用一致连续的否定定义验证 ) 取),1( ,10<∀=δε 取}, 21, min{δ='x与,2x x '='' 便有 .22δδ<≤'=''-'x x x 但 .12121 11 0ε=>≥'=''-'=''-'x x x x x证法二 ( 用例10的结果 ).4. Lipschitz 连续与一致连续: 定义Lipschitz 连续.例12 函数)(x f 在区间I 上-L 连续, )( x f ⇒在I 上一致连续. ( 证 )但函数)(x f 在区间I 上一致连续时, 未必有)(x f 在I 上-L 连续. 例如: 函数x x f =)(在区间) 1 , 0 (内一致连续.(为证明x 在区间) 1 , 0 (内一致连续, 先证明不等式: ,0, 21≥∀x x 有不等式 . 2212121x x x x x x -≤-+ 事实上, 21x x ≥时, ,222122212121x x x x x x x x x x -=-+≤-+ 同理, 21x x ≤时, 有.221211212121x x x x x x x x x x -=-+≤-+利用该不等式, 为使 =-221)()( x f x f ,222121ε<-+x x x x 只要 . 221ε<-x x)却不是-L 连续. 事实上, 倘存在L >0, 使对 ), 1 , 0 (, 21∈∀x x 有 , )()( 212121x x L x x x f x f -≤-=-则当21x x ≠时,应成立 .121L x x ≤+但若取,4 ,12221nx n x ==就有 ). ( ,3121∞→∞→=+n nx x 矛盾. 5. 一致连续的判定:Th 8 ( Cantor ) 若函数)(x f 在闭区间],[b a 上连续, )( x f ⇒在],[b a 上一致连续. 例13 见[1]P80例10.Ex [1]P 102 8,9,10.§3 初等函数的连续性回顾基本初等函数中, 已证明了连续性的几个函数. 指数函数和对数函数的连续性. ( 证 )一. 初等函数的连续性:Th1 一切基本初等函数都在其定义域上连续. Th2 任何初等函数在其有定义的区间上是连续的.註: 初等函数的连续区间和间断点: 初等函数的间断点是其连续区间的开端点. 闭端点是其单侧连续点. 例1 求函数2ln 1)(-+=x x x f 的连续区间和间断点.解 ). , 3 () 3 , 2 () 2 , 1 () 1 , 1[∞+⋃⋃⋃-=f D∴ )(x f 的连续区间为: ) 1 , 1[-、) 2 , 1 (、) 3 , 2 (和) , 3 (∞+. 间断点为: 2 , 1=x 和3. ()( x f 在点1-=x 右连续).二. 利用函数的连续性求极限:例2 .cos )1ln(lim20xx x +→例3.1111lim 0⎪⎪⎭⎫ ⎝⎛--++→x x x x x (作倒代换) .1x t = 例4 ().1lim sec 0xctgxx tgx +→ 解 I = ()().)1(lim )1(lim 1sec lim 0sec 0e e tgx tgx xctgxx xctgx x x ==+=+→→→例5 ().sin 1sinlim x x x -++∞→解 =-+x x sin 1sin .21cos 21sin 2xx x x ++-+,021lim sin 21sin lim ,121cos=-+=-+≤++∞→+∞→xx x x x x x x∴I = .0Ex [1]P 84 1,2;。

函数连续性与间断点例题和知识点总结

函数连续性与间断点例题和知识点总结

函数连续性与间断点例题和知识点总结在数学分析中,函数的连续性与间断点是一个非常重要的概念。

理解它们对于解决各种数学问题,特别是涉及到函数的性质和极限的问题,具有关键作用。

下面我们将通过一些例题来深入探讨函数的连续性与间断点,并对相关知识点进行总结。

一、函数连续性的定义设函数$f(x)$在点$x_0$ 的某一邻域内有定义,如果当自变量的增量$\Delta x$ 趋近于零时,函数对应的增量$\Delta y = f(x_0 +\Delta x) f(x_0)$也趋近于零,那么就称函数$f(x)$在点$x_0$ 处连续。

用数学语言表示为:$\lim_{\Delta x \to 0} \Delta y =\lim_{\Delta x \to 0}f(x_0 +\Delta x) f(x_0) = 0$或者$\lim_{x \to x_0} f(x) = f(x_0)$二、函数连续性的条件1、函数$f(x)$在点$x_0$ 处有定义。

2、$\lim_{x \to x_0} f(x)$存在。

3、$\lim_{x \to x_0} f(x) = f(x_0)$三、间断点的定义如果函数$f(x)$在点$x_0$ 处不满足上述连续性的条件,那么就称点$x_0$ 为函数$f(x)$的间断点。

四、间断点的类型1、可去间断点函数在该点处的左极限、右极限都存在且相等,但不等于该点的函数值,或者函数在该点无定义。

例如,函数$f(x) =\frac{x^2 1}{x 1}$在$x = 1$ 处无定义,但$\lim_{x \to 1} \frac{x^2 1}{x 1} = 2$ ,所以$x = 1$ 是可去间断点。

2、跳跃间断点函数在该点处的左极限、右极限都存在,但不相等。

比如,函数$f(x) =\begin{cases} x + 1, & x < 0 \\ x 1, & x\geq 0 \end{cases}$在$x = 0$ 处,左极限为$1$ ,右极限为$-1$ ,所以$x = 0$ 是跳跃间断点。

函数的连续性与间断点的分类

函数的连续性与间断点的分类

函数的连续性与间断点的分类函数是数学中一个十分重要的概念,它描述了输入和输出之间的关系。

在数学分析中,我们常常关注函数的连续性和间断点,它们对于理解函数的性质和行为具有重要的作用。

本文将介绍函数的连续性和间断点的分类,以及它们在数学和实际问题中的应用。

正文:一、函数的连续性函数的连续性是指函数在其定义域内的每个点上都存在极限,并且该极限等于该点处的函数值。

简单来说,函数在其定义域内没有断裂或跳跃的情况,具有连续性。

1.1 间断点的定义函数的间断点是指函数在某个点上不满足连续性的点。

根据间断点的不同性质,可以将其分类为三种类型:可去间断点、跳跃间断点和无穷间断点。

1.2 可去间断点可去间断点是指函数在某一点上不连续,但通过修正或填补可以使其变成一个连续点。

具体来说,如果函数在某一点的左右极限存在且相等,但与该点的函数值不同,则该点为可去间断点。

1.3 跳跃间断点跳跃间断点是指函数在某一点的左右极限存在,但不相等。

换句话说,函数在该点处存在一个有限的跳跃。

跳跃间断点可以通过一个间断点的加法或减法变得连续。

1.4 无穷间断点无穷间断点是指函数在某一点的左右极限至少有一个不存在或为无穷大。

无穷间断点可以分为两类:无穷增长和无穷衰减。

无穷增长的间断点是指函数在某一点的右极限为无穷大,而左极限不存在或为有限。

无穷衰减的间断点则相反,函数在某一点的左极限为无穷小,而右极限不存在或为有限。

二、间断点的应用间断点的概念在数学和实际问题中都具有广泛的应用。

下面将介绍几个常见的应用场景。

2.1 极限的计算在求解函数的极限时,间断点的分析和处理是十分重要的。

根据间断点的类型,我们可以使用不同的方法来计算函数的极限值。

对于可去间断点,通过修正或填补可以消除其影响,从而得到准确的极限值。

而对于跳跃间断点和无穷间断点,我们可以使用极限的性质和定理来计算。

2.2 曲线的绘制在绘制函数的曲线图时,间断点的位置对于曲线的形状和走势有着很大的影响。

数学分析第四章函数的连续性总结

数学分析第四章函数的连续性总结

数学分析第四章函数的连续性总结第四章《函数的连续性》是数学分析课程中的重要章节,主要介绍了函数的连续性概念、连续函数的性质和连续函数运算的有关定理。

在学习这一章节时,我们掌握了连续性的定义和性质,以及学会了判断函数的连续性和运用连续函数的性质进行数学推导和问题求解。

下面是对这一章节的总结。

1.连续性的定义:连续性是函数分析的基本概念之一、对于实数集上的函数f(x),当x 趋于其中一点c时,如果f(x)也趋于其中一点f(c),则称函数f(x)在点c处连续。

常用的连续性定义有:-ε-δ定义:对于任意给定的ε>0,存在δ>0,使得当,x-c,<δ时,有,f(x)-f(c),<ε;-极限定义:f(x)在c点连续的充要条件是当x→c时,有f(x)→f(c)。

2.连续函数的性质:(1)连续函数在其定义域上具有以下性质:-连续函数的和、差、积仍然是连续函数;-连续函数的复合仍然是连续函数;-有界闭区间上的连续函数取得最大值和最小值。

(2)零点定理和介值定理:-零点定理:如果函数在区间[a,b]上连续,且f(a)和f(b)分别为正数和负数,那么在开区间(a,b)内至少存在一点c,使得f(c)=0;-介值定理:如果函数在区间[a,b]上连续,并且k介于f(a)和f(b)之间,那么在开区间(a,b)内至少存在一点c,使得f(c)=k。

(3)连续函数的保号性和单调性:-保号性:如果函数在区间[a,b]上连续,且f(a)和f(b)不等于0,则在开区间(a,b)内,函数f(x)的符号不变;-单调性:如果函数在区间[a,b]上连续,且在该区间上严格单调增加或减少,那么函数的值域也是一个区间。

3.连续函数运算的有关定理:(1)介值定理:若函数f(x)在区间[a,b]上连续,则它在该区间上取得介于f(a)和f(b)之间的任意值。

(2)零点定理:若函数f(x)在区间[a,b]上连续,且f(a)和f(b)异号,则它在该区间内至少有一个零点。

分析方法 第四章 函数的连续性

分析方法  第四章 函数的连续性

定理4.3局部保号性 若函数f ( x)在点x0连续, 且f ( x0 ) 0 0, 则存在x0的某
若函数f ( x), g ( x)在点连续, 则f ( x) g ( x), f ( x) g ( x), 定理4.4四则运算法则
即 lim f ( x) g ( x) f ( x0 ) g ( x0 ), lim f ( x) g ( x) f ( x0 ) g ( x0 ),
例如, 函数sin x在0,2 上的最大值为 1, 最小之为1.
y
1

1
而函数f ( x) x在0,1上没有最大值与最小值 .
0
y
2
x
y 1 x
1 x 0,1, 函数g ( x) x 在0,1上也没有最大与最小值 . 2 x 0与1. 若函数f ( x)在闭区间 定理4.6最大、与最小值定理
注 若f (u )在u0连续 , u g ( x), u0 lim g ( x), 则 lim f g ( x) f lim g ( x). x x0 x x0 x x0
例1 求 lim sin 1 x 2 .
x 1


解 sin 1 x 2 为连续函数sin u与u 1 x 2的复合函数 , 于是
x 0 x 0
x x0 例2 讨论f ( x) x 0 x 0 , 在点x 0的连续性. x x 0
于是f ( x)在x 0既左连续 , 又右连续 , 从而连续
x 2 x 0 例3 讨论函数f ( x) , 在点x 0的连续性. x 2 x 0
f (u) f (u0 )
再由g( x)在x0的连续性 , 及u0 g( x0 ),对以上 0, 0, x x0 时, 有

数学分析第四章函数的连续性

数学分析第四章函数的连续性

数学分析第四章函数的连续性函数的连续性是数学分析中一个重要的概念,它描述了函数在其中一点附近的行为。

在本章中,我们将讨论函数的连续性及其性质,并介绍一些与连续性相关的重要定理。

在数学分析中,函数的连续性可以用一种直观的方式来理解。

如果在一个区间内,函数的图像是连续的、没有断点的,那么我们就可以说这个函数在这个区间内是连续的。

如果函数在其中一点处发生突变或跳跃,那么我们就认为函数在该点处不连续。

首先,我们来定义函数在其中一点处的连续性。

设函数f(x)在点a 处有定义,则我们说f(x)在点a处连续,如果满足以下三个条件:1.f(a)存在,即函数在点a处有定义;2. lim(x→a) f(x)存在,即函数在点a处的极限存在;3. lim(x→a) f(x) = f(a),即函数在点a处的极限等于函数在点a 处的取值。

根据这个定义,我们可以得出一些常见函数的连续性。

例如,多项式函数、三角函数、指数函数和对数函数都是连续函数。

此外,利用连续函数的相加、相乘、相除和复合运算,我们可以得到更多的连续函数。

接下来,我们来讨论一些与连续性相关的重要定理。

首先是介值定理。

该定理指出,如果一个函数在一个闭区间内连续,并且函数在这个区间两个端点处的值有一正一负,那么在这个区间之内,函数必然存在一个零点。

该定理的应用非常广泛,例如在实际问题中解方程、求极值等情况下都可以通过介值定理来找到解。

其次是零点定理。

该定理指出,如果一个函数在一个闭区间内连续,并且函数在这个区间两个端点处的值异号,那么在这个区间之内,函数必然存在一个零点。

零点定理是介值定理的特殊情况,它对于函数的零点存在性给出了一个更加明确的条件。

另一个重要的定理是最值定理。

该定理指出,如果一个函数在一个闭区间内连续,那么在这个区间之内,函数必然存在最大值和最小值。

最值定理告诉我们,在一定范围内,连续函数的值是有上下界的。

最后,我们介绍一个重要的定理,即连续函数的保号性定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x xo
x xo
2020/8/1
x 0为间断点.
y sin 1 x
当 x 0时, sin 1 上下震荡. x
这种情况称x=0为震荡间断点.
2020/8/1
14
例5 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
lim f ( x) lim 1 1
x0
x0
而f (0) 0
x 0为函数间断点.
2020/8/1
x x0
x x0
x x0
函数 f ( x)在 x0 处连续
左、右极限存在且与函数值相等.
lim
x x0
f (x)
f ( x0 )
lim
x x0
f (x)
lim
x x0
f (x)
f ( x0 )
2020/8/1
8
例2
讨论函数
f
(x)
x
x
2, 2,
x 0, x 0,
在 x 0处的
连续性.
定义 2 设函数 f ( x)在U(x0 , ) 内有定义,如果
lim y 0,那末就称函数 f ( x)在点 x 连续, x 称为
x 0
0
0
f ( x)的连续点.

lim [
x 0
f
(
x0
x)
f ( x0 )] 0
2020/8/1
5
例1
试证x
,
x 0, 在x 0
[2] lim f (x)存在;
2020/8/1
xx0
[3] lim xx0
f
(x)
f
(x0).
3
函数的连续的等价定义
2.函数的增量
设函数 f ( x)在U( x0 , )内有定义, x U( x0 , ),
x x x0, 称为自变量在点 x0 的增量.
y f ( x) f ( x0 ),称为函数 f ( x)相应于x的增量.
0, x 0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
由定义1知
函数 f ( x)在 x 0处连续.
2020/8/1
6
3.单侧连续
x U ( x0, )
lim
x x0
f (x)
f ( x0 )
若函数f ( x)在(a, x0 ]内有定义,且f ( x0 0) f ( x0 ),
第四章 函数的连续性
2020/8/1
1
§1 函数连续的概念
y
引例
A
0
y
g(x0)
y=ƒ(x)
°
x0
lim f ( x) ?A
x x0
x
y g(x) lim g( x) ?g(x0) x x0
0
x0
x
2020/8/1
2
一、函数的连续性
1.连续的定义
U 0( x0 , )
定 义 1 设 函 数 f (x) 在 U(x0, ) 内 有 定 义 , 若
(2) lim f ( x)不;
x x0
(3)
lim
x x0
f ( x)
f ( x0 ).
则称函数 f ( x)在点 x0 处不连续(或间断),
并称点x0 为 f ( x) 的不连续点(或间断点).
2020/8/1
13
例4 讨论函数 f ( x) sin 1 在 x 0处的连续性. x
解 在x 0处没有定义,
证 任取 x (,),
y sin( x x) sin x 2 sin x cos( x x )
2
2
cos( x x ) 1, 则 y 2 sin x x.
2
2
对任意的 , 有y ,
当x 0时, y 0.
即函数 y sin x对任意 x (,)都是连续的.
2020/8/1
y
y
y f (x)
y
x
0
x0
xx
当x 0时, y 0.
2020/8/1
y=ƒ(x)
°
y
x
0 x0
x
x
当x 0时, y 不一定趋于0.
4
定 义 1 设 函 数 f (x) 在 U(x0, ) 内 有 定 义 , 若
lim
x x0
f (x)
f ( x0 ),那末就称函数 f ( x)在点 x 0连续.
y
1
o
x
-1
15
例6
讨论函数
f
(x)
x, 1 x,
x 0,在x 0处的连续性. x 0,
解 f (0 0) 0, f (0 0) 1,
y
f (0 0) f (0 0),
x 0为函数的间断点.
lim f ( x) lim f ( x)
x xo
x xo
o
x
跳越间断点 lim f ( x) lim f ( x) 跳越度.
解 lim f ( x) lim( x 2) 2 f (0),
x0
x0
故函数 f ( x)在点x 0处不连续.
lim f ( x) lim( x 2) 2 f (0),
x0
x0
右连续但不左连续 ,
2020/8/1
9
4. 函数的区间连续
在区间(a,b)上每一点都连续的函数,叫做区间 (a,b)上的连续函数,或者说函数在区间(a,b)上连 续. 连续函数的图形是一条连续而不间断的曲线.
a lim
x x0
f (x)
f
(
x 0
),那末就称函数
f
(
x)在点
x0连续.
0, 0, 使当 x x0 时, 恒有 f ( x) f ( x0 ) .
( 0, 0, 0 x x0 时, 恒有 f (x) a ).
和极限存在的区别
[1] f (x)在x0有定义;

称若f函( x数)在f (点x)x在0处[ x左0 , b连)内续有; 定义,x且limxf0(xf0
(x)
0)
f
(
f
x0 )
( x0
),
则称f ( x)在点x0处右连续.
定理 函数 f ( x)在 x0 处连续 是函数 f ( x)在 x0
处既左连续又右连续.
2020/8/1
7
lim f ( x) A lim f ( x) lim f ( x) A
11
二、函数的间断点
y
y
o
x0
x
y
o
2020/8/1
x0
x
o x0
x
y
o
x
12
二、函数的间断点
定义3 间断
若函数 f ( x)满足三个条件之一: (1) f ( x)在点x0处无定义;
连续
[1] f (x)在x0有定义;
[2] lim f (x)存在; xx0
[3] lim xx0
f
(x)
f
(x0).
例如, 函数y sin x在区间 (,)内是连续的.
如果函数在开区间(a,b)内连续, 并且在左端点
x a处右连续, 在右端点x b处左连续, 则称
函数 f ( x)在闭区间 [a,b]上连续. 记为:
2020/8/1
f ( x) C[a,b]. 10
例3 证明函数 y sin x在区间(,)内连续.
相关文档
最新文档