最新人教版选修4-4高中数学2-2圆的参数方程及应用公开课教学设计

合集下载

2019-2020年高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

2019-2020年高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

2019-2020年高中数学 第二讲《参数方程》全部教案 新人教A 版选修4-4教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析圆的几何性质,选择适当的参数写出它的参数方程。

3.会进行参数方程和普通方程的互化。

教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

参数方程和普通方程的互化。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

参数方程和普通方程的等价互化。

教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化范围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

例1.(教科书第22页例1)已知曲线C 的参数方程是 (t 为参数)(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。

A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线)0,1()21,1()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==轨迹是所表示的一族圆的圆心为参数、由方程)(045243222t t ty tx y x =-+--+二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(2)在建立曲线的参数方程时,要注明参数及参数的取值范围。

2017-2018学年高中数学人教B版选修4-4教学案:第二章

2017-2018学年高中数学人教B版选修4-4教学案:第二章

2.2.2 圆的参数方程[对应学生用书P28][读教材·填要点]如图,质点以匀角速度ω做圆周运动,圆心在原点,半径为R ,记t 为时间,运动开始时t =0,质点位于点A 处,在时刻t ,质点位于点M (x ,y )处,θ=ωt ,θ为Ox 轴正向到向径OM 所成的角,则圆的参数方程为⎩⎨⎧x =R cos ωt ,y =R sin ωt (t ≥0),也可写成⎩⎨⎧x =R cos θ,y =R sin θ(0≤θ≤2π).若圆心在点M 0(x 0,y 0)处,半径为R ,则圆的参数方程为⎩⎨⎧x =x 0+R cos θ,y =y 0+R sin θ(0≤θ≤2π).[小问题·大思维]1.方程⎩⎨⎧x =R cos θ,y =R sin θ(0≤θ≤2π)是以坐标原点为圆心,以R 为半径的圆的参数方程,能否直接由圆的普通方程转化得出?提示:以坐标原点为圆心,以R 为半径的圆的标准方程为x 2+y 2=R 2,即⎝ ⎛⎭⎪⎫x R 2+⎝ ⎛⎭⎪⎫y R 2=1. 令⎩⎪⎨⎪⎧x R =cos θ,y R =sin θ,则⎩⎨⎧x =R cos θ,y =R sin θ.2.参数方程⎩⎨⎧x =2cos θ,y =1+2sin θ(0≤θ≤π)表示什么曲线?提示:表示圆心为(0,1),半径为2的圆的上半部分即半圆(包括端点).[对应学生用书P29][例1] 点M 在圆(x -r )2+y 2=r 2(r >0)上,O 为原点,x 轴的正半轴绕原点旋转到OM 形成的角为φ.以φ为参数,求圆的参数方程.[思路点拨] 本题考查圆的参数方程的求法.解答此题需要借助图形分析圆上点M (x ,y )的坐标与φ之间的关系,然后写出参数方程.[精解详析] 如图,设圆心为O ′,连接O ′M .①当M 在x 轴上方时, ∠MO ′x =2φ. ∴⎩⎨⎧x =r +r cos 2φ,y =r sin 2φ. ②当M 在x 轴下方时, ∠MO ′x =2φ, ∴⎩⎨⎧x =r +r cos (-2φ),y =-r sin (-2φ). 即⎩⎨⎧x =r +r cos 2φ,y =r sin 2φ. ③当M 在x 轴上时, 对应φ=0或φ=±π2. 综上得圆的参数方程为⎩⎨⎧x =r +r cos 2φ,y =r sin 2φ,-π2≤φ≤π2.(1)由于选取的参数不同,圆有不同的参数方程.一般地,同一条曲线,可以选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式不同的参数方程,它们表示的曲线却可以是相同的.另外在建立曲线的参数方程时,要注明参数及参数的取值范围.(2)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题如果把参数方程写成⎩⎨⎧x =r +r cos φ,y =r sin φ,φ的意义就改变了.1.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________. 解析:把y =tx 代入x 2+y 2-4y =0, 得x =4t 1+t 2,y =4t 21+t 2,∴参数方程为⎩⎪⎨⎪⎧x =4t1+t 2,y =4t 21+t 2.答案:⎩⎪⎨⎪⎧x =4t 1+t 2,y =4t 21+t 2[例2] (福建高考)已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t (t 为参数),圆C的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.[思路点拨] (1)化参数方程为普通方程. (2)利用圆心到直线的距离d ≤4可求.[精解详析] (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解决此类问题的关键是化圆的参数方程为普通方程后再求解.2. 设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹的参数方程.解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1), 则⎩⎨⎧x 1=cos θ(cos θ+sin θ),y 1=sin θ(cos θ+sin θ),0≤θ≤2π, 即为所求的参数方程.[例3] 已知点P (x ,y )是圆⎩⎨⎧x =cos θ,y =1+sin θ0≤θ≤2π上的动点.(1)求3x +y 的取值范围;(2)若x +y +a ≥0恒成立,求实数a 的取值范围.[思路点拨] 本题考查圆的参数方程的求法及不等式的恒成立问题.解决本题需要正确求出圆x 2+y 2=2y 的参数方程,然后利用参数方程求解.[精解详析] (1)∵P 在圆⎩⎨⎧x =cos θ,y =1+sin θ上,∴3x +y =3cos θ+sin θ+1=2sin(θ+π3)+1. ∴-2+1≤3x +y ≤2+1,即3x +y 的取值范围为 [-1,3].(2)x +y +a =cos θ+sin θ+1+a ≥0,∴a ≥-(cos θ+sin θ)-1.又-(cos θ+sin θ)-1=-2sin(θ+π4)-1≤2-1, ∴a ≥2-1,即a 的取值范围为[2-1,+∞).(1)解决此类问题的关键是根据圆的参数方程写出点的坐标,并正确确定参数的取值范围.(2)利用圆的参数方程求参数或代数式的取值范围的实质是利用正、余弦函数的有界性.3.将参数方程⎩⎨⎧x =1+cos θ,y =sin θ(0≤θ≤2π)转化为直角坐标方程是________________,该曲线上的点与定点A (-1,-1)的距离的最小值为________.解析:易得直角坐标方程是(x -1)2+y 2=1,所求距离的最小值应为圆心到点A 的距离减去半径,易求得为5-1.答案:(x -1)2+y 2=1 5-1[对应学生用书P30]一、选择题1.圆的参数方程为⎩⎨⎧x =2+2cos θ,y =2sin θ0≤θ≤2π.则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)解析:选D 圆的普通方程为(x -2)2+y 2=4. 故圆心坐标为(2,0).2.若直线2x -y -3+c =0与曲线⎩⎨⎧x =5cos θ,y =5sin θ(0≤θ≤2π)相切,则实数c 等于( )A .2或-8B .6或-4C .-2或8D .4或-6解析:选C 将曲线⎩⎨⎧x =5cos θ,y =5sin θ(0≤θ≤2π)化为普通方程为x 2+y 2=5,由直线2x -y -3+c =0与圆x 2+y 2=5相切,可知|-3+c |5=5,解得c =-2或8.3.P (x ,y )是曲线⎩⎨⎧x =2+cos α,y =sin α0≤α≤2π上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入得 (2+cos α-5)2+(sin α+4)2 =25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ)(tan φ=34,φ为锐角). ∴最大值为36.4.已知曲线C :⎩⎨⎧ x =2cos θ,y =2sin θ(0≤θ≤2π)和直线l :⎩⎨⎧x =t ,y =t +b (t 为参数,b为实数),若曲线C 上恰有3个点到直线l 的距离等于1,则b =( )A. 2 B .- 2 C .0D .±2解析:选D 将曲线C 和直线l 的参数方程分别化为普通方程为x 2+y 2=4和y =x +b ,依题意,若要使圆上有3个点到直线l 的距离为1,只要满足圆心到直线的距离为1即可,得到|b |2=1,解得b =±2. 二、填空题5.把圆x 2+y 2+2x -4y +1=0化为参数方程为________.解析:圆x 2+y 2+2x -4y +1=0的标准方程是(x +1)2+(y -2)2=4,圆心为(-1,2),半径为2,故参数方程为⎩⎨⎧x =-1+2cos θ,y =2+2sin θ(0≤θ≤2π).答案:⎩⎨⎧x =-1+2cos θ,y =2+2sin θ(0≤θ≤2π)6.已知圆C :⎩⎨⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,则实数a 的取值范围为________.解析:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4.∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+ 2.答案:[1-2,1+2]7.直线⎩⎨⎧ x =t cos θ,y =t sin θ(t 为参数)与圆⎩⎨⎧x =4+2cos α,y =2sin α(0≤α≤2π)相切,则θ=________.解析:直线为y =x tan θ,圆为(x -4)2+y 2=4,作出图形,相切时,易知倾斜角为π6或5π6.答案:π6或5π68.已知动圆x 2+y 2-2ax cos θ-2by sin θ=0(a ,b 是正常数,且a ≠b ,θ为参数),则圆心的轨迹的参数方程为________.解析:设P (x ,y )为动圆的圆心, 由x 2+y 2-2ax cos θ-2by sin θ=0, 得(x -a cos θ)2+(y -b sin θ)2=a 2cos 2θ+ b 2sin 2θ.∴⎩⎨⎧x =a cos θ,y =b sin θ.答案:⎩⎨⎧x =a cos θ,y =b sin θ三、解答题9.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1. 设x -1=cos θ,y =sin θ,则参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(0≤θ≤2π).10.已知实数x ,y 满足x 2+(y -1)2=1,求t =x +y 的最大值. 解:方程x 2+(y -1)2=1表示以(0,1)为圆心,以1为半径的圆. ∴其参数方程为⎩⎨⎧x =cos θ,y =1+sin θ.∴t =x +y =cos θ+sin θ+1 =2sin(θ+π4)+1.∴当sin(θ+π4)=1时,t max =2+1.11.已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A 、B 两点, 求|AB |及|AM |·|BM |.解:l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′是参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.∵Δ>0,可设t 1′、t 2′是方程的两根,由根与系数关系得t1′+t2′=32,t1′t2′=1.由参数t′的几何意义得|MA|=|t1′|,|MB|=|t2′|,∴|MA|·|MB|=|t1′·t2′|=1,|AB|=|t1′-t2′|=(t1′+t2′)2-4t1′t2′=14.。

人教版高中选修(B版)4-42.2直线和圆的参数方程教学设计

人教版高中选修(B版)4-42.2直线和圆的参数方程教学设计

人教版高中选修(B版)4-42.2直线和圆的参数方程教学设计教学背景本教学设计针对人教版高中选修(B版)第4章第2节“直线和圆的参数方程”进行设计。

该章节属于高中数学选修的数学分析部分,是学生进一步掌握参数方程的重要内容。

通过学习本章节,学生能够初步掌握直线和圆的参数方程的基本概念和常用方法,能够运用参数方程解决相关问题,为学生今后的高等数学学习打下扎实的基础。

教学目标1.了解直线和圆的参数方程的概念2.掌握直线和圆的参数方程的基本性质3.掌握直线和圆的参数方程的常用方法4.能够在几何图形中应用参数方程来解决问题教学内容1.直线和圆的参数方程的概念2.直线和圆的参数方程的性质3.直线和圆的参数方程的常用方法4.几何图形中应用参数方程来解决问题教学重难点1.直线和圆的参数方程的性质2.几何图形中应用参数方程来解决问题教学方法本教学设计采用讲述法、示范法和练习相结合的方法进行教学。

在讲述中,老师通过给出清晰的参数方程定义和图解,使学生了解直线和圆的参数方程的概念和基本性质。

在示范中,老师通过具体的例题演示直线和圆的参数方程的求解和应用。

在练习中,老师设计一定数量的练习题,让学生运用所学知识解决直线和圆的参数方程相关问题,并在课堂上讲解和解析每道练习题,巩固学生所学知识。

教学过程第一步:引入通过数学课件引入本节课的主要内容-直线和圆的参数方程。

第二步:概念讲解1.讲解直线和圆的参数方程的定义和概念。

2.讲解直线和圆的参数方程的性质。

3.讲解直线和圆的参数方程的常用方法。

第三步:例题演示1.演示直线参数方程的求解和应用。

2.演示圆参数方程的求解和应用。

第四步:练习在课堂上让学生自己解答一些直线和圆的参数方程的应用题,并由老师讲解和解析。

第五步:总结对本节课所学的知识进行回顾和总结,并让学生制作课件进行展示。

教学手段1.PPT课件2.数学练习册3.教学录屏工具教学评估教师根据学生完成的练习,进行口头评价和书面评价,并对学生在课堂上的表现给予肯定和指导。

高二数学选修4-4教案06圆的参数方程

高二数学选修4-4教案06圆的参数方程

高二数学选修4-4教案06圆的参数方程教学目的:学习圆的参数方程,理解参数θ的几何意义;会用圆的参数方程解题。

教学重点:圆的参数方程的推导及应用。

教学难点:参数θ的几何意义及应用。

教学方法:师生互动,培养创新思维。

教学过程:一、问题情景:【1】已知1y x 22=+,怎样求22y xy 2x -+的最大与最小值?【2】函数ϑϑcos 2sin 2y --=的值域怎么求?你知道有哪几种方法?二、数学构建.从上面的问题可以看到:圆的方程1y x 22=+与方程组⎩⎨⎧==θθsin y cos x 之间有着一定的对应关系,那么我们怎样来认识和理解它们的这种关系呢?事实上:1.设点P 在圆O :222r y x =+上,从点P 0开始按逆时针方向运动到达点P ,且设∠P 0OP=θ.若设点P 的坐标是(x,y),由三角函数的定义不难发现,点P 的横坐标x 、纵坐标y 都是θ的函数,即⎩⎨⎧==θθsin r y ,cos r x ① 另一方面,对于θ的每一个允许值,由方程组①所确定的点P (x,y )都在圆O 上.这表明,方程①也可用来表示圆。

那么,我们就把方程组①叫做圆心为原点、半径为r 的圆的参数方程。

其中θ是参数.注意:根据点与θ角的一一对应性质,我们一般设定)2,0[πθ∈。

2.对于圆心为O (a,b )、半径为r 的圆(x-a)2+(y-b)2=r 2,可以看成由圆心为原点O ,半径为r 的圆222r y x =+按向量ν=(a,b)平移得到的(如右图).不难求出,圆心在(a,b )、半径为r 的圆的参数方程为:⎩⎨⎧+=+=.sin r b y ,cos r a x θθ (θ为参数且)2,0[πθ∈)② 注意:若将方程组①、②中的参数θ消去,则可得到这一圆的标准方程,即:222r y x =+和(x-a)2+(y-b)2=r 2。

反之,由圆的标准方程也可直接采用三角换元的方法得到圆的参数方程。

2017-2018学年高中数学第二章参数方程一2圆的参数方程教学案新人教A版选修4-4

2017-2018学年高中数学第二章参数方程一2圆的参数方程教学案新人教A版选修4-4

2.圆的参数方程[对应学生用书P17]圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =xr ,sin ωt =y r,即圆心在原点O ,半径为r的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωty =r sin ωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时间.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θy =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θy =y 0+R sin θ(0≤θ<2π).[对应学生用书P17]求圆的参数方程[例1] 圆(x -r )2+y 2=r 2(r >0),点M 在圆上,O 为原点,以∠MOx =φ为参数,求圆的参数方程.[思路点拨] 根据圆的特点,结合参数方程概念求解. [解] 如图所示,设圆心为O ′,连O ′M ,∵O ′为圆心, ∴∠MO ′x =2φ.∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ,(θ为参数)这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.圆的参数方程的应用[例2] 若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值.[思路点拨] (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.[解] 令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2. =4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.已知圆C ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,求实数a 的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1.∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+ 2.法二:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin(θ+π4).∵-1≤sin(θ+π4)≤1,∴1-2≤a ≤1+ 2.[对应学生用书P19]一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)解析:将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).答案:D2.直线:x +y =1与曲线⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析:将⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ化为x 2+y 2=4,它表示以(0,0)为圆心,2为半径的圆,由于12=22<2=r ,故直线与圆相交,有两个公共点. 答案:C3.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θy =2sin θ,(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心解析:圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2,故选D.答案:D4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:设P (2+cos α,sin α),代入得: (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ).∴最大值为36. 答案:A 二、填空题5.x =1与圆x 2+y 2=4的交点坐标是________.解析:圆x 2+y 2=4的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,令2cos θ=1得cos θ=12,∴sin θ=±32.∴交点坐标为(1,3)和(1,-3). 答案:(1,3);(1,-3)6.参数方程⎩⎪⎨⎪⎧x =3cos φ+4sin φ,y =4cos φ-3sin φ表示的图形是________.解析:x 2+y 2=(3cos φ+4sin φ)2+(4cos φ-3sin φ)2=25.∴表示圆. 答案:圆7.设Q (x 1,y 1)是单位圆x 2+y 2=1上一个动点,则动点P (x 21-y 21,x 1y 1)的轨迹方程是________.解析:设x 1=cos θ,y 1=sin θ,P (x ,y ).则⎩⎪⎨⎪⎧x =x 21-y 21=cos 2θ,y =x 1y 1=12sin 2θ.即⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θ,为所求.答案:⎩⎪⎨⎪⎧x =cos 2θy =12sin 2θ三、解答题8.P 是以原点为圆心,r =2的圆上的任意一点,Q (6,0),M 是PQ 中点 ①画图并写出⊙O 的参数方程;②当点P 在圆上运动时,求点M 的轨迹的参数方程. 解:①如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ.②设M (x ,y ),P (2cos θ,2sin θ), 因Q (6,0),∴M 的参数方程为⎩⎪⎨⎪⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ.9.(新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32. 10.已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3x -1,x 2+y 2=1,解得C 1与C 2的交点为(1,0),⎝ ⎛⎭⎪⎫12,-32.(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为 ⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α,(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝ ⎛⎭⎪⎫14,0,半径为14的圆.。

2019-2020年高中数学 2.2 圆锥曲线的参数方程教案 新人教A版选修4-4

2019-2020年高中数学 2.2 圆锥曲线的参数方程教案 新人教A版选修4-4

2019-2020年高中数学 2.2 圆锥曲线的参数方程教案 新人教A 版选修4-41.椭圆的参数方程(1)抛物线y 2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt (t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.1.椭圆的参数方程中,参数φ是OM 的旋转角吗?【提示】 椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角.2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么?【提示】 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π.3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗?【提示】⎩⎪⎨⎪⎧x =2pt ,y =2pt 2.(p >0,t 为参数,t ∈R )椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θy =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎨⎧cos θ=x 5,sin θ=y 3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a 、b 分别是椭圆的长半轴长和短半轴长,焦点在长轴上.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θy =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θy =5sin θ,化为⎩⎨⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t y =3+sin t ,(t 为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值.【思路探究】 (1)参数方程与普通方程互化;(2)由中点坐标公式,用参数θ表示出点M 的坐标,根据点到直线的距离公式得到关于θ的函数,转化为求函数的最值.【自主解答】 (1)由⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t ,得⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1,C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4);且Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).又C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|=55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,(其中φ由sin φ=35,cos φ=45确定)cos(θ+φ)=1,d 取得最小值855.1.从第(2)问可以看出椭圆的参数方程在解题中的优越性.2.第(2)问设计十分新颖,题目的要求就是求动点M 的轨迹上的点到直线C 3距离的最小值,这个最小值归结为求关于参数θ的函数的最小值.(xx·开封质检)已知点P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l :x +2y =0的距离的最大值.【解】 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π). 又直线l :x +2y =0.因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22|sin θ+π4|5.所以,当sin(θ+π4)=1,即θ=π4时,d 取得最大值2105.双曲线参数方程的应用 求证:双曲线x 2a 2-y2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b 2sec 2 φ-tan 2 φ|a 2+b 2=a 2b 2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2 φ-tan 2 φ=1的应用.如图2-2-1,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图2-2-1【证明】 设P (sec φ,tan φ),∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1, |PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1. ∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程.【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数),当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t (x -p2),它们的交点M (x ,y )由方程组⎩⎨⎧y =1txy =-2t x -p2确定, 两式相乘,消去t ,得y 2=-2x (x -p2),∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.(xx·天津高考)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E (-p 2,±6p ),F (p 2,0),所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2(教材第34页习题2.2,第5题)已知椭圆x 2a 2+y 2b2=1上任意一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别与x轴交于P 、Q 两点,O 为椭圆的中心.求证:|OP |·|OQ |为定值.(xx·徐州模拟)如图2-2-2,已知椭圆x24+y 2=1上任一点M (除短轴端点外)与短轴两端点B1、B2的连线分别交x轴于P、Q两点.图2-2-2求证:|OP |·|OQ |为定值. 【命题意图】 本题主要考查椭圆的参数方程的简单应用,考查学生推理与数学计算能力.【证明】 设M (2cos φ,sin φ)(φ为参数), B 1(0,-1),B 2(0,1).则MB 1的方程:y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=|2cos φ1+sin φ|.MB 2的方程:y -1=sin φ-12cos φx ,∴|OQ |=|2cos φ1-sin φ|.∴|OP |·|OQ |=|2cos φ1+sin φ|·|2cos φ1-sin φ|=4.因此|OP |·|OQ |=4(定值).1.参数方程⎩⎪⎨⎪⎧x =cos θy =2sin θ,(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ,(θ为参数,ab ≠0)表示的曲线是( )A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax,代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.(xx·陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0)4.(xx·湖南高考)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________. 【解析】 将曲线C 1与C 2的方程化为普通方程求解.∵⎩⎪⎨⎪⎧ x =t +1,y =1-2t ,消去参数t 得2x +y -3=0. 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将(32,0)代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a=32. 【答案】32(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.曲线C :⎩⎨⎧x =3cos φy =5sin φ,(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A2.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2y =2+sin α,(α为参数)的普通方程是( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3)D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α,所以sin α=x 2-1. 又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤ 3.∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C3.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2 D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B4.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ,(θ为参数,0≤θ≤π)上的一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点的坐标是( ) A .(3,4) B .(322,22) C .(-3,-4) D .(125,125) 【解析】 由题意知,3cos θ=4sin θ, ∴tan θ=34,又0≤θ≤π,则sin θ=35,cos θ=45,∴x =3×cos θ=3×45=125, y =4sin θ=4×35=125, 因此点P 的坐标为(125,125). 【答案】 D二、填空题(每小题5分,共10分)5.已知椭圆的参数方程⎩⎪⎨⎪⎧ x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎨⎧x =2cos π3=1,y =4sin π3=2 3. 得点M 的坐标为(1,23).直线OM 的斜率k =231=2 3. 【答案】 236.(xx·江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t 2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=0三、解答题(每小题10分,共30分)7.(xx·平顶山质检)如图2-2-3所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图2-2-3【解】 抛物线标准方程为x 2=2y ,其参数方程为⎩⎪⎨⎪⎧ x =2t ,y =2t 2.得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎨⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t 2(t 为参数), 消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.8.(xx·龙岩模拟)已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,①x 24+y 2=1,② ①②联立,消去y 得:5x 2-8x =0,解得x 1=0,x 2=85. 设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),(85,-35),则|AB |=-35-12+852=825. 故所求的弦长为825. 9.(xx·漯河调研)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧ x =3cos αy =sin α (α为参数). (1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P (4,π2)化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos α+π6+42=2cos(α+π6)+22,由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2. 教师备选10.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P (0,32)到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上到点P 的距离等于7的点的坐标.【解】 设椭圆的参数方程是⎩⎪⎨⎪⎧x =a cos θy =b sin θ,其中,a >b >0,0≤θ<2π. 由e 2=c 2a 2=a 2-b 2a 2=1-(b a )2可得b a =1-e 2=12即a =2b . 设椭圆上的点(x ,y )到点P 的距离为d ,则d 2=x 2+(y -32)2=a 2cos 2θ+(b sin θ-32)2 =a 2-(a 2-b 2)sin 2θ-3b sin θ+94=4b 2-3b 2sin 2θ-3b sin θ+94=-3b 2(sin θ+12b)2+4b 2+3, 如果12b >1即b <12,即当sin θ=-1时,d 2有最大值,由题设得(7)2=(b +32)2,由此得b =7-32>12,与b <12矛盾. 因此必有12b≤1成立, 于是当sin θ=-12b时,d 2有最大值, 由题设得(7)2=4b 2+3,由此可得b =1,a =2.所求椭圆的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =sin θ.由sin θ=-12,cos θ=±32可得,椭圆上的点(-3,-12),点(3,-12)到点P 的距离都是7..。

圆的参数方程公开课教案(通用6篇)

圆的参数方程公开课教案(通用6篇)

圆的参数方程公开课教案圆的参数方程公开课教案(通用6篇)圆的参数方程公开课教案1㈠课时目标1.掌握圆的一般式方程及其各系数的几何特征。

2.待定系数法之应用。

㈡问题导学问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。

—2ax—2by+ =0问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?① ;② 1③ 0;④ —2x+4y+4=0⑤ —2x+4y+5=0;⑥ —2x+4y+6=0㈢教学过程[情景设置]把圆的标准方程展开得—2ax—2by+ =0可见,任何一个圆的方程都可以写成下面的形式:+Dx+Ey+F=0 ①提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?[探索研究]将①配方得:将方程②与圆的标准方程对照。

⑴当>0时,方程②表示圆心在(—),半径为的圆。

⑵当 =0时,方程①只表示一个点(—)。

⑶当<0时,方程①无实数解,因此它不表示任何图形。

结论:当>0时,方程①表示一个圆,方程①叫做圆的一般方程。

圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:⑴ 和的系数相同,不等于0;⑵没有xy这样的二次项。

以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件[知识应用与解题研究][例1] 求下列各圆的半径和圆心坐标。

⑴ —6x=0;⑵ +2by=0(b≠0)[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。

分析:用待定系数法设方程为+Dx+Ey+F=0 ,求出D,E,F即可。

[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求此曲线的方程,并画出曲线。

分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。

反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。

高中数学第二章参数方程2.2圆的参数方程及应用教案新人教A版选修4_4

高中数学第二章参数方程2.2圆的参数方程及应用教案新人教A版选修4_4

2.2 圆的参数方程及应用【课标要求】1、了解抛物运动轨迹的参数方程及参数的意义。

2、理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。

3、会进行曲线的参数方程与普通方程的互化。

一、教学目标:知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。

利用圆的几何性质求最值(数形结合)过程与方法:能选取适当的参数,求圆的参数方程情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:能选取适当的参数,求圆的参数方程教学难点:选择圆的参数方程求最值问题.三、教学方法:启发、诱导发现教学. 四、教学过程:(一)、圆的参数方程探求1、根据图形求出圆的参数方程,教师准对问题讲评。

)(sin cos 为参数θθθ⎩⎨⎧==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。

说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。

(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。

半径,并化为普通方程所表示圆的圆心坐标、为参数、指出参数方程)(sin 235cos 22ααα+=-=⎩⎨⎧y x、若如图取<PAX=θ,AP 的斜率为K ,如何建立圆的参数方程,同学们讨论交流,自我解决。

结论:参数取的不同,可以得到圆的不同形式的参数方程。

4,反思归纳:求参数方程的方法步骤。

(二)、应用举例例1、已知两条曲线的参数方程05cos 4cos125sin 3sin 45:(:(45x x t y y t t c c θθθ==+==+⎨⎨为参数)和为参数) (1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。

学生练习,教师准对问题讲评。

(三)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合)例2、1、已知点P (x ,y )是圆0124622=+--+y x y x 上动点,求(1)22y x +的最值, (2)x+y 的最值,(3)P 到直线x+y- 1=0的距离d 的最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时 圆的参数方程及应用
一、教学目标:
知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。

利用圆的几何性质求最值(数形结合)
过程与方法:能选取适当的参数,求圆的参数方程
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意
识。

二、重难点:教学重点:能选取适当的参数,求圆的参数方程
教学难点:选择圆的参数方程求最值问题.
三、教学方法:启发、诱导发现教学. 四、教学过程:
(一)、圆的参数方程探求
1、根据图形求出圆的参数方程,教师准对问题讲评。

)(sin cos 为参数θθ
θ⎩⎨
⎧==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。

说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。

(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。

半径,并化为普通方程所表示圆的圆心坐标、为参数、指出参数方程)(sin 235cos 22ααα+=-=⎩

⎧y x
3、若如图取<PAX=θ,AP 的斜率为K ,如何建立圆的参数方程,同学们讨论交流,自我解决。

结论:参数取的不同,可以得到圆的不同形式的参数方程。

4,反思归纳:求参数方程的方法步骤。

(二)、应用举例
例1、已知两条曲线的参数方程
05cos 4cos
125sin 3sin 45
:(:(45x x t y y t t c c θ
θθ==+==+⎨⎨为参数)和为参数)
(1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。

学生练习,教师准对问题讲评。

(三)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合) 例2、1、已知点P (x ,y )是圆0124622=+--+y x y x 上动点,求(1)22y x +的最值,
(2)x+y 的最值,
(3)P 到直线x+y- 1=0的距离d 的最值。

解:圆0124622=+--+y x y x 即1)2()3(22=-+-y x ,用参数方程表示为
θ
θsin 2cos 3{
+=+=y x [来源:Z_xx_]
由于点P 在圆上,所以可设P (3+cos θ,2+sin θ), (
1
))sin(13214cos 6sin 414)sin 2()cos 3(2222ϕθθθθθ++=++=+++=+y x
(其中tan ϕ =
2
3
) ∴22y x +的最大值为14
+2 ,最小值为。

(2) x+y= 3+cos θ+ 2+sin θ
( θ + 4π
)∴ x+y 的最大值为
5+
,最小值为。

显然当sin ( θ+ 4π
)= ±1时,d 取最大值,最小值,
分别为1+
1-2、 过点(2,1)的直线中,被圆x 2+y 2-2x+4y=0截得的弦:为最长的直线方程是_________;为最短的直线方程是__________;
3、若实数x,y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值为 。

(三)、课堂练习:学生练习:1、2
(四)、小结:1、本课我们分析圆的几何性质,选择适当的参数求出圆的参数方程。

2、参数取的不同,可以得到圆的不同形式的参数方程。

从中体会参数的意义。

3、利用参数方程求最值。

要求大家掌握方法和步骤。

(五)、作业:
1、方程04524222=-+--+t ty tx y x (t 为参数)所表示的一族圆的圆心轨迹是(D ) A .一个定点 B .一个椭圆 C .一条抛物线 D .一条直线
2、已知)(sin cos 2为参数θθ
θ
⎩⎨
⎧=+=y x ,则2
2)4()5(++-y x 的最大值是6。

8.曲线y y x 222=+的一个参数方程为)(sin 1cos 为参数θθθ

⎨⎧+==y x
五、教学反思:
(3)
d =
=。

相关文档
最新文档