《数学分析》第四章函数的连续性

合集下载

《函数的连续》课件

《函数的连续》课件
在闭区间上的连续函数一定取得最大值和最小值。
闭区间上连续函数的零点定理
如果闭区间上的连续函数在区间两端取值异号,则函数在该区间内至少有一个零点。
03
函数连续性的应用
利用连续性求极限
总结词
利用连续性求极限是函数连续性应用的重要方面之一。
详细描述
在数学分析中,许多函数的极限可以通过利用函数的连续性来求解。例如,利用函数在某点的连续性 ,可以推导出该点的极限值。此外,连续函数的极限定理也是利用连续性求极限的重要工具。
二次函数
二次函数在定义域内也是连续的 。例如,函数$f(x) = x^2$在全 体实数域$mathbf{R}$上是连续 的。
分段函数的连续性
• 分段函数:分段函数在各段定义域的交界处可能不连 续,但在整个定义域内是连续的。例如,函数$f(x) = \begin{cases} x^2, & x \geq 0 \ x, & x < 0 \end{cases}$在全体实数域$\mathbf{R}$上是连续的 ,但在$x=0$处不连续。
函数连续性的性质
Байду номын сангаас
如果内层函数和外层函数都在 某点连续,则复合函数在该点
也连续。
02
反函数的连续性
01
复合函数的连续性
反函数存在的前提下,如果原函 数在某点连续,则反函数在该点
也连续。
02
函数连续性的判定
函数在某点连续的判定
函数在某点连续的定义
如果函数在某一点的极限值等于该点的函数值,则函数在该点连续。
无穷函数的连续性
• 无穷函数:无穷函数在无穷处的值可能不定义,因此不连续。 例如,函数$f(x) = \frac{1}{x}$在$x=0$处不连续。

《数学分析》第四章 函数的连续性

《数学分析》第四章 函数的连续性

第四章 函数的连续性(计划课时:1 2 时)§1 函数的连续性( 2时 )一. 函数在一点的连续性:1. 连续的直观图解:由图解引出解析定义.2. 函数在一点连续的定义: 设函数)(x f 在点0x 某邻域有定义. 定义 (用).()(lim 00x f x f x x =→)定义 (“δε-”定义.)定义 (用0lim 0=∆→∆y x ) 先定义x ∆和.y ∆例1 函数12)(+=x x f 在点20=x 连续.例2 函数⎪⎩⎪⎨⎧=≠=.0,0,0,1sin )(x x xx x f 在点00=x 连续. 例3 函数)()(x xD x f =在点00=x 连续.注: 若函数)(x f 在点0x 连续,则)()(lim 00x f x f x x =→,又因00l i mx x x x =→,从而)lim ()(lim 0x f x f x x x x →→=,即在)(x f 的连续点处极限符号与函数符号可交换运算的次序.3. 单侧连续: 定义单侧连续, 并图解.Th1 (单、双侧连续的关系)例4⎪⎩⎪⎨⎧<-=>+=.0 ,2,0,,0 ,2)(x x x A x x x f 讨论函数)(x f 在点00=x 的连续或单侧连续性. 二.间断点及其分类:图解介绍间断点的分类.跳跃间断点和可去间断点统称为第一类间断点, 其他情况(即)0(0+x f 或)0(0-x f 中至少有一个不存在)称为第二类间断点. 例5 讨论函数x x f sgn )(=的间断点类型.例6 延拓函数,sin )(xxx f = 使在点00=x 连续. 例7 讨论函数][)(x x f =的间断点类型.例8讨论函数xx f 1sin )(=的间断点类型.例9讨论Dirichlet 函数)(x D 和Riemann 函数)(x R 的连续性. 三.区间上的连续函数:开区间上连续, 闭区间上连续, 按段连续.Ex [1]P 73 1—5.§2 连续函数的性质一、连续函数的局部性质:叙述为Th 1—4.1. 局部有界性:2. 局部保号性:3. 四则运算性质:4. 复合函数连续性:Th 4 若函数f 在点0x 连续,函数g 在点0u 连续,且)(00x f u =,则复合函数f g 在点0x 连续. ( 证 )注:Th 4 可简写为 ()().)()lim ()(lim )(lim 0000x f g x f g x f g x f g x x x x x x =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=→→→例1求极限 ).1sin(lim 21x x -→例2求极限:⑴;sin 2lim 0x x x -→⑵.sin 2lim xxx -∞→例3 求极限 .)1ln(lim0xx x +→(x ln 的连续性见后).二、闭区间上连续函数的基本性质:1. 最值性:先定义最值. Th 5 ( 最值性 ) 系 ( 有界性 )2. 介值性: 定义介值. Th 6 ( 介值性 )连续函数的值域, 连续的单调函数的值域. 系 ( 零点定理 )例4 证明: 若,0>r n 为正整数,则存在唯一正数0x ,使得r x n=0(0x 称为r 的n 次正根(即算术根),记作n r x =0).例5 设f 在],[b a 上连续,满足],[]),([b a b a f ⊂,证明:],,[0b a x ∈∃使得00)(x x f =.二. 反函数的连续性:Th 7 若函数f 在],[b a 上严格递增( 或减 )且连续, 则其反函数1-f 在相应的定义域[])(),(b f a f (或[])(),(a f b f )上连续. ( 证 )关于函数αx x x y , , arcsin =等的连续性Ex [1]P 80—81 1—10四. 函数的整体连续性 —— 一致连续: 1. 连续定义中δ对0x 的依赖性 :例6考查函数xx f 1)(=在区间] 1 , 0 (上的连续性.对], 1 , 0 (0∈∀x 作限制,12≤<x x 就有 . 22 11 20000000x x x x x x x xx x x x x -=-≤-=- 对0>∀ε , 取 }. 2, 2 min{020xx εδ=这里δ与0x 有关, 有时特记为),(0x εδ. 本例中不存在可在区间] 1 , 0 (上通用的δ, 即不存在最小的( 正数 )δ.例6考查函数xx f 1)(=在区间) , [∞+c )0(>c 上的连续性.本例中可取得最小的, 也就是可通用的 }. 2, 2 min{2cc εδ= 该δ却与0x 无关, 可 记为)(εδ.2. 一致连续性:定义 ( 一致连续 ) 顺便介绍一致连续与连续的关系.用定义验证一致连续的方法: 对0>∀ε, 确证)0(>δ存在. 为此, 从不失真地放大 式 )()( x f x f ''-'入手, 使在放大后的式子中, 除因子 x x ''-'之外, 其余部分中不含 有x '和x '', 然后使所得式子ε<, 从中解出.x x ''-'例8 验证函数 )0( )(≠+=a b ax x f 在) , (∞+∞-内一致连续.例9 验证函xx f 1sin )(=在区间 )10( ) 1 , (<<c c 内一致连续. 证 ,c o s 2s i n 2 1s i n 1s i n 22121212121212121c x x x x x x x x x x x x x x x x -≤-≤+-=-例10 若函数)(x f 在有限区间),(b a 内一致连续, 则)(x f 在),(b a 内有界.3. 一致连续的否定: 否定定义.例11 证明函数xx f 1)(=在区间) 1 , 0( 内非一致连续. 证法一 ( 用一致连续的否定定义验证 ) 取),1( ,10<∀=δε 取}, 21, min{δ='x 与,2x x '='' 便有 .22δδ<≤'=''-'x x x 但 .12121 11 0ε=>≥'=''-'=''-'x x x x x 证法二 ( 用例10的结果 ).4. Lipschitz 连续与一致连续: 定义Lipschitz 连续.例12 函数)(x f 在区间I 上-L 连续, )( x f ⇒在I 上一致连续. ( 证 )但函数)(x f 在区间I 上一致连续时, 未必有)(x f 在I 上-L 连续. 例如: 函数x x f =)(在区间) 1 , 0 (内一致连续.(为证明x 在区间) 1 , 0 (内一致连续, 先证明不等式: ,0, 21≥∀x x 有不等式 . 2212121x x x x x x -≤-+ 事实上,21x x ≥时, ,222122212121x x x x x x x x x x -=-+≤-+同理, 21x x ≤时, 有.221211212121x x x x x x x x x x -=-+≤-+利用该不等式, 为使=-221 )()( x f x f ,222121ε<-+x x x x 只要 .221ε<-x x )却不是-L 连续. 事实上, 倘存在L >0, 使对 ), 1 , 0 (, 21∈∀x x 有, )()( 212121x x L x x x f x f -≤-=-则当21x x ≠时,应成立.121L x x ≤+但若取,4 ,12221nx n x ==就有 ). ( ,3121∞→∞→=+n nx x 矛盾. 5. 一致连续的判定:Th 8 ( Cantor ) 若函数)(x f 在闭区间],[b a 上连续, )( x f ⇒在],[b a 上一致连续. 例13 见[1]P80例10.Ex [1]P 102 8,9,10.§3 初等函数的连续性回顾基本初等函数中, 已证明了连续性的几个函数. 指数函数和对数函数的连续性. ( 证 )一. 初等函数的连续性:Th1 一切基本初等函数都在其定义域上连续. Th2 任何初等函数在其有定义的区间上是连续的.註: 初等函数的连续区间和间断点: 初等函数的间断点是其连续区间的开端点. 闭端点是其单侧连续点. 例1求函数2ln 1)(-+=x x x f 的连续区间和间断点.解). , 3 () 3 , 2 () 2 , 1 () 1 , 1[∞+⋃⋃⋃-=f D∴)(x f 的连续区间为: ) 1 , 1[-、) 2 , 1 (、) 3 , 2 (和) , 3 (∞+. 间断点为: 2 , 1=x 和3. ()( x f 在点1-=x 右连续 ).二. 利用函数的连续性求极限: 例2.cos )1ln(lim20xx x +→例3.1111lim 0⎪⎪⎭⎫ ⎝⎛--++→x x x x x (作倒代换) .1x t = 例4().1lim sec 0xctgxx tgx +→ 解I = ()().)1(lim )1(lim 1sec lim 0sec 0e e tgx tgx xctgxx xctgx x x ==+=+→→→例5().sin 1sinlim x x x -++∞→解=-+x x sin 1sin .21cos 21sin2xx x x ++-+,021lim sin 21sin lim ,121cos=-+=-+≤++∞→+∞→xx x x x x x x∴I = .0Ex [1]P 84 1,2;。

高等数学-函数的连续性课件.ppt

高等数学-函数的连续性课件.ppt
(1)在x=1处有定义;
(2)函数在x=1处的左右极限相等,即函数在x=1处的极限存在,且等于2,但不等于f (1)
导致函数图象断开的原因:
1、函数在 处没有定义
2、函数在 时极限不存在
函数值不等
3、函数在 处的极限值和
o
x
y
1
2
1
2
o
x
y
2.5
y
x
o
1
2


二、 函数的间断点
但是由于
x
y
O
1
右极限存在,
因为,如果修改定义 f (0) = 1,
在 x = 0 连续.
则函数
x
y
O
1
内容小结
左连续
右连续
第一类间断点
可去间断点:
跳跃间断点: 左右极限不相等
第二类间断点
无穷间断点:
振荡间断点: 函数值在 的去心邻域
(左右极限至少有一个不存在)
在点
间断的类型
在点
连续的等价形式
一、 函数连续性的定义
1.变量的增量
设变量 从它的一个初值 变到终值 终值与初
值的差 就叫做变量u的增量 记作

注:
不表示某个变量 与u的乘积,而是一个
整体不可分割的记号.
设函数y = f (x)在点 的某一个邻域内是有定义的
当自变量 在这邻域内从 变到 时函数y相应
思考题
间断点的类型.
解: 间断点
为无穷间断点;

为跳跃间断点.
1. P49 题 5
2. 确定函数
分析 所给函数是极限的形式,首先应求出不同区间的极限,给出函数的分段函数表达式,然后再研究间断点及其类型。

数学分析4.2连续函数的性质(讲义)

数学分析4.2连续函数的性质(讲义)

第四章函数的连续性2 连续函数的性质一、连续函数的局部性质定理4.2(局部有界性):若函数f在x0连续,则f在某U(x0)内有界.定理4.3(局部保号性):若函数f在x0连续,且f(x0)>0(或<0),则任何正数r<f(x0)(或r<-f(x0)),存在某U(x0),使得对一切x∈U(x0),有f(x)>r(或f(x)<-r).注:在应用保号性时,常取r=f(x0).定理4.4(四则运算):若函数f和g在x0连续,则f±g,f·g,f/g(g(x0)≠0)也在点x0连续.定理4.5:若函数f在x0连续,g在u0连续,u0=f(x0),则复合函数g(f(x))在点x0连续.证1:∵g在u0连续,∴对∀ε>0,有δ1>0,使当|u-u0|<δ1时有|g(u)-g(u0)|<ε;又u0=f(x0),及u=f(x)在点x0连续,∴对δ1,有δ>0,使当|x-x0|<δ时有|u-u0|=|f(x)-f(x0)|<δ1;∴对∀ε>0,有δ>0,当|x-x0|<δ时有|g(f(x))-g(f(x0))| <ε;∴复合函数g(f(x))在点x0连续.证2:∵u=f(x)在点x0连续,∴=x0;又u0=f(x0),∴u→u0 (x→x0);又g在u0连续,∴===g(f(x0));∴复合函数g(f(x))在点x0连续.复合函数极限公式:==g(f(x0)).例1:求sin(1-).解:sin(1-)=sin ((1-))=sin 0=0.注:若内函数f当x→x0时极限为a,而a≠f(x0)或f在x0无定义(即x0为f的可去间断点),又外函数g在u=a连续,则仍可应用上述复合函数的极限公式。

.例2:求极限:(1);(2).解:(1)==1.(2)==.二、闭区间上连续函数的基本性质定义1:设f为定义在数集D上的函数。

数学分析PPT课件第四版华东师大研制 第4章 函数的连续性

数学分析PPT课件第四版华东师大研制  第4章 函数的连续性
§1 连续函数的概念
一、函数在一点的连续性 二、间断点的分类 三、区间上的连续函数
前页 后页 返回
一、函数在一点的连续性
定义1 设函数 f ( x)在点 x0 的某邻域内有定义 , 且
lim
x x0
f (x)
f ( x0 ),
(1)
则称 f ( x)在点 x0 连续.
由定义1知,我们是通过函数的极限来定义连续
对任意的e 0, 存在 0,当 x x0 , 时 f ( x) f ( x0 ) e ,
则称 f ( x) 在点 x0 连续. 为了更好地刻划函数在点x0的连续性, 下面引出 连续性的另外一种表达形式. 设 x x x0,
y y y0 f ( x) f ( x0 ) f ( x0 x) f ( x0 ).
又如:函数
x,
f
(
x
)
a,
x0 (a 0)
x0
在 x 0 处不连续, 这是因为 lim f ( x) 0 f (0). x0 y
a
O
x
前页 后页 返回
函数 f ( x) sgn x 在点 x 0 处不连续, 这是因为
极限 limsgn x 不存在. x0
由极限的定义,定义1可以叙述为:对于任意正数e ,
x0
1
所以 x 0 是 f ( x) 的
一个可去间断点 .
O
x
前页 后页 返回
注 1. 对于任意函数 g( x) ,若它在 x x0 处连续 , 那么函数
g( x),
F(x)
一个可去间断点.
前页 后页 返回
2. 跳跃间断点:若
lim f ( x) A,
x x0
lim f ( x) B

数学分析原理第四章连续性第一节函数的连续性外文翻译

数学分析原理第四章连续性第一节函数的连续性外文翻译

外文翻译:数学分析原理第四章连续性第一节函数的连续性原文来源:“Principles of Mathematical Analysis.”from Walter Rudin译文正文:在定义2.1和2.2中引进了函数概念和一些与它有关的术语.虽然我们(在后面各章里)主要感兴趣的是实函数和复函数(即值是实数或复数的函数),但是我们也要讨论向量值函数(即在R k 中取值的函数)和在任意度量空间中取值的函数.我们在这个更一般的基础上将要讨论的定理,并不会因为我们限制在(例如)实函数而显得更容易些,放弃不必要的假定和用适当普遍的措辞来叙述和证明定理,反而会使得情景确实简洁了.我们的函数的定义域也是度量空间,遇有不同的要求,便加以适当的说明.函数的极限4.1定义 令X和Y是度量空间,假设X E ⊂,f将E映入Y内.且p是E的极限点.凡是我们写当p x →时q x f →)(,或q x f p x =→)(lim (1)的时候,就是存在一个点Y q ∈具有以下的性质:对于每个ε>0,存在着δ>0,使得ε<)),((q x f d Y (2)对于满足δ<<),(0p x d X (3) 的一切点E x ∈成立.记号Y X d d 和分别表示X和Y中的距离.如果X和(或)Y换成实直线,复平面或某一欧式空间k R ,那么距离Y X d d 和自然该换成绝对值或相应的范数(见第2.16段).应当注意X p ∈,但是上面的定义中,并不一定要求p是E的点.此外,即使E p ∈,也完全可能)(lim )(x f p f p x →≠. 我们还可以将这个定义用序列的极限改述为:4.2 定理 令X,Y,E,f和p是定义4.1说的那些,那么q x f p x =→)(lim (4)当且仅当 q p f n n =∞→)(lim (5) 对于E中合于p p n ≠,p p n n =∞→lim (6) 的每个序列{}n p 成立.证 假定(4)成立,取E中满足(6)的{}n p .给定了ε>0,那么就有δ>0,使得当E x ∈且δ<<),(0p x d X 时,ε<)),((q x f d Y .同样又有N使得当n>N时,δ<<),(0p x d X .这样,对于n>N,我们有ε<)),((q p f d n Y .这就证明了(5)成立.反过来,假定(4)不成立.这时便有某一个ε>0,使得对于每个δ>0,都有点E x ∈(依赖于δ),对于这x 来说,ε≥)),((q x f d Y 但δ<<),(0p x d X .取),3,2,1(,/1 ==n n n δ我们就在E中找到一个满足(6),但使(5)式不成立的序列. 推论 如果f在p有极限,那么这极限是惟一的.这可以由定理3.2(b)及定理4.2推出来.4.3 定义 设有定义在E上的两个复函数f 和g ,我们用g f +表示一个函数,它给E的每个点x 配置的数是)()(x g x f +.我们用类似的方法定义两个函数的差g f -,积fg 及商g f /,约定商只定义在E的那些使.0)(上的点x x g ≠如果f 给E的每个点x 配置同一个数c,那么f 就叫做一个常数函数,或简单地叫做一个常数,并记作c f =.设f 和g 都是实函数,如果对于每个E x ∈来说)()(x g x f ≥,那么有时为了简便,就记作g f ≥. 类似地,如果f 和g 把E映入kR 内,便用 )()())((),()())((x g x f x g f x g x f x g f ⋅=⋅+=+来定义g f +及fg ;再若是λ是实数,便定义)())((x f x f λλ=.4.4 定理 如果X E ⊂,X是度量空间,p是E的极限点,f 与g 是E上的复函数,而且lim (),x p f x A →= lim ()x pg x B →=那么(a)lim()(),x px g x A B →+=+ (b)lim()(),x pfg x AB →= (c)lim(/)()/,0.x pf g x A B B →=≠假定 证 依照定义4.3,这些论断可以从序列的类似性质(定理3.3)直接退出来. 评注 如果f 与g 将E映入k R 内,那么(a)仍然成立,而(b)就要变为(b ') (参看定理3.4)连续函数4.5 定义 设X与Y是度量空间,,,E X p E ⊂∈并且f 将E映入Y内,如果对于每一个0,ε>总存在0,δ>对于一切满足(,)X d x p δ<的点x E ∈来说,((),()),Y d f x f p ε<就说f 在p 连续.如果f 在E的每一点都连续,就说f 在E上连续.应该注意,要使f 在点p 连续,f 必须在点p 有定义.(这一点请与定义4.1后面的说明对比一下).如果p 是E的一个孤立点,那么由我们的定义推知,每一个以E为定义域的函数都在点p 连续.因为,不管取的哪个0,ε>总可以选一个0,δ>使得满足(,)X d x p δ<的点x E ∈只有x p =;于是((),())0.Y d f x f p ε=<4.6定理 在定义4.5里所假定的情况下,再假定p 是E的极限点.那么,f 在p 点连续当且仅当lim ()()x pf x f p →= 证 只要将定义4.1和4.5对比一下就清楚了.现在我们转到函数的复合.下面定理的一种简述是:连续函数的连续函数是连续的. 4.7 定理 设X,Y,Z是度量空间,E X ⊂,f 将E映入Y内,g 将f 的值域()f E 映入Z内,而h 是由()(())h xg f x =()x E ∈.定义的E到Z的映射.如果f p E ∈在点连续,并且g 在点()f p 连续,那么h 在点p 连续.这个函数h 叫做f 和g 的复合函数或者f 和g 合成.记号h gf = 在本书中经常用.证 设0ε>已经给定.因为g 在()f p 连续,便有0η>使得当(,())Y d y f p η<和()y f E ∈有((),(()))Z d g y g f p ε<.又因为f 在点p 连续,那么存在着0δ>,使得当(,)X d x p δ<和x E ∈有((),())Y d f x f p η<.由此知道:当(,)X d x p δ<和x E ∈有((),())((()),(()))Z Z d h x h p d g f x g f p ε=<.所以h 在点p 连续.4.8定理 将度量空间X映入度量空间Y内的映射f 在X上连续,当且仅当对于Y的每一个开集V来说,1()f V -是X中的开集.(逆像的定义已见于定义2.2)这是连续性的一个极有用的一个特征.证 设f 在X上连续而V是Y中开集.我们必须证明,1()f V -的每个点都是1()f V -的内点.设p X ∈,且()f p V ∈.由于V是开集,必定存在着0ε>,使得当((),)Y d f p y ε<有y V ∈,而由于f 在点p 连续,就又存在0δ>,使当(,)X d x p δ<有((),())Y d f x f p ε<.所以,只要(,)X d x p δ<就保证了1()x f V -∈.反之,设对于Y中的每个开集V来说,1()f V -是X中的开集.固定了p X ∈与0ε>,令V满足(,())Y d y f p ε<的一切y Y ∈所成的集,那么V是开集,因而1()f V -是开集,因而存在着0δ>使得当(,)X d p x δ<有1()x f V -∈.然而一旦1()x f V -∈,便将要()f x V ∈,所以((),())Y d f x f p ε<.这就完成了定理的证明.推论 将度量空间X映入度量空间Y内的映射f 是连续的,当且仅当对于Y中的每个闭集C,1()f C - 是闭集.这由本定理即可推知.因为一个集是闭集,当且仅当它的余集是开集.然而对每个E Y ⊂,11()()c c f E f E --⎡⎤=⎣⎦.现在我们转到复值和向量值函数,以及定义在k R 的子集上的函数.4.9 定理 设f 与g 是度量空间X上的复连续函数,那么g f +,fg 与g f /在X上连续.在最后的情形中,当然必须假定对于一切.0)(,≠∈x g X x证 在X的孤立点无需证明.在极限点,论断是定理4.4与定理4.6的直接结果. 4.10 定理(a)设k f f ,,1 是度量空间X上的实函数,并且f是由f))(,),(()(1x f x f x k = )(X x ∈ (7)定义而将X映入k R 内的映射.那么,f连续当且仅当k f f f ,,21 都连续.(b)如果f与g是将X映入k R 内的连续映射,那么f+g与f·g都在X上连续. 函数k f f ,,1 叫做f的分量.注意,f+g是把X映入k R 内的映射,而f·g则是X上的实函数.证 部分(a)能由不等式)()()()(y x y f x f j j ff-≤-=2112)()(⎭⎬⎫⎩⎨⎧-∑=k i i j y f x f 推出来的,其中k j ,,2,1 =.部分(b)是(a)与定理4.9的直接结果.4.11 例 如果k x x ,,1 是点k R x ∈的坐标.由i i x x =Φ)( )(k R x ∈ (8)定义的函数i Φ必然在k R 上连续,这因为不等式y x y x i i -≤Φ-Φ)()( 表示,我们可以在定义4.5中取εδ=.这些函数i Φ有时称为坐标函数.重复应用定理4.9可以证明每个单项式k nk n n x x x 2121 (9) 在k R 上连续,其中k n n ,,1 是非负的整数.因为常数显然是连续的,所以(9)式用常数乘后还连续.由此推知,每个由k k n k n n n x x c x P 111)(∑= )(k R x ∈ (10)给出的多项式P在k R 上连续.这里系数k n n c 1是复数,k n n ,,1 是非负的整数,并且(10)中的和只有有限多项.更进一步,k x x ,,1 的每个有理函数,即形式如(10)的两个多项式的商,只要它的分母不为零,便在k R 上连续.从三角形不等式容易看出y x y x -≤- k R y x ∈, (11)x→是k R上的连续函数.所以,映射xR内的连续映射,并且Φ在X上由现在,如果f是一个由度量空间X映入kpfΦ定义,那么,用定理4.7可以推知,Φ是X上的连续实函数.=(p)()4.12 评注我们定义了一个度量空间X的某个子集E上定义的函数的连续概念.然而,E 在X中的余集在这个定义中不起任何作用(注意,这情况同函数的极限有些不同).因此,去掉f的定义域的余集我们毫不介意.这就是说,我们可以只谈度量空间映入另一度量空间内的连续映射,而不谈子集的映射.这样可以简化某些定理的叙述和证明.我们已经在定理4.8到4.10中应用了这个原理,并且在下边关于紧性的一节中还要这样做.。

《数学分析》第四章 函数的连续性教案

《数学分析》第四章 函数的连续性教案

定理 4.3(局部保号性)若函数 f (x) 在 x0 点连续,且 f (x0 ) 0 ,
则对任意 0 存在 x0 某邻域 U (x0 ) , x U (x0 ) 时, f (x) 0
. 5.
定理 4.4(四则运算性质)若函数则 f (x) , g(x) 在区间 I 上有定义,
则称 f (x) 在点 x0 连续。
它包含着三个方面的内容:
1) f (x) 在点 x0 处有定义,即 f (x0 ) 存在。 2)极限存在即 lim f (x) A
x x0
3)极限值为函数值即 A f (x0 )
例如,函数
f
(x)
x
sin
1 x
0
x0 x0
为引入另一表述,记 x x x0 为 自变量 x (在点 x0 )的增量或改变
. 1.
§1 连续性的概念
内容: 1 、 函数在点 x0 处连续性 2 、间断点 x0 及其的分类 3 、区间上的连续函数
重点:
函数在点 x0 的连续性;间断点的分类。
难点: 连续性的证明 要求: 1、理解连续的定义,间断点的分类,会用定义证明函数的连续性。
2、能够区分出间断点所属的类别。
3、会判断函数在区间上的连续性。
四、教学难点:连续函数的保号性;一致连续性
五、授课内容:
1、连续函数的局部性质
根据函数的在
x0
点连续性,即
lim
x x0
f (x)
f (x0 ) 可推断出函数
f (x) 在 x0
点的某邻域U (x0 ) 内的性态。
定理 4.2(局部连续性)若函数 f (x) 在 x0 点连续,则 f (x) 在 x0 点的某 邻域内有界。

数学分析第四章函数的连续性

数学分析第四章函数的连续性

数学分析第四章函数的连续性第四章函数的连续性§1 连续性概念连续函数是数学分析中着重讨论的一类函数.从几何形象上粗略地说, 连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我们不能满足于这种直观的认识, 而应给出函数连续性的精确定义, 并由此出发研究连续函数的性质.本节中先定义函数在一点的连续性和在区间上的连续性.一函数在一点的连续性定义1 设函数f 在某U( x0 ) 内有定义.若lim x → x f ( x ) = f ( x0 ) , ( 1)则称f 在点x0 连续.例如, 函数 f ( x ) = 2 x + 1 在点x = 2 连续, 因为又如,函数limx →2f ( x) = limx →2( 2 x + 1 ) = 5 = f (2 ) .f ( x) =x sin1x, x ≠ 0 ,0 , x = 0在点x = 0 连续, 因为lim x →0 f ( x) = limx →0x sin1x= 0 = f ( 0) .为引入函数y = f ( x ) 在点x0 连续的另一种表述, 记Δx = x - x0 , 称为自变量x( 在点x0 ) 的增量或改变量.设y0 = f ( x0 ) , 相应的函数y ( 在点x0 ) 的增量记为Δy = f ( x ) - f ( x0 ) = f ( x0 + Δx) - f ( x0 ) = y - y0 .注自变量的增量Δx 或函数的增量Δy 可以是正数, 也可以是0 或负数.引进了增量的概念之后, 易见“函数y = f ( x ) 在点x0 连续”等价于lim Δy = 0 .Δx →070第四章函数的连续性由于函数在一点的连续性是通过极限来定义的 , 因而也可直接用ε- δ方式来叙述 , 即 : 若对任给的ε> 0 , 存在δ> 0 , 使得当 | x - x 0 | < δ时有| f ( x) - f ( x 0 ) | < ε,( 2)则称函数 f 在点 x 0 连续 .由上述定义 , 我们可得出函数 f 在点 x 0 有极限与 f 在 x 0 连续这两个概念之间的联系 .首先 , f 在点 x 0 有极限是 f 在 x 0 连续的必要条件 ; 进一步说“, f 在点 x 0 连续”不仅要求 f 在点 x 0 有极限 , 而且其极限值应等于 f 在 x 0 的函数值 f ( x 0 ) .其次 , 在讨论极限时 , 我们假定 f 在点 x 0 的某空心邻域U °( x 0 ) 内有定义 ( f 在点 x 0 可以没有定义 ) , 而“ f 在点 x 0 连续”则要求 f 在某 U( x 0 ) 内 ( 包括点 x 0 ) 有定义 , 此时由于 (2 ) 式当 x = x 0 时总是成立的 , 所以在极限定义中的“0 < | x - x 0 | < δ”换成了在连续定义中的“ | x - x 0 | < δ”.最后 , (1 ) 式又可表示为lim x → xf ( x) = f lim x ,x → x可见“ f 在点 x 0 连续”意味着极限运算lim x → x与对应法则 f 的可交换性 .例 1 证明函数 f ( x ) = x D( x ) 在点 x = 0 连续 , 其中 D ( x ) 为狄利克雷函数 .证由 f (0 ) = 0 及| D( x ) | ≤ 1 , 对任给的ε> 0 , 为使| f ( x ) - f ( 0) | = | xD( x ) | ≤ | x | < ε, 只要取δ= ε, 即可按ε- δ定义推得 f 在 x = 0 连续. □相应于 f 在点 x 0 的左、右极限的概念 , 我们给出左、右连续的定义如下 : 定义 2 设函数 f 在某 U + ( x 0 ) ( U - ( x 0 ) ) 内有定义 .若lim x → x +f ( x) = f ( x 0 ) lim -x → xf ( x) = f ( x 0 ) , 则称 f 在点 x 0 右 ( 左 ) 连续 .根据上述定义 1 与定义 2 , 不难推出如下定理 .定理 4.1 函数 f 在点 x 0 连续的充要条件是 : f 在点 x 0 既是右连续 , 又是左连续 .例 2 讨论函数在点 x = 0 的连续性 .解因为f ( x ) =x + 2 , x ≥ 0 , x - 2 , x < 0lim x → 0 +lim x → 0 -f ( x ) = lim x → 0 + f ( x) = lim x → 0 -( x + 2 ) = 2 ,( x - 2) = - 2 , 而 f (0 ) = 2 , 所以 f 在点 x = 0 右连续 , 但不左连续 , 从而它在 x = 0 不连续 ( 见●§1 连续性概念 71图 4 - 1 ) .□二间断点及其分类定义 3 设函数 f 在某U °( x 0 ) 内有定义 .若 f 在点 x 0 无定义 , 或 f 在点 x 0 有定义而不连续 , 则称点 x 0 为函数 f 的间断点或不连续点 .按此定义以及上一段中关于极限与连续性之间联系的讨论 , 若 x 0 为函数 f 的间断点 , 则必出现下列情形之一:图 4 - 1( i ) f 在点 x 0 无定义或极限l im x → xf ( x ) 不存在 ; 0 ( ii ) f 在点 x 0 有定义且极限lim x → xf ( x ) 存在① , 但lim x → xf ( x) ≠ f ( x 0 ) .据此 , 我们对函数的间断点作如下分类 : 1. 可去间断点若lim x → xf ( x ) = A ,而 f 在点 x 0 无定义 , 或有定义但f ( x 0 ) ≠ A , 则称 x 0 为 f 的可去间断点 .例如 , 对于函数 f ( x ) = | sgn x | , 因 f ( 0) = 0 , 而lim x → 0f ( x) = 1 ≠ f (0 ) ,故 x = 0 为 f ( x ) = | sgn x | 的可去间断点 . 又如函数 g ( x ) =sin x, 由于 xlim x → 0g ( x ) = 1 , 而 g 在 x = 0 无定义 , 所以 x = 0 是函数 g 的可去间断点 .设 x 0 为函数 f 的可去间断点 , 且lim x → xf ( x ) = A .我们按如下方法定义一个 0函数 f ^: 当x ≠ x 0 时 , f ^( x ) = f ( x) ; 当 x = x 0 时 , f ^( x 0 ) = A .易见 , 对于函数f ^, x 0 是它的连续点 .例如 , 对上述的 g( x) = sin x , 我们定义x则 g^在 x = 0 连续 .g ^( x ) = sin x x, x ≠ 0 , 1 , x = 0 ,2. 跳跃间断点若函数 f 在点 x 0 的左、右极限都存在 , 但lim x → x +f ( x) ≠ lim x → x -f ( x) , 则称点 x 0 为函数 f 的跳跃间断点 .例如 , 对函数 f ( x ) = [ x ] ( 图 1 - 8) , 当 x = n ( n 为整数 ) 时有①这里所说的极限存在是指存在有限极限 , 即不包括非正常极限 .72第四章函数的连续性lim x → n -[ x] = n - 1 , lim x → n +[ x] = n , 所以在整数点上函数 f 的左、右极限不相等 , 从而整数点都是函数 f ( x ) = [ x ] 的跳跃间断点 .又如符号函数 s gn x 在点 x = 0 处的左、右极限分别为 - 1 和 1 , 故 x = 0 是 sgn x 的跳跃间断点 ( 图 1 - 3) .可去间断点和跳跃间断点统称为第一类间断点 .第一类间断点的特点是函数在该点处的左、右极限都存在 .3. 函数的所有其他形式的间断点 , 即使得函数至少有一侧极限不存在的那些点 , 称为第二类间断点 .例如 , 函数 y = 1 当x → 0 时不存在有限的极限 , 故 x = 0 是 y =1的第二类x x 间断点 .函数 s in 1 在点 x = 0 处左、右极限都不存在 , 故 x = 0 是 s in 1的第二类x x间断点 .又如 , 对于狄利克雷函数 D( x ) , 其定义域 R 上每一点 x 都是第二类间断点 .三区间上的连续函数若函数 f 在区间 I 上的每一点都连续 , 则称 f 为 I 上的连续函数 .对于闭区间或半开半闭区间的端点, 函数在这些点上连续是指左连续或右连续 .例如 , 函数 y = c, y = x , y = sin x 和 y = cos x 都是 R 上的连续函数 .又如函数 y =1 - x 2在 ( - 1 , 1 ) 每一点处都连续 , 在 x = 1 为左连续 , 在 x = - 1 为右连续 , 因而它在 [ - 1 , 1] 上连续 .若函数 f 在区间 [ a , b] 上仅有有限个第一类间断点 , 则称 f 在[ a, b] 上分段连续 .例如 , 函数 y = [ x ] 和 y = x - [ x] 在区间 [ - 3 , 3 ] 上是分段连续的 .在§3 中我们将证明任何初等函数在其定义区间上为连续函数 .同时 , 也存在着在其定义区间上每一点处都不连续的函数 , 如前面已提到的狄利克雷函数 .例 3 证明 : 黎曼函数R ( x) =1 , 当 x = p q qp 、q 为正整数 , p 6q / 为既约真分数 , 0 , 当 x = 0 , 1 及 (0 , 1 ) 内无理数在 (0 , 1 ) 内任何无理点处都连续 , 任何有理点处都不连续 .证设ξ∈ ( 0 , 1) 为无理数 .任给ε> 0 不妨设ε< 12, 满足1 ≥ε的正整q数 q 显然只有有限个 ( 但至少有一个 , 如 q = 2) , 从而使R( x ) ≥ε的有理数x ∈(0 , 1 ) 只有有限个至少有一个 , 如 12, 设为 x 1 , , x n .取δ = min | x 1 - ξ| , , | x n - ξ| ,ξ, 1 - ξ ,3 §1 连续性概念73则对任何x ∈ U(ξ;δ) ( ì ( 0 , 1) ) , 当 x 为有理数时有R( x ) < ε, 当 x 为无理数时 R ( x ) = 0 .于是 , 对任何x ∈ U(ξ;δ) , 总有R ( x) - R(ξ) = R ( x ) < ε .这就证明了 R ( x ) 在无理点ξ处连续 .现设 p 为 (0 , 1 ) 内任一有理数 .取ε0 =1 , 对任何正数δ( 无论多么小 ) , 在 q2 q Up q;δ 内总可取到无理数x ( ∈ ( 0 , 1) ) , 使得 R( x ) - R pq = 1 q > ε0 . 所以 R ( x ) 在任何有理点处都不连续 .□习题1. 按定义证明下列函数在其定义域内连续 :( 1) f ( x ) = 1; ( 2) f ( x ) = | x | .x2. 指出下列函数的间断点并说明其类型 :( 1) f ( x ) = x + 1 ; ( 2) f ( x) = sin x;x | x |( 3) f ( x ) = [ | cos x | ] ; (4) f ( x) = sgn | x | ;( 5) f ( x ) = sgn ( cos x ) ;x , x 为有理数 ,( 6) f ( x ) =( 7) f ( x ) = - x , x 为无理数 ; 1x + 7, - ∞ < x < - 7 , x , - 7≤ x ≤1( x - 1 )sin 1, 1 < x < + ∞ .x - 13. 延拓下列函数 , 使其在 R 上连续 :( 1) f ( x ) = x - 8 ; ( 2) f ( x) = 1 - cos x;x - 2 x 2( 3) f ( x ) = x cos 1.x2 24. 证明: 若 f 在点 x 0 连续 , 则 | f | 与 f 也在点 x 0 连续 .又问 : 若 | f | 或 f 那么 f 在 I 上是否必连续 ?在 I 上连续 , 5. 设当x ≠0 时f ( x) ≡ g( x ) , 而f ( 0) ≠ g (0 ) .证明 : f 与 g 两者中至多有一个在 x = 0 连续 .6. 设 f 为区间 I 上的单调函数 .证明: 若x 0 ∈ I 为 f 的间断点 , 则x 0 必是 f 的第一类间断点 .n n - 174第四章函数的连续性7. 设函数 f 只有可去间断点 , 定义g( x ) = lim y → xf ( y) .证明 g 为连续函数 .8. 设 f 为 R 上的单调函数 , 定义g( x) = f ( x + 0 ) .证明 g 在 R 上每一点都右连续 .9. 举出定义在 [0 , 1 ]上分别符合下述要求的函数 :( 1) 只在 1 , 1 和 1三点不连续的函数 ;2 3 4 ( 2) 只在 1 , 1 和 1三点连续的函数 ;2 3 4 ( 3) 只在 1( n = 1 , 2 , 3 , )上间断的函数 ;n( 4) 只在 x = 0 右连续 , 而在其他点都不连续的函数 .§2 连续函数的性质一连续函数的局部性质若函数 f 在点 x 0 连续 , 则 f 在点 x 0 有极限 , 且极限值等于函数值 f ( x 0 ) . 从而 , 根据函数极限的性质能推断出函数 f 在 U ( x 0 ) 的性态 .定理 4.2 ( 局部有界性 ) 若函数 f 在点 x 0 连续 , 则 f 在某 U( x 0 ) 内有界 . 定理 4 .3 ( 局部保号性 ) 若函数 f 在点 x 0 连续 , 且 f ( x 0 ) > 0 ( 或 < 0 ) , 则对任何正数 r < f ( x 0 ) ( 或 r < - f ( x 0 ) ) , 存在某U ( x 0 ) , 使得对一切x ∈ U( x 0 ) 有f ( x) > r ( 或 f ( x ) < - r) .注在具体应用局部保号性时 , 常取 r = 12f ( x 0 ) , 则 ( 当 f ( x 0 ) > 0 时 ) 存在某 U( x 0 ) , 使在其内有 f ( x) > 12f ( x 0 ) .定理 4 .4 ( 四则运算 ) 若函数 f 和 g 在点 x 0 连续 , 则f ± g , f ·g,6f g( x 0 ) ≠ 0) 也都在点 x 0 连续 .以上三个定理的证明 , 都可从函数极限的有关定理直接推得 .g /( 这里对常量函数 y = c 和函数 y = x 反复应用定理 4.4 , 能推出多项式函数P( x) = a 0 x + a 1 x + + a n - 1 x + a n和有理函数 R ( x ) = P( x)Q( x)( P , Q 为多项式 ) 在其定义域的每一点都是连续的 .同样 , 由 sin x 和 cos x 在 R 上的连续性 , 可推出 tan x 与 cot x 在其定义域的每0 §2 连续函数的性质75一点都连续 .关于复合函数的连续性 , 有如下定理 : 定理 4.5 若函数 f 在点 x 0 连续 , g 在点 u 0 连续 , u 0 = f ( x 0 ) , 则复合函数 g f 在点 x 0 连续 .证由于 g 在 u 0 连续 , 对任给的ε> 0, 存在δ1 > 0 , 使得当| u - u 0 | < δ1 时有| g( u) - g( u 0 ) | < ε . ( 1) 又由 u 0 = f ( x 0 ) 及 u = f ( x ) 在点x 0 连续 , 故对上述δ1 > 0 , 存在δ> 0 , 使得当 | x - x 0 | < δ时有 | u - u 0 | = | f ( x ) - f ( x 0 ) | < δ1 .联系 ( 1 ) 得 : 对任给的ε> 0 , 存在δ> 0 , 当 | x - x 0 | < δ时有| g ( f ( x ) ) - g( f ( x 0 ) ) | < ε . 这就证明了 g f 在点 x 0 连续 .□ 注根据连续性的定义 , 上述定理的结论可表为lim x → xg( f ( x) ) = g lim x → xf ( x ) = g( f ( x 0 ) ) .( 2)例 1 求lim sin (1 - x 2) .解 sin ( 1 - x 2 ) 可看作函数 g( u) = sin u 与 f ( x ) = 1 - x 2的复合 .由 ( 2) 式得lim sin ( 1 - x 2 ) = sin lim(1 - x 2) = sin 0 = 0 .□x → 1x → 1注若复合函数 g f 的内函数 f 当x → x 0 时极限为 a , 而a ≠ f ( x 0 ) 或 f 在 x 0 无定义 ( 即 x 0 为 f 的可去间断点 ) , 又外函数 g 在u = a 连续 , 则我们仍可用上述定理来求复合函数的极限 , 即有lim x → xg( f ( x ) ) = g lim x → xf ( x) .( 3)读者还可证明 : ( 3 ) 式不仅对于x → x 0 这种类型的极限成立 , 而且对于x → + ∞ , x → - ∞或x → x ±等类型的极限也是成立的 .例 2 求极限 :(1 ) lim2 - sin x; (2 ) lim2 - sin x .x → 0解 (1 ) limx → 0 x 2 - sin x x x → ∞= 2 - lim x → 0 xsin x = 2 - 1 = 1; x(2 ) lim 2 -= 2 - lim sin x = 2 - 0 = 2 . □x → ∞ x x → ∞ x二闭区间上连续函数的基本性质设 f 为闭区间 [ a , b] 上的连续函数 , 本段中我们讨论 f 在 [ a , b] 上的整体性质 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档