高中数学圆与方程学案

合集下载

高二数学教案:圆的参数方程学案

高二数学教案:圆的参数方程学案

高二数学教案:圆的参数方程学案2.1.2圆的参数方程学习目标1.通过求做匀速圆周运动的质点的参数方程,把握求一样曲线的参数方程的差不多步骤.2.熟悉圆的参数方程,进一步体会参数的意义。

学习过程一、学前预备1.在直角坐标系中圆的标准方程和一样方程是什么?二、新课导学◆探究新知(预习教材P12~P16,找出疑问之处)如图:设圆的半径是,点从初始位置( 时的位置)动身,按逆时针方向在圆上作匀速圆周运动,点绕点转动的角速度为,以圆心为原点,所在的直线为轴,建立直角坐标系。

明显,点的位置由时刻惟一确定,因此能够取为参数。

假如在时刻,点转过的角度是,坐标是,那么。

设,那么由三角函数定义,有即这确实是圆心在原点,半径为的圆的参数方程,其中参数有明确的物理意义(质点作匀速圆周运动的时刻)。

考虑到,也能够取为参数,因此有◆应用示例例1.圆的半径为2,是圆上的动点,是轴上的定点,是的中点,当点绕作匀速圆周运动时,求点的轨迹的参数方程.(教材P24例2)解:◆反馈练习1.下列参数方程中,表示圆心在,半径为1的圆的参数方程为( )A、B、C、D、2、如图,设ABM为一钢体直杆,,A点沿轴滑动,B点沿轴滑动,则端点M的运动轨迹的参数方程为( )(提示:取为参数)A、B、C、D、三、总结提升◆本节小结1.本节学习了哪些内容?答:熟悉圆的参数方程,进一步体会参数的意义学习评判一、自我评判你完成本节导学案的情形为( )A.专门好B.较好C. 一样D.较差课后作业1.曲线上的点到两坐标轴的距离之和的最大值是(D)A. B. C.1 D.课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

数学:第四章《圆与方程》学案(新人教A版必修2)

数学:第四章《圆与方程》学案(新人教A版必修2)

数学必修② 4.1 ~4. 2.1 教材学习解读:一、学习目标1 、初步理解圆的标准方程的形式及圆的标准方程的定义, 学会判断二元二次方程表示圆的条件 , 能用这些知识求圆的方程 .2、掌握判断直线与圆的地点关系的方法.二、要点、难点要点 : 圆的方程 , 直线与圆的地点关系 .难点:二元二次方程表示圆的条件.三、知识点全解1、确立圆方程的条件 圆的标准方程 (xa) 2 ( y b) 2 r 2 中,有三个参数 a,b, r ,只需求出 a, b, r 这时圆的 方程就被确定.所以确立圆方程,需三个独立条件,此中圆心是圆的定位条件,半径是圆的定形条件.确立圆的方程的主要方法有两种:一是定义法,二是待定系数法。

定义法是指用定义求出圆心坐标和半径 长,进而获得圆的标准方程;待定系数法即列出对于 D , E, F 的方程组,求 D , E, F 而获得圆的一般方程,一般步骤为:(1) 依据题意,没所求的圆的标准方程为x 2y 2 DxEy F 0(2) 依据已知条件,成立对于 D , E, F 的方程组;(3) 解方程组。

求出 D , E, F 的值,并把它们代人所设的方程中去,就获得所求圆的一般方程.2、点 P( x 0 , y 0 ) 与圆的地点关 系 :若 (x 0a) 2( y 0 b) 2r 2 ,则点 P 在圆上;若(x 0a)2 ( y 0b) 2 r 2, 则点 P 在圆外;若( xa)2 ( y0 b) 2 r 2 , 则点 P 在圆内;3 、二元二次方程x 2 y 2Dx Ey F0 能否表示圆的条件:先将二元二次方程配方得 ( xD )2 ( yE )2 D 2 E 2 4F ① ,(1) 当 D 2E 24F 0 时,方程224①表示以 (D , E) 为圆心, 1 D 2 E 2 4F 为半径的圆; (2 ) 当 D 2E 2 4F0 时,方程①表示点2 22(D , E);(3)当 D 2 E 2 4F0 时,方程①没有实根,所以它不表示任何图形. 当方程①表示圆时,2 2word我们把它叫做圆的一般方程,确立它需三个独立条件D,E,F , 且 D 2 E 24F0 ,这就确立了求它的方程的方法——待定系数法,注意用待定系数法求圆的方程,用一般形式比用标准形式在运算上简单,前者解的是三元一次方程组,后者解的是三元二次方程组.4 、直线与圆的地点关系有三种,即订交、相切和相离,判断的方法有两种:(1)代数法:经过直线方程与圆的方程所构成的方程组,依据解的个数来研究。

高中数学学案 圆的一般方程

高中数学学案 圆的一般方程

4.1.2 圆的一般方程学 习 目 标核 心 素 养1.正确理解圆的方程的形式及特点,会由一般式求圆心和半径.(重点)2.会在不同条件下求圆的一般式方程.(重点)1. 通过圆的一般方程的推导,提升逻辑推理、数学运算的数学素养.2. 通过学习圆的一般方程的应用,培养数学运算的数学素养.圆的一般方程(1)圆的一般方程的概念:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程. (2)圆的一般方程对应的圆心和半径:圆的一般方程x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0)表示的圆的圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径长为12D 2+E 2-4F .思考:所有形如x 2+y 2+Dx +Ey +F =0的二元二次方程都表示圆吗? [提示] 不是,只有当D 2+E 2-4F>0时才表示圆.1.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3)D .(2,-3)D [-D 2=2,-E2=-3,∴圆心坐标是(2,-3).]2.方程x 2+y 2-x +y +k =0表示一个圆,则实数k 的取值范围为( ) A .k ≤12B .k =12C .k ≥12D .k<12D [方程表示圆⇔1+1-4k>0⇔k<12.]3.经过圆x 2+2x +y 2=0的圆心,且与直线x +y =0垂直的直线方程是( ) A .x +y +1=0B .x +y -1=0C .x -y -1=0D .x -y +1=0D[由题意知圆心坐标是(-1,0),故所求直线方程为y=x+1,即x-y+1=0.] 4.圆x2+y2+2x-4y+m=0的直径为3,则m的值为________.11 4[因(x+1)2+(y-2)2=5-m,∴r=5-m=32,∴m=114.]圆的一般方程的概念【例1】(1)若x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是( )A.R B.(-∞,1)C.(-∞,1] D.[1,+∞)(2)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.(1)B (2)(-2,-4) 5[(1)由方程x2+y2-4x+2y+5k=0可得(x-2)2+(y+1)2=5-5k,此方程表示圆,则5-5k>0,解得k<1.故实数k的取值范围是(-∞,1).故选B.(2)由题可得a2=a+2,解得a=-1或a=2.当a=-1时,方程为x2+y2+4x+8y-5=0,表示圆,故圆心为(-2,-4),半径为5.当a=2时,方程不表示圆.]形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时可有如下两种方法:(1)由圆的一般方程的定义令D2+E2-4F>0,成立则表示圆,否则不表示圆.(2)将方程配方后,根据圆的标准方程的特征求解,应用这两种方法时,要注意所给方程是不是x2+y2+Dx+Ey+F=0这种标准形式,若不是,则要化为这种形式再求解.1.下列方程能否表示圆?若能表示圆,求出圆心和半径.(1)2x2+y2-7y+5=0;(2)x2-xy+y2+6x+7y=0;(3)x2+y2-2x-4y+10=0;(4)2x2+2y2-5x=0.[解](1)∵方程2x2+y2-7y+5=0中x2与y2的系数不相同,∴它不能表示圆.(2)∵方程x2-xy+y2+6x+7y=0中含有xy这样的项.∴它不能表示圆.(3)方程x2+y2-2x-4y+10=0化为(x-1)2+(y-2)2=-5,∴它不能表示圆.(4)方程2x 2+2y 2-5x =0化为⎝ ⎛⎭⎪⎫x -542+y 2=⎝ ⎛⎭⎪⎫542,∴它表示以⎝ ⎛⎭⎪⎫54,0为圆心,54为半径长的圆.求圆的一般方程【例2】 已知△ABC 的三个顶点为A(1,4),B(-2,3),C(4,-5),求△AB C 的外接圆方程、外心坐标和外接圆半径. [解] 法一:设△ABC 的外接圆方程为 x 2+y 2+Dx +Ey +F =0, ∵A,B,C 在圆上,∴⎩⎪⎨⎪⎧1+16+D +4E +F =0,4+9-2D +3E +F =0,16+25+4D -5E +F =0, ∴⎩⎪⎨⎪⎧D =-2,E =2,F =-23,∴△ABC 的外接圆方程为x 2+y 2-2x +2y -23=0, 即(x -1)2+(y +1)2=25.∴外心坐标为(1,-1),外接圆半径为5. 法二:∵k AB =4-31+2=13,k AC =4+51-4=-3,∴k AB ·k AC =-1,∴AB ⊥AC.∴△ABC 是以角A 为直角的直角三角形, ∴外心是线段BC 的中点, 坐标为(1,-1),r =12|BC|=5.∴外接圆方程为(x -1)2+(y +1)2=25.待定系数法求圆的方程的解题策略:(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a,b,r.(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D 、E 、F.2.求经过点A(-2,-4)且与直线x +3y -26=0相切于点B(8,6)的圆的方程. [解] 设所求圆的方程为x 2+y 2+Dx +Ey +F =0, 则圆心坐标为⎝ ⎛⎭⎪⎫-D2,-E 2.∵圆与x +3y -26=0相切于点B,∴6+E28+D 2·⎝ ⎛⎭⎪⎫-13=-1,即E -3D -36=0.①∵(-2,-4),(8,6)在圆上, ∴2D +4E -F -20=0, ② 8D +6E +F +100=0.③联立①②③,解得D =-11,E =3,F =-30, 故所求圆的方程为x 2+y 2-11x +3y -30=0.与圆有关的轨迹方程问题1.已知点A(-1,0), B(1,0),则线段AB 的中点的轨迹是什么?其方程又是什么? [提示] 线段AB 的中点轨迹即为线段AB 的垂直平分线,其方程为x =0.2.已知动点M 到点(8,0)的距离等于点M 到点(2,0)的距离的2倍,你能求出点M 的轨迹方程吗? [提示] 设M(x,y),由题意有(x -8)2+y 2=2(x -2)2+y 2,整理得点M 的轨迹方程为x 2+y 2=16.【例3】 点A(2,0)是圆x 2+y 2=4上的定点,点B(1,1)是圆内一点,P,Q 为圆上的动点. (1)求线段AP 的中点M 的轨迹方程;(2)若∠PBQ=90°,求线段PQ 的中点N 的轨迹方程. 思路探究:(1)设点P 坐标→用P ,A 坐标表示 点M 坐标→求轨迹方程(2)设点N 坐标→探求点N 的几何条件→建方程 →化简得轨迹方程[解] (1)设线段AP 的中点为M(x,y), 由中点公式得点P 坐标为P(2x -2,2y). ∵点P 在圆x 2+y 2=4上,∴(2x -2)2+(2y)2=4,故线段AP 的中点M 的轨迹方程为(x -1)2+y 2=1. (2)设线段PQ 的中点为N(x,y), 在Rt △PBQ 中,|PN|=|BN|.设O 为坐标原点,连接ON(图略),则ON⊥PQ , ∴|OP|2=|ON|2+|PN|2=|ON|2+|BN|2, ∴x 2+y 2+(x -1)2+(y -1)2=4,故线段PQ 的中点N 的轨迹方程为x 2+y 2-x -y -1=0.求轨迹方程的一般步骤:(1)建立适当坐标系,设出动点M 的坐标(x,y); (2)列出点M 满足条件的集合; (3)用坐标表示上述条件,列出方程; (4)将上述方程化简;(5)证明化简后的以方程的解为坐标的点都是轨迹上的点.3.已知△ABC 的边AB 长为4,若BC 边上的中线为定长3,求顶点C 的轨迹方程.[解] 以直线AB 为x 轴,AB 的中垂线为y 轴建立坐标系(如图),则A(-2,0),B(2,0),设C(x,y),BC 中点D(x 0,y 0).∴⎩⎪⎨⎪⎧2+x2=x 0,0+y2=y 0.①∵|AD|=3,∴(x 0+2)2+y 20=9. ②将①代入②,整理得(x +6)2+y 2=36. ∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点. 轨迹方程为(x +6)2+y 2=36(y≠0).1.圆的一般方程x 2+y 2+Dx +Ey +F =0,来源于圆的标准方程(x -a)2+(y -b)2=r 2.在应用时,注意它们之间的相互转化及表示圆的条件.2.圆的方程可用待定系数法来确定,在设方程时,要根据实际情况,设出方程,以便简化解题过程,体现数学运算的核心素养.3.涉及到的曲线的轨迹问题,要求作简单的了解,能够求出简单的曲线的轨迹方程,并掌握求轨迹方程的一般步骤.1.方程2x 2+2y 2-4x +8y +10=0表示的图形是( ) A .一个点 B .一个圆 C .一条直线D .不存在A [方程2x 2+2y 2-4x +8y +10=0,可化为x 2+y 2-2x +4y +5=0,即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0表示点(1,-2).]2.点P(1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是________.点P 在圆C 外部 [将点P(1,-2)代入圆的方程,得1+4+m 2-2+m 2=2m 2+3>0,∴点P 在圆C 外部.] 3.圆心是(-3,4),经过点M(5,1)的圆的一般方程为________.x 2+y 2+6x -8y -48=0 [只要求出圆的半径即得圆的标准方程,再展开化为一般式方程即可.] 4.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,4为半径的圆,则F =________. 4 [由题意,知D =-4,E =8,r =(-4)2+82-4F 2=4,∴F =4.]5.已知A(2,2),B(5,3),C(3,-1),求△ABC 的外接圆的方程. [解] 设△ABC 外接圆的方程为x 2+y 2+Dx +Ey +F =0, 由题意得⎩⎪⎨⎪⎧2D +2E +F +8=0,5D +3E +F +34=0,3D -E +F +10=0,解得⎩⎪⎨⎪⎧D =-8,E =-2,F =12,即△ABC 的外接圆方程为x 2+y 2-8x -2y +12=0.。

高中数学学案 圆的标准方程

高中数学学案 圆的标准方程

4.1 圆的方程4.1.1 圆的标准方程学习目标核心素养1.会用定义推导圆的标准方程;掌握圆的标准方程的特点.(重点) 2.会根据已知条件求圆的标准方程.(重点、难点)3.能准确判断点与圆的位置关系.(易错点) 通过对圆的标准方程的学习,提升直观想象、逻辑推理、数学运算的数学素养.1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的基本要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.思考:平面内确定圆的要素是什么?[提示]圆心坐标和半径.2. 点与圆的位置关系设点P到圆心的距离为d,半径为r.d与r的大小点与圆的位置d<r 点P在圆内d=r 点P在圆上d>r 点P在圆外1.圆(x-2)2+(y+3)2=2的圆心和半径分别是( )A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3), 2D [由圆的标准方程可得圆心为(2,-3),半径为 2.] 2.以原点为圆心,2为半径的圆的标准方程是( ) A .x 2+y 2=2B .x 2+y 2=4 C .(x -2)2+(y -2)2=8D .x 2+y 2= 2B [以原点为圆心,2为半径的圆,其标准方程为x 2+y 2=4.] 3.点P(m,5)与圆x 2+y 2=24的位置关系是( ) A .在圆外 B .在圆内 C .在圆上D .不确定A [∵m 2+25>24,∴点P 在圆外.]4.点(1,1)在圆(x +2)2+y 2=m 上,则圆的方程是________.(x +2)2+y 2=10 [因为点(1,1)在圆(x +2)2+y 2=m 上,故(1+2)2+12=m,∴m =10.即圆的方程为(x +2)2+y 2=10.]求圆的标准方程【例1】 求过点A(1,-1),B(-1,1)且圆心在直线x +y -2=0上的圆的方程.思路探究:法一:利用待定系数法,设出圆的方程,根据条件建立关于参数方程组求解;法二:利用圆心在直线上,设出圆心坐标,根据条件建立方程组求圆心坐标和半径,从而求圆的方程;法三:借助圆的几何性质,确定圆心坐标和半径,从而求方程.[解] 法一:设所求圆的标准方程为 (x -a)2+(y -b)2=r 2,由已知条件知⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解此方程组,得⎩⎪⎨⎪⎧a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4. 法二:设点C 为圆心,∵点C 在直线x +y -2=0上, ∴可设点C 的坐标为(a,2-a). 又∵该圆经过A,B 两点, ∴|CA|=|CB|.∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2, 解得a =1.∴圆心坐标为C(1,1),半径长r =|CA|=2. 故所求圆的标准方程为(x -1)2+(y -1)2=4. 法三:由已知可得线段AB 的中点坐标为(0,0), k AB =1-(-1)-1-1=-1,所以弦AB 的垂直平分线的斜率为k =1,所以AB 的垂直平分线的方程为y -0=1·(x-0), 即y =x.则圆心是直线y =x 与x +y -2=0的交点,由⎩⎪⎨⎪⎧y =x ,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1, 即圆心为(1,1),圆的半径为(1-1)2+[1-(-1)]2=2, 故所求圆的标准方程为(x -1)2+(y -1)2=4.确定圆的方程的方法:确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,如法一,建立关于a,b,r 的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二、法三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.1.求下列圆的标准方程: (1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4);(3)过点P(2,-1)和直线x -y =1相切,并且圆心在直线y =-2x 上. [解] (1)r 2=(2-4)2+(2-0)2=8, ∴圆的标准方程为(x -4)2+y 2=8.(2)设圆心为C(0,b),则(3-0)2+(-4-b)2=52, ∴b =0或b =-8,∴圆心为(0,0)或(0,-8),又r =5, ∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. (3)∵圆心在y =-2x 上,设圆心为(a,-2a), 设圆心到直线x -y -1=0的距离为r. ∴r =|a +2a -1|2,① 又圆过点P(2,-1),∴r 2=(2-a)2+(-1+2a)2,②由①②得⎩⎨⎧a =1,r =2或⎩⎨⎧a =9,r =132,∴圆的标准方程为(x -1)2+(y +2)2=2或(x -9)2+(y +18)2=338.点与圆的位置关系【例2】 已知圆心为点C(-3,-4),且经过原点,求该圆的标准方程,并判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.[解] 因为圆心是C(-3,-4),且经过原点, 所以圆的半径r =(-3-0)2+(-4-0)2=5, 所以圆的标准方程是(x +3)2+(y +4)2=25.因为|P 1C|=(-1+3)2+(0+4)2=4+16=25<5, 所以P 1(-1,0)在圆内;因为|P 2C|=(1+3)2+(-1+4)2=5, 所以P 2(1,-1)在圆上;因为|P 3C|=(3+3)2+(-4+4)2=6>5, 所以P 3(3,-4)在圆外.1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断. 2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.2.已知点A(1,2)不在圆C :(x -a)2+(y +a)2=2a 2的内部,求实数a 的取值范围. [解] 由题意,点A 在圆C 上或圆C 的外部, ∴(1-a)2+(2+a)2≥2a 2, ∴2a +5≥0,∴a ≥-52.∵a≠0,∴a 的取值范围为⎣⎢⎡⎭⎪⎫-52, 0∪(0,+∞).与圆有关的最值问题[探究问题]1.怎样求圆外一点到圆的最大距离和最小距离?[提示] 可采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值和最小值.2.若点P(x, y)是圆C :(x -2)2+(y +2)2=1上的任一点,如何求点P 到直线x -y =0的距离的最大值和最小值?[提示] 可先求出圆心(2,-2)到直线x -y =0的距离,再将该距离加上或减去圆的半径1,即可得距离的最大值和最小值.【例3】 已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.思路探究:首先观察x 、y 满足的条件,其次观察所求式子的几何意义,求出其最值.[解] 由题意知x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.因此x 2+y 2的最大值和最小值分别为94和14.1.本例条件不变,试求yx的取值范围.[解] 设k =y x ,变形为k =y -0x -0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k =y x ,可得y =kx,此直线与圆有公共点,圆心到直线的距离d≤r ,即|-k|k 2+1≤12,解得-33≤k≤33.即y x 的取值范围是⎣⎢⎡⎦⎥⎤-33,33. 2.本例条件不变,试求x +y 的最值.[解] 令y +x =b 并将其变形为y =-x +b,问题转化为斜率为-1的直线在经过圆上的点时在y 轴上的截距的最值.当直线和圆相切时在y 轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b =±22-1,即最大值为22-1,最小值为-22-1.与圆有关的最值问题的常见类型及解法:(1)形如u =y -bx -a 形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +lb截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另依据题意适时运用圆的几何性质解题可以化繁为简,提高解题效率.2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、简捷.3.与圆有关的最值问题,常借助于所求式的几何意义,利用数形结合的思想解题,渗透着直观形象的数学素养.1.圆心为(0,4),且过点(3,0)的圆的方程为( )A.x2+(y-4)2=25 B.x2+(y+4)2=25C.(x-4)2+y2=25 D.(x+4)2+y2=25A[由题意,圆的半径r=(0-3)2+(4-0)2=5,则圆的方程为x2+(y-4)2=25.]2.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( ) A.6 B.4 C.3 D.2B[由题意,知 |PQ|的最小值即为圆心到直线x=-3的距离减去半径长,即|PQ|的最小值为6-2=4,故选B.]3.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.(x+2)2+y2=4 [由题意知,圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.]4.点(5a+1,a)在圆(x-1)2+y2=26的内部,则a的取值范围是________.[0,1)[由于点在圆的内部,所以(5a+1-1)2+(a)2<26,即26a<26,又a≥0,解得0≤a<1.] 5.△ABC的三个顶点的坐标分别为A(1,0),B(3,0),C(3,4),求△ABC的外接圆方程.[解]易知△ABC是直角三角形,∠B=90°,所以圆心是斜边AC的中点(2,2),半径是斜边长的一半,即r=5,所以外接圆的方程为(x-2)2+(y-2)2=5.。

人教版高一数学学案-圆的一般方程

人教版高一数学学案-圆的一般方程

4. 1.2圓的一般方程【教學目標】1.使學生掌握圓的一般方程的特點;能將圓的一般方程化為圓的標準方程從而求出圓心的座標和半徑;能用待定係數法,由已知條件匯出圓的方程.2.使學生掌握通過配方求圓心和半徑的方法,熟練地用待定係數法由已知條件匯出圓的方法,熟練地用待定係數法由已知條件匯出圓的方程,培養學生用配方法和待定係數法解決實際問題的能力.3.通過對待定係數法的學習為進一步學習數學和其他相關學科的基礎知識和基本方法打下牢固的基礎.【教學重難點】教學重點:(1)能用配方法,由圓的一般方程求出圓心座標和半徑;(2)能用待定係數法,由已知條件匯出圓的方程.教學難點:圓的一般方程的特點.【教學過程】(一)情景導入、展示目標前面,我們已討論了圓的標準方程(x-a)2+(y-b)2=r2,現將展開可得x2+y2-2ax-2by+a2+b2-r2=0.可見,任何一個圓的方程都可以寫成x2+y2+Dx+Ey+F=0.請大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲線是不是圓?下面我們來深入研究這一方面的問題.複習引出課題為“圓的一般方程”.(二)檢查預習、交流展示1.寫出圓的標準方程.2.寫出圓的標準方程中的圓心與半徑.(三)合作探究、精講精練探究一:圓的一般方程的定義1.分析方程x2+y2+Dx+Ey+F=0表示的軌跡將方程x2+y2+Dx+Ey+F=0左邊配方得:(1)(1)當D2+E2-4F>0時,方程(1)與標準方程比較,可以看出方程半徑的圓;(3)當D2+E2-4F<0時,方程x2+y2+Dx+Ey+F=0沒有實數解,因而它不表示任何圖形.這時,教師引導學生小結方程x2+y2+Dx+Ey+F=0的軌跡分別是圓、法.2.引出圓的一般方程的定義當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0稱為圓的一般方程.探究二:圓的一般方程的特點請同學們分析下列問題:問題:比較二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)與圓的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的係數可得出什麼結論?啟發學生歸納結論.當二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有條件:(1)x2和y2的係數相同,不等於零,即A=C≠0;(2)沒有xy項,即B=0;(3)D2+E2-4AF>0.它才表示圓.條件(3)通過將方程同除以A或C配方不難得出.強調指出:(1)條件(1)、(2)是二元二次方程(2)表示圓的必要條件,但不是充分條件;(2)條件(1)、(2)和(3)合起來是二元二次方程(2)表示圓的充要條件.例1求下列圓的半徑和圓心座標:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.解析:先配方,將方程化為標準形式,再求圓心和半徑.解:(1)圓心為(4,-3),半徑為5;(2)圓心為(0,-b),半徑為|b|,注意半徑不為b.點撥:由圓的一般方程求圓心座標和半徑,一般用配方法,這要熟練掌握.變式訓練1:1.方程x2+y2+2kx+4y+3k+8=0表示圓的充要條件是()A.k>4或者k<-1 B.-1<k<4C.k=4或者k=-1 D.以上答案都不對2.圓x2+y2+Dx+Ey+F=0與x軸切於原點,則有()A.F=0,DE≠0 B.E2+F2=0,D≠0C.D2+F2=0,E≠0 D.D2+E2=0,F≠0答案:1.A2.C例2求過三點O(0,0)、A(1,1)、B(4,2)的圓的方程.解析:已知圓上的三點座標,可設圓的一般方程,用待定係數法求圓的方程.解:設所求圓的方程為x2+y2+Dx+Ey+F=0,由O、A、B在圓上,則有解得:D=-8,E=6,F=0,故所求圓的方程為x2+y2-8x+6=0.點撥:1.用待定係數法求圓的方程的步驟:(1)根據題意設所求圓的方程為標準式或一般式;(2)根據條件列出關於a 、b 、r 或D 、E 、F 的方程;(3)解方程組,求出a 、b 、r 或D 、E 、F 的值,代入所設方程,就得要求的方程. 2.關於何時設圓的標準方程,何時設圓的一般方程:一般說來,如果由已知條件容易求圓心的座標、半徑或需要用圓心的座標、半徑列方程的問題,往往設圓的標準方程;如果已知條件和圓心座標或半徑都無直接關係,往往設圓的一般方程.變式訓練2: 求圓心在直線 l :x+y=0上,且過兩圓C 1∶x 2+y 2-2x+10y-24=0和C 2∶x 2+y 2+2x+2y-8=0的交點的圓的方程.解:解方程組⎩⎨⎧=+++=++08-2y 2x y x 024-10y 2x -y x 2222,得兩圓交點為(-4,0),(0,2). 設所求圓的方程為(x-a)2+(y-b)2=r 2,因為兩點在所求圓上,且圓心在直線l 上所以得方程組為⎪⎩⎪⎨⎧--a+b=0=r+(2-b)a=r+ba222222)4( 解得a=-3,b=3,r=10. 故所求圓的方程為:(x+3)2+(y-3)2=10. (四)回饋測試導學案當堂檢測(五)總結反思、共同提高1.圓的一般方程的定義及特點; 2.用配方法求出圓的圓心座標和半徑; 3.用待定係數法,匯出圓的方程. 【板書設計】一:圓的一般方程的定義1.分析方程x 2+y 2+Dx+Ey+F=0表示的軌跡 2.圓的一般方程的定義 二:圓的一般方程的特點 (1) (2) (3) 例1變式訓練1:例2變式訓練2:【作業佈置】導學案課後練習與提高4. 1. 2圓的一般方程課前預習學案一.預習目標回顧圓的標準方程,瞭解用圓的一般方程及其特點.二.預習內容1.圓的標準方程形式是什麼?圓心和半徑呢?2.圓的一般方程形式是什麼?圓心和半徑呢?3.圓的方程的求法有哪些?三.提出疑惑同學們,通過你的自主學習,你還有那些疑惑,請填在下面的表格中疑惑點疑惑內容課內探究學案一.學習目標1.掌握圓的一般方程的特點;能將圓的一般方程化為圓的標準方程從而求出圓心的座標和半徑;能用待定係數法,由已知條件匯出圓的方程.2.掌握通過配方求圓心和半徑的方法,熟練地用待定係數法由已知條件匯出圓的方法,熟練地用待定係數法由已知條件匯出圓的方程,培養用配方法和待定係數法解決實際問題的能力.3.通過對待定係數法的學習為進一步學習數學和其他相關學科的基礎知識和基本方法打下牢固的基礎.學習重點:(1)能用配方法,由圓的一般方程求出圓心座標和半徑;(2)能用待定係數法,由已知條件匯出圓的方程.學習難點:圓的一般方程的特點.二.學習過程前面,我們已討論了圓的標準方程(x-a)2+(y-b)2=r2,現將展開可得x2+y2-2ax-2by+a2+b2-r2=0.可見,任何一個圓的方程都可以寫成x2+y2+Dx+E y+F=0.請大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲線是不是圓?下面我們來深入研究這一方面的問題.複習引出課題為“圓的一般方程”.探究一:圓的一般方程的定義1.分析方程x2+y2+Dx+Ey+F=0表示的軌跡2.引出圓的一般方程的定義探究二:圓的一般方程的特點請同學們分析下列問題:問題:比較二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)與圓的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的係數可得出什麼結論?例1求下列圓的半徑和圓心座標:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.變式訓練1:1.方程x2+y2+2kx+4y+3k+8=0表示圓的充要條件是()A.k>4或者k<-1 B.-1<k<4C.k =4或者k =-1 D.以上答案都不對2.圓x 2+y 2+Dx +Ey +F =0與x 軸切於原點,則有( )A.F =0,DE ≠0 B.E 2+F 2=0,D ≠0C.D 2+F 2=0,E ≠0 D.D 2+E 2=0,F ≠0例2 求過三點O(0,0)、A(1,1)、B(4,2)的圓的方程.變式訓練2: 求圓心在直線 l :x+y=0上,且過兩圓C 1∶x 2+y 2-2x+10y-24=0和C 2∶x 2+y 2+2x+2y-8=0的交點的圓的方程.三.反思總結 圓的一般方程 成立的條件 方程特徵待定係數法法配方法1.方程342-+-=x x y 表示的曲線是( )A.在x 軸上方的圓 B.在y 軸右方的圓 C.x 軸下方的半圓 D.x 軸上方的半圓2.以(0,0)、(6,-8)為直徑端點的圓的方程是 . 3.求經過兩圓x 2+y 2+6x-4=0和x 2+y 2+6y-28=0的交點,並且圓心在直線x-y-4=0上的圓的方程.參考答案:1.D 2.x 2+y 2-6x+8y=0 3.x 2+y 2-x+7y-32=0課後練習與提高1.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圓,則實數m 的取值範圍是( )A.-71<m <1 B.-1<m <71C.m <-71或m >1 D.m <-1或m >712.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲線關於直線x +y =0對稱,則有( )A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 3.經過三點A (0,0)、B (1,0)、C (2,1)的圓的方程為( )A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0 C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =04.方程220x y x y k +-++=表示一個圓,則實數k 的取值範圍是 . 5.過點A (-2,0),圓心在(3,-2)的圓的一般方程為 . 6.等腰三角形的頂點是A(4,2),底邊一個端點是B(3,5),求另一個端點的軌跡方程,並說明它的軌跡是什麼.。

高二数学教案:圆的参数方程学案

高二数学教案:圆的参数方程学案

高二数学教案:圆的参数方程学案
【摘要】欢迎来高二数学教案栏目,教案逻辑思路清晰,符合认识规律, 培养学生自主学习习惯和能力。

因此小编在此为您编辑了此文:“高二数学教案:圆的参数方程学案”希望能为您的提供到帮助。

本文题目:高二数学教案:圆的参数方程学案
2.1.2 圆的参数方程
学习目标
1.通过求做匀速圆周运动的质点的参数方程,掌握求一般曲线的参数方程的基本步骤.
2.熟悉圆的参数方程,进一步体会参数的意义。

学习过程
一、学前准备
1.在直角坐标系中圆的标准方程和一般方程是什幺?
二、新课导学。

高中数学圆方程教案

高中数学圆方程教案

高中数学圆方程教案
教学目标:
1. 掌握圆的一般方程和标准方程;
2. 理解不同参数对圆的位置、形状的影响;
3. 能够根据已知条件求解圆的方程。

教学内容:
1. 圆的一般方程和标准方程的表达;
2. 圆的圆心、半径和方程之间的关系;
3. 圆的位置、形状与参数之间的关系。

教学流程:
一、导入
教师引入圆的概念,讲解圆的定义及基本性质,激发学生对圆的兴趣。

二、讲解
1. 圆的一般方程和标准方程的表达形式;
2. 圆的圆心坐标和半径与圆的方程之间的关系;
3. 不同参数对圆的位置、形状的影响。

三、练习与实践
1. 给出不同圆的半径和圆心坐标,让学生求解圆的方程;
2. 给出圆的方程,让学生画出对应的圆图形。

四、总结与延伸
教师总结本节课的重点知识,并提出延伸思考题,拓展学生对圆方程的理解。

五、作业布置
布置相关练习题目,并要求学生结合实际情况解决问题。

教学反馈:
教师根据学生的表现和作业情况,及时给予反馈与指导,以便学生及时纠正错误,提高学习效果。

教学资源:
1. 教科书《高中数学》;
2. PPT课件;
3. 相关练习题目。

教学评估:
通过课堂练习、作业表现以及考试成绩等多方面评估学生掌握情况,及时调整教学内容和方法,帮助学生提高学习效果。

人教版高中数学2.4.2圆的一般方程教学案

人教版高中数学2.4.2圆的一般方程教学案

2.4.2圆的一般方程
一、学习目标:1.理解圆的一般方程的代数特征,掌握方程220
++++=表示圆的条件;
x y Dx Ey F
2.掌握用配方法、公式法把圆的一般方程化为圆的标准方程.
学习重点:方程220
++++=表示圆的条件.
x y Dx Ey F
学习难点:用配方法或公式法将圆的一般方程220
++++=化为圆的标准方程
x y Dx Ey F
()()2
2
2r
-
-.
+
x=
a
b
y
二、导学指导与检测
【A 层】 1. 若方程22
0x y x y m +-++=表示一个圆,则有( ).
A .2m ≤ B.2m < C .12m < D .12m ≤ 【
B 层】
2.求过三点(0,0),(1,1),(4,2)A B C 的圆的方程,并求这个圆的半径长和圆心坐标.
【C 层】
3.求圆22450x y x +--=上的点到直线3420x y -+0=的距离的最大值.
闯关题:已知等腰三角形的顶点是A(4,2)底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么图形?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学圆与方程学案本次课课堂教学内容知识梳理1.圆的定义和圆的方程2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: (1)|MC |>r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外; (2)|MC |=r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上; (3)|MC |<r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内. 1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.2.圆与圆的位置关系设两个圆的半径分别为R,r,R>r,圆心距为d,则两圆的位置关系可用下表来表示:[微点提醒]1.圆心在坐标原点半径为r的圆的方程为x2+y2=r2.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0.3.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.典型例题考点一圆的方程【例1】(1)(2018·天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________.(2)(2019·安徽“江南十校”联考)已知圆C的圆心在直线x+y=0上,圆C与直线x-y=0相切,且在直线x-y-3=0上截得的弦长为6,则圆C的方程为________.规律方法求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线; (2)代数法,即设出圆的方程,用待定系数法求解.【训练1】 (1)(2019·新乡模拟)若圆C :x 2+⎝ ⎛⎭⎪⎫y +12m 2=n 的圆心为椭圆M :x 2+my 2=1的一个焦点,且圆C 经过M 的另一个焦点,则圆C 的标准方程为________. (2)(2018·枣庄模拟)已知圆M 与直线x -y =0及x -y +4=0都相切,且圆心在直线y =-x +2上,则圆M 的标准方程为________. 考点二 与圆有关的最值问题角度1 斜率型、截距型、距离型最值问题【例2-1】 已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求yx 的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化较为常见: (1)形如m =y -b x -a 的最值问题,可转化为动直线斜率的最值问题;(2)形如m =ax +by 的最值问题,可转化为动直线截距的最值问题;(3)形如m =(x -a )2+(y -b )2的最值问题,可转化为两点间距离的平方的最值问题.角度2 利用对称性求最值【例2-2】 已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A.52-4B.17-1C.6-2 2D.17【训练2】(1)设点P是函数y=-4-(x-1)2图象上的任意一点,点Q坐标为(2a,a-3)(a∈R),则|PQ|的最小值为________.(2)已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2+y2-4x-2y=0上,则|P A|+|PQ|的最小值是________.考点三与圆有关的轨迹问题【例3】已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.规律方法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.【训练3】已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程.考点四直线与圆的位置关系【例4】(1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定(2)(2019·湖南六校联考)已知⊙O:x2+y2=1,点A(0,-2),B(a,2),从点A观察点B,要使视线不被⊙O挡住,则实数a的取值范围是()A.(-∞,-2)∪(2,+∞)B.(-∞,-433)∪(433,+∞)C.(-∞,-233)∪(233,+∞) D.(-433,433)规律方法判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.【训练1】(1)“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的() A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能考点五圆的切线、弦长问题角度1圆的弦长问题【例5-1】(2018·全国Ⅰ卷)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.角度2圆的切线问题【例5-2】过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为()A.y=-34 B.y=-12C.y=-32 D.y=-14角度3与弦长有关的最值和范围问题【例5-3】(2018·全国Ⅲ卷)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[2,32]D.[22,32]规律方法 1.弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2r2-d2.2.过圆外一点(x0,y0)的圆的切线方程的求法:当斜率存在时,设为k,则切线方程为y-y0=k(x-x0),即kx-y+y0-kx0=0,由圆心到直线的距离等于半径,即可得出切线方程;当斜率不存在时,要加以验证.【训练2】(1)已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线x-ay +1=0平行,则a=________.(2)(2019·合肥测试)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为________.考点六圆与圆的位置关系【例6】(2019·郑州调研)已知两圆x2+y2-2x-6y-1=0,x2+y2-10x-12y+m =0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.规律方法 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.【训练3】 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离(2)(2019·安阳模拟)已知圆C 1:x 2+y 2-kx +2y =0与圆C 2:x 2+y 2+ky -4=0的公共弦所在直线恒过点P (a ,b ),且点P 在直线mx -ny -2=0上,则mn 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,14 B.⎝ ⎛⎦⎥⎤0,14 C.⎝ ⎛⎭⎪⎫-∞,14D.⎝ ⎛⎦⎥⎤-∞,14 课堂训练一、选择题1.已知圆C 的圆心为(2,-1),半径长是方程(x +1)(x -4)=0的解,则圆C 的标准方程为( )A.(x +1)2+(y -2)2=4B.(x -2)2+(y -1)2=4C.(x -2)2+(y +1)2=16D.(x +2)2+(y -1)2=162.(2019·合肥模拟)已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A.(x -3)2+(y +4)2=100 B.(x +3)2+(y -4)2=100 C.(x -3)2+(y -4)2=25 D.(x +3)2+(y -4)2=253.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )A.(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞B.⎝ ⎛⎭⎪⎫-23,0 C.(-2,0)D.⎝ ⎛⎭⎪⎫-2,23 4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A.(x -2)2+(y +1)2=1 B.(x -2)2+(y +1)2=4 C.(x +4)2+(y -2)2=4D.(x +2)2+(y -1)2=15.(2018·兰州模拟)已知点A 是直角三角形ABC 的直角顶点,且A (2a ,2),B (-4,a ),C (2a +2,2),则△ABC 外接圆的方程是( ) A.x 2+(y -3)2=5B.x 2+(y +3)2=5C.(x-3)2+y2=5D.(x+3)2+y2=56.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=07.(2019·佛山调研)已知圆O1的方程为x2+y2=1,圆O2的方程为(x+a)2+y2=4,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()A.{1,-1,3,-3}B.{5,-5,3,-3}C.{1,-1}D.{3,-3}8.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有()A.1个B.2个C.3个D.4个9.(2019·湖南十四校二联)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B 两点(O为坐标原点),且△AOB为等腰直角三角形,则实数a的值为()A.6或- 6B.5或-5C. 6D.510.(2019·武汉二模)直线l:kx-y+k+1=0与圆x2+y2=8交于A,B两点,且|AB|=42,过点A,B分别作l的垂线与y轴交于点M,N,是|MN|等于()A.2 2B.4C.4 2D.8二、填空题1.已知圆C:(x-2)2+(y+m-4)2=1,当m变化时,圆C上的点与原点O的最短距离是________.2.(2019·宜昌模拟)已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为________.3.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.4.若A为圆C1:x2+y2=1上的动点,B为圆C2:(x-3)2+(y+4)2=4上的动点,则线段AB长度的最大值是________.5.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与圆(x-2)2+(y-3)2=8相外切,则圆C的方程为________________.6.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.三、解答题1.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=410.(1)求直线CD的方程;(2)求圆P的方程.2.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.3.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.(1)求圆C的方程;(2)已已已已l已已已已已已已已已C已已已已已已2已已已已l已已已.4.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N 两点.(1)求k的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |.本次课课后练习1.若圆Ω过点(0,-1),(0,5),且被直线x -y =0截得的弦长为27,则圆Ω的方程为( )A.x 2+(y -2)2=9或(x +4)2+(y -2)2=25B.x 2+(y -2)2=9或(x -1)2+(y -2)2=10C.(x +4)2+(y -2)2=25或(x +4)2+(y -2)2=17D.(x +4)2+(y -2)2=25或(x -4)2+(y -1)2=162.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为________.3.(2017·天津卷)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠F AC =120°,则圆的方程为________.4.(2018·全国Ⅱ卷)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.5.(2019·湖北四地七校联考)若圆O 1:x 2+y 2=5与圆O 2:(x +m )2+y 2=20相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是( ) A.3B.4C.2 3D.86.(2018·合肥模拟)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=011。

相关文档
最新文档