福建省福州市2019年质检数学卷及答案
2019—2020学年度福州市八年级下学期期末质量检测数学试题答案及评分参考

数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A 2.C 3.B 4.D 5.B6.D 7.C 8.B 9.B 10.A二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答.11.50 1213.>14.70 15.6 16.6三、解答题:共9小题,满分86分,请在答题卡的相应位置作答.17.(本小题满分8分)解:原式1 21 ························································································ 6分分18.(本小题满分8分)解:(1)将(1,4)代入y kx 2(k ≠0),得k 2 4, ······································································································· 2分 解得k 2, ········································································································· 3分 则该一次函数的解析式为y 2分该一次函数的图象如图所示:································································ 6分(2)由图象可得,当y ≤0时,x ≤ 1. ·········································································· 8分4321-1-2-2-1213x yO 22y x解:(1)································································ 3分如图,射线BC,线段BD即为所求作;···································································· 4分(2)解:由(1)得BD∥OA,BD OA,∴四边形OBDA是平行四边形. ······································································· 5分∵OA OB,∴平行四边形OBDA是菱形, ·········································································· 6分∴DE 12OD,AB⊥OD.················································································ 7分∵OD 8,AB 6,∴DE 4,∴△ABD的面积 12AB DE 126 4 12.······················································ 8分20.(本小题满分8分)解:如图,依题意得AD 10,FG 1,∠EGD 90°. ···························································· 1分∵G为AD的中点,∴GD 12AD 5. ····································································································· 2分设这根芦苇的长度为x尺,则水池的深度为(x 1)尺.······························································ 3分 在Rt△DGE中,根据勾股定理可得EG2 DG2 DE2,(x 1)2 52 x2,················································································································ 5分 解得x 13,······················································································································· 6分 ∴x 1 12,······················································································································ 7分 答:水的深度为12尺,这根芦苇的长度为13尺.···································································· 8分21.(本小题满分8分)证法一:∵将△ABO平移得到△DCE,∴△ABO≌△DCE, ····························································································· 1分∴AO DE,BO CE. ························································································· 2分∵四边形ABCD是平行四边形,·············································································· 3分∴AO CO,BO DO,························································································· 4分∴DE CO,CE DO,························································································· 5分∴四边形OCED是平行四边形. ············································································· 6分∵12 22 5 )2,即在△ABO中,OB2 OA2 AB2,∴△ABO是直角三角形,∠AOB 90°, ··································································· 7分∴∠COD 90°,∴平行四边形OCED是矩形. ················································································ 8分证法二:∵将△ABO平移得到△DCE,∴AD∥OE∥BC,AD OE BC,····································································································· 1分∴四边形AOED,四边形OBCE都是平行四边形,······················································ 3分∴DE∥AO,CE∥BO, ························································································· 5分∴四边形OCED是平行四边形. ············································································· 6分∵12 22 5 )2,即在△ABO中,OB2 OA2 AB2,∴△ABO是直角三角形,∠AOB 90°, ··································································· 7分∴∠COD 90°,∴平行四边形OCED是矩形. ················································································ 8分OAMNBDCBDCAEOAB CDEFGOAMNBDEC解:(1)依题意,得y (60 5 8 2)x (68 5 10 2)(30 x)················································ 2分 2x 480. ························································································ 4分(2)依题意,得3001(30)2xxx x,,,··················································································································· 6分解得0<x≤10.····································································································································· 7分∵2>0,∴当0<x≤10时y随x的增大而增大,·································································································· 8分∴当x 10时,y取得最大值, ············································································································· 9分此时y 2 10 480 500. ················································································································ 10分∴8斤装的礼盒数x为10时这30盒水蜜桃售出的利润最大,且利润的最大值为500.23.(本小题满分10分)解:(1)该家庭未使用节水龙头的日用水量的平均数约为0.110.320.570.7130.96 1.11300.66. ································································ 4分(2)该家庭使用该节水龙头的日用水量的平均数约为0.110.360.5140.770.92300.52. ············································································ 8分∴估计该家庭使用节水龙头后,一年能节省水365 (0.66 0.52) 51.1t. ···················· 10分答:估计该家庭使用节水龙头后,一年能节省水51.1吨水.24.(本小题满分12分)解:(1)设直线l1的解析式为y ax b. ······································································································· 1分将A(0,2),B(1,0)代入y ax b得2ba b,,····································································· 2分解得22ab,,········································································································································· 3分∴直线l1的解析式为y 2x 2.···································································································· 4分(2)依题意得y k(x 1),························································································································ 5分当x 1 0时,k无论取何值都有y 0, ························································································· 6分此时x 1,∴直线l2必经过一定点,且该定点坐标为( 1,0). ·································································· 7分(3)∵线段AB平移得到线段EF,∴点A向右平移m个单位,向上平移(n 2)个单位得到点E, ··················································· 8分∴F(m 1,n 2).··························································································································· 9分将F(m 1,n 2)代入y kx k,得k(m 1) k n 2,整理得n km 2k 2.····················································································································· 10分当m 2时,n 2k 2k 2 2, ······························································································ 11分∴点( 2,2)在n关于m的函数图象上. ················································································· 12分25.(本小题满分14分)(1)解:∵四边形ABCD是正方形,∴∠ADC 90°,DA DC,∴∠ADE 90° α.··························································································· 1分∵△DCE是等腰三角形,∴DE DC,∴DE DA, ···································································································· 2分∴∠DEA 180(90)2452;································································· 3分。
2019年福州市质检文科数学解答

2019年福州市高中毕业班质量检测数学(文科)试卷参考答案第Ⅰ卷一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.B3.D4.A5.C6.C7.A8.D9.B 10.B 11.C 12.A 1. 已知集合{}{}21,20A x x B x x x =≥=--<,则AB =().A.{}1x x ≥B.{}12x x ≤<C. {}11x x -<≤D.{}1x x >- 【简解】()(){}{}|2+10|12B x x x x x =-<=-<<,所以{}|1A B x x =>-,故选D .2. 设复数z 满足(3+i)3i =-z ,则||z =().A.12B.1 D. 2【简解一】因为()()()()3i 3i 3i i ==3+i3+i 3i 8610z ----=-,所以1z=,故选B .【简解二】因为(3+i)3i =-z ,所以(3+i)(3+i)=3i z z =-,所以1z =,故选B . 3.为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:A.参加活动次数是3场的学生约为360人B.参加活动次数是2场或4场的学生约为480人C.参加活动次数不高于2场的学生约为280人D.参加活动次数不低于4场的学生约为360人【简解】估计该校高一学生参加活动次数不低于4场的学生约为:1000+⨯(0.180.12+0.04+0.02)=360人,故选D.4. 已知双曲线C :222210,0)x y a b a b-=>>(,直线=y b 与C 的两条渐近线的交点分别为,M N , O 为坐标原点.若∆OMN 为直角三角形,则C 的离心率为().A.B.C. 2D.【简解】依题意得:因为∆OMN 为直角三角形,所以双曲线C 的渐近线为=y x ±,即C是等轴双曲线,所以C的离心率=e A .5. 已知数列{}n a 中,3=2a ,7=1a .若数列1{}na 为等差数列,则9=a ().A.12B.54C.45 D. 45-【简解】依题意得:732,1a a ==,因为数列1{}na 为等差数列,所以7311111273738--===--a a d ,所以()9711159784a a =+-⨯=,所以945=a ,故选C . 6. 已知1sin()62πθ-=,且02πθ∈(,),则cos()3πθ-=( ).A. 0B. 12C.1D.【简解一】由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得, πcos 3θ⎛⎫- ⎪⎝⎭=cos 01=,故选C .【简解二】由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,πcos 62θ⎛⎫-= ⎪⎝⎭, 所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C .7. 已知函数()sin ,f x x x =()f x '为()f x 的导函数,则函数()f x '的部分图象大致为( ) .A B C D【简解】依题意得:x x x x f cos sin )(+='为奇函数,排除,C D ,设()()g x f x '=,则()2cos sin g x x x x '=-,(0)20g '=>,排除B ,故选A .8. 在边长为3的等边ABC ∆中,点M 满足BM 2=MA ,则CM CA ⋅=( ).AB .C .6D .152【简解一】依题意得:121211215)333333333232CM CA CB CA CA CB CA CA CA ⋅=+⋅=⋅+⋅=⨯⨯⨯+⨯⨯=(,故选D .【简解二】依题意得:以C 为原点,CA 所在的直线为x轴建立平面直角直角坐标系,则50,03,02C A M (),(),(,所以5153,022CM CA ⋅==((),故选D . 【简解三】依题意得:过M 点作MD AC ⊥于D ,如图所示,则CM CA ⋅=CD CA ⋅=15(31cos60)32-⨯⨯=,故选D . 9. 如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2. 在圆O 内,将线段MN绕N 点按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将线段NM 绕M 点按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动···.点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则此点取自阴影部分内的概率为(). A.4π B. 1C.π-【简解一】依题意得:阴影部分的面积216[2222S =⨯π⨯-⨯⨯π-1()61P ==-B .【简解二】依题意得:阴影部分的面积2126222S =π⨯-⨯⨯⨯π-24122P πππ==-⋅,故选B . 10. 已知函数()314,025,0xx f x x x x ⎧+≤⎪=⎨⎪--+>⎩(),,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( ).A. (),4-∞-B. (),2-∞-C. ()2,2-D. (),0-∞【简解】依题意得:函数()314,025,0x x f x x x x ⎧+≤⎪=⎨⎪--+>⎩()在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1∈+x m m 上恒成立,所以2(1)m m +<,即2m <-,故选B .11. 已知12,F F 为椭圆2214x y +=的左、右焦点,P 是椭圆上异于顶点的任意一点,K 点是12F PF ∆内切圆的圆心,过1F 作1F M PK ⊥于M ,O 是坐标原点,则OM 的取值范围为().A . ()0,1B. (C. (D. (0,【简解】如图,延长21,PF F M 相交于N 点,连接OM ,因为K 点是12F PF ∆内切圆的圆心,所以PK 平分12F PF ∠, ∵1F M PK ⊥,∵O 为12F F 中点,M 为1F N 中点,∴OM的取值范围为(,故选C .12. 如图,棱长为1正方体1111-ABCD A B C D 的木块,平面α过点D 且平行于平面1ACD ,则木块在平面α内的正投影面积是().A.B.C. D. 1 【简解】:棱长为1正方体1111-ABCD A B C D 的木块的三个面在平面α内的正投影是三个全等的菱形(如图),所以木块在平面α内的正投影面积是122⨯第Ⅱ卷本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22 、23题为选考题,考生根据要求作答.二、填空题:本大题4小题,每小题5分,共20分.把答案填在答题卡相应位置.13. 72- 14. 4π15.16.{}5,613.若实数,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值等于______.【简解】依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:3y x z =-,则z 的最小值即为动直线在y 轴上的截距的最大值.通过平移可知在A 点处动直线在y 轴上的截距最大.因为20:220x y A x y +=⎧⎨-+=⎩解得11,2A ⎛⎫- ⎪⎝⎭,所以3z x y=-第12题图的最小值()min 173122z =⋅--=-. 14. 已知长方体1111ABCD A B C D -的外接球体积为323π,且12A A B C ==,则直线1A C 与平面11BB C C 所成的角为______.【简解】设长方体1111ABCD A B C D -的外接球半径为R ,因为长方体1111ABCD A B C D -的外接球体积为343233R ππ=,所以2R =,即1A C 24R =,因为12AA BC ==,所以AB =.因为11A B ⊥平面11BB C C ,所以1A C 与平面11BB C C 所成的角为11ACB ∠,在11Rt ACB △中,因为12AA BC ==,所以111B C A B ==,所以11=4ACB π∠.15. 将函数()sin cos f x a x b x =+(),0∈≠R ,a b a 的图象向左平移π6个单位长度,得到一个偶函数图象,则=ba______. 【简解】因为()sin cos f x a x b x =+(),0∈≠R ,a b a 的图象向左平移π6单位长度,得到偶函数图象,所以函数()sin cos f x a x b x =+的对称轴为π6x =,所以()sin cos =(0)=333f a b f b πππ=+,因为0a ≠,所以ba16. 已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2920n n a b n n =-+-,且1n n b b +<,则满足条件的n 的取值集合为______. 【简解】因为11a =,且1n n S a λ=-(λ为常数),所以111a λ=-=,解得=2λ,所以21n n S a =-,所以()-1-1212n n S a n =-≥, 所以12n n a a -=,所以12n n a -=, 因为2920n n a b n n =-+-,所以2-19202n n n n b -+-=,所以2+111+28(4)(7)22n n n nn n n n b b ----==0<, 解得47n <<,又因为*n ∈N ,所以=5n 或=6n .所以,当=5n 或=6n 时,1n n b b +<,即满足条件的n 的取值集合为{}5,6.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)在Rt ABC ∆中,=90o C ∠,点,D E 分别在边,AB BC 上,5,3==CD CE ,且ECD ∆的面积为.(1)求边DE 长;(2)若3=AD ,求sin A 的值.(1)【解析】如图,在ECD △中,11sin 53sin 22ECD S CE CD DCE DCE ∆=⋅∠=⨯⨯⨯∠=所以sin ∠=DCE ································································因为090︒<∠<︒DCE ,所以1cos 5∠=DCE , ···························································4分 由余弦定理得2222cos =+-⋅⋅⋅∠DE CE CD CE CD DCE 1259253285=+-⨯⨯⨯=,DE =. ········································································· 7分(2)因为=90∠o ACB ,所以1sin sin(90)cos =5O ACD DCE DCE ∠=-∠=∠, ············ 9分在∆ADC ,由正弦定理得sin sin =∠AD CDACD A, 即35,1sin 5=A 所以1sin 3=A . ············································································· 12分18. (本小题满分12分)峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以[100,300),[300500),,[500700),,[700900),,[9001100),,[]11001300,(单位:度)分组的频率分布直方图如下:若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);(ii )根据(i )中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?附:()22()()()()n ad bc K a b c d a c b d -=++++,【解析】(1)根据频率分布直方图的得到100度到300度的频率为:10.0012000.00152000.00122000.00062000.00022000.1-⨯-⨯-⨯-⨯-⨯=, ·············· 2分估计所抽取的50户的月均用电量的众数为:500+700=6002(度); ·························· 3分 估计所抽取的50户的月均用电量的平均数为:(2000.00054000.0016000.00158000.001210000.000612000.0002)200640=⨯+⨯+⨯+⨯+⨯+⨯⨯=x (度). ·············································································································· 6分 (2)依题意,列联表如下·················································································································· 8分2K 的观测值250(2510510)4006.349 6.6353515302063k ⨯⨯-⨯==≈<⨯⨯⨯ ····························· 11分所以不能有99%的把握认为 “用电量的高低”与“使用峰谷电价”有关. ······················· 12分19. (本小题满分12分)如图,四棱锥E ABCD -,平面ABCD ⊥平面ABE ,四边形ABCD 为矩形,=6AD,=5AB ,=3BE ,F 为CE 上的点,且⊥BF 平面ACE . (1)求证:AE BE ⊥;(2)设M 在线段DE 上,且满足2EM MD =,试在线段AB 上确定一点N ,使得//MN 平面BCE ,并求MN 的长.(1)【解析】证明:四边形ABCD 为矩形,BC AB ∴⊥. 平面A B C D ⊥与平面ABE ,平面ABCD 与平面=ABE AB,且BC ⊂平面A B C D ,BC ∴⊥平面ABE . ··································································· 1分 又⊂AE 平面ABE ,∴⊥BC AE . ············································································ 2分 BF ⊥平面A C E ,⊂AE 平面A C E ,∴⊥BF AE . ············································································ 3分 又BC BF B =,BC ⊂平面B C E ,BF ⊂平面B C E ,AE ∴⊥平面B C E ,··································································· 4分 BE ⊂平面B C E ,AE BE ∴⊥. ···································································································· 5分 (2)解法一:在∆ADE 中过M 点作//MG AD 交AE 于G 点,在∆ABE 中过G 点作//GN BE 交AB 于N 点,连MN (如图), ···················································· 6分2=EM MD ,2∴=EG GA ,2=BN NA .//NG BE ,⊄NG 平面B C E ,⊂面BE BCE ,//∴NG 平面B C E . ·························································································· 7分 同理可证,//GM 平面B C E . MG GN G =,∴平面//MGN 平面B C E , ··············································································· 8分 又MN ⊂平面MGN , //MN ∴平面B C E , ························································································· 9分 N ∴点为线段AB 上靠近A 点的一个三等分点. ················································· 10分=6AD =5AB =3BE······························································ 11分···························································· 12分 (2)解法二:过M 点作//MG CD 交CE 于G 点,连接BG ,在AB 取N 点,使得BN MG =,连MN (如图), ········································································· 6分 //AB CD ,2EM MD =,//AB CD ,BN MG =, //MG BN ∴,MG BN =, ················································································· 7分 ∴四边形MGBN 是平行四边形, //MN BG ∴, ··································································································· 8分 又MN ⊄平面B C E ,BG ⊂平面B C E , //MN ∴平面B C E , ························································································· 9分 N ∴点为线段AB 上靠近A 点的一个三等分点, ················································ 10分在CBG △中,=6BC AD =,1=3CG CE cos BCG ∠=, ·················· 11分························································································· 12分 20. (本小题满分12分)已知抛物线1C :)022>=p py x (和圆2C :22+1+2x y =() ,倾斜角为45的直线1l 过1C 的焦点且与2C 相切.(1)求p 的值;(2)点M 在1C 的准线上,动点A 在1C 上,1C 在A 点处的切线2l 交y 轴于点B ,设MN MA MB =+,求证:点N 在定直线上,并求该定直线的方程.(1)【解析】:依题意设直线1l 的方程为2p y x =+, ··················································· 1分 由已知得:圆2C :22+1+2x y =()的圆心)01(2,-C,半径r ··························· 2分 因为直线1l 与圆2C 相切,所以圆心到直线1:2p l y x =+的距离|1|-+=pd ···································· 3分|1|p-+=6p =或2p =-(舍去).: ··············································· 4分所以6p =. ·································································································· 5分(2)解法一:依题意设,3)Mm -(,由(1)知抛物线1C 方程为212x y =,所以212x y =,所以6xy '=,设11(,)A x y ,则以A 为切点的切线2l 的斜率为16x k =, ······························· 6分所以切线2l 的方程为1111()6y x x x y =-+. ································································ 7分令0=x ,21111111=12=66y x y y y y =-+-⨯+-,即2l 交y 轴于B 点坐标为1(0,)y -, ·········· 8分所以11(,3)MA x m y =-+, ····················································································· 9分 1(,3)MB m y =--+, ··························································································· 10分 ∴=MN MA MB =+1(2,6)x m -, ·············································································· 11分 ∴1(,3)ON OM MN x m =+=-.设N 点坐标为(,)x y ,则3=y ,所以点N 在定直线3y =上. ················································································· 12分 (2)解法二:设,3)M m -(,由(1)知抛物线1C 方程为212x y =,① 设11(,)A x y ,以A 为切点的切线2l 的方程为11()y k x x y =-+②, 联立①②得:2211112[()]12x k x x x =-+, ···································································· 6分 因为2211=1444840k kx x ∆-+=,所以1=6x k , 所以切线2l 的方程为1111()6y x x x y =-+. ································································ 7分 令0=x ,得切线2l 交y 轴的B 点坐标为1(0,)y -, ····················································· 8分 所以11(,3)MA x m y =-+, ····················································································· 9分 1(,3)MB m y =--+,···························································································· 10分 ∴=MN MA MB =+1(2,6)x m - ················································································· 11分 ∴1(,3)ON OM MN x m =+=-, 设N 点坐标为(,)x y ,则3=y ,所以点N 在定直线3y =上. ················································································· 12分 21. (本小题满分12分)已知函数1()ln +=--a f x a x x x(∈a )R . (1)求函数()f x 的单调区间;(2)当ea <<x 的方程1()+=-a f ax ax有两个不同的实数解12,x x ,求证:12124+<x x x x .(1)【解析】:()f x 的定义域为(0,)+∞, ·································································· 1分222211(1)[(1)]()1+-+++-+-+'=--==a a x ax a x x a f x x x x x , ··································· 2分。
2019年福州市初中毕业班质量检测数学试卷及答案(word版)

2019年福州市初中毕业班质量检测数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-3的相反数是A .3B .-3C . 1 3D .- 132.今年参加福州市中考的总人数约为78000人,将78000用科学记数法表示为 A .78.0×104 B .7.8×104 C .7.8×105 D .0.78×105 3.某几何体的三种视图如图所示,则该几何体是A .三棱柱B .长方体C .圆柱D .圆锥 4.下列各图中,∠1与∠2是对顶角的是5.下列计算正确的是A .3a -a =2B .2b 3·3b 3=6b 3C .3a 3÷a =3a 2D .(a 3)4=a 76.若2-a +3+b =0,则a +b 的值是A .2B .0C .1D .-17.某班体育委员对七位同学定点投篮进行数据统计,每人投十个,投进篮筐的个数依次为:5,6,5,3,6,8,9.则这组数据的平均数和中位数分别是A .6,6B .6,8C .7,6D .7,88.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路x m .依题意,下面所列方程正确的是A .120 x =100 x +10B .120 x =100 x -10C .120 x -10 = 100 xD .120 x +10 =100 x9.如图,△ABC 的中线BD 、CE 交于点O ,连接OA ,点G 、F 分别为OC 、OB 的中点,BC =4,AO =3,则四边形DEFG 的周长为A .6B .7C .8D .1210.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为C (1,k ),与y 轴的交点在(0,2)、(0,3)之间(不包含端点),则k 的取值范围是A .2<k <3B . 5 2<k <4C . 83<k <4 D .3<k <4二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:xy 2+xy =______________. 12.“任意打开一本200页的数学书,正好是第50页”,这是_______事件(选填“随机”,“必然”或“不可能”).13.已知反比例函数y = kx的图象经过点A (1,-2).则k =_________.A B C D1 2 1 2 12 12主视图左视图俯视图第3题图 A C D E O F G第9题图第10题图14.不等式4x -3<2x +5的解集是_______________.15.如图,已知∠AOB =60°,在OA 上取OA 1=1,过点A 1作A 1B 1⊥OA 交OB 于点B 1,过点B 1作B 1A 2⊥OB 交OA 于点A 2,过点A 2作A 2B 2⊥OA 交OB 于点B 2,过点B 2作B 2A 3⊥OB 交OA 于点A 3,…,按此作法继续下去,则OA 10的值是____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1) 计算:16-( 1 3)-1+(-1)2019;(2) 先化简,再求值:(1+a )(1-a )+(a -2)2,其中a = 12.17.(每小题7分,共14分)(1) 如图,CA =CD ,∠1=∠2,BC =EC .求证:AB =DE .(2) 如图,已知点A (-3,4),B (-3,0),将△OAB 绕原点O 顺时针旋转90°,得到△OA 1B 1. ① 画出△OA 1B 1,并直接写出点A 1、B 1的坐标;② 求出旋转过程中点A 所经过的路径长(结果保留π).18.(满分12分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如下两幅不完整统计图,请根据图中提供的信息解答下列各题.(1) m =_______%,这次共抽取了_________名学生进行调查;并补全条形图; (2) 请你估计该校约有_________名学生喜爱打篮球;(3) 现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?19.(满分11分)某商店决定购进一批某种衣服.若商店以每件60元卖出,盈利率为20%(盈利率= 售价-进价 进价×100%).(1) 求这种衣服每件进价是多少元?(2) 商店决定试销售这种衣服时,每件售价不低于进价,又不高于70元,若试销售中销售量y (件)与每件售价x (元)的关系是一次函数(如图).问当每件售价为多少元时,商店销售这种衣服的利润最大?20.(满分12分)如图,在⊙O 中,点P 为直径BA 延长线上一点,直线PD 切⊙O 于点D ,过点B 作AB O A 1 B 1A 2B 2 第15题图A 3 AB CE 1 2 第17(1)题图第17(2)题图第19题图BH ⊥PD ,垂足为H ,BH 交⊙O 于点C ,连接BD .(1) 求证:BD 平分∠ABH ;(2) 如果AB =10,BC =6,求BD 的长;(3) 在(2)的条件下,当E 是⌒AB 的中点,DE 交AB 于点F ,求DE ·DF 的值.21.(满分13分)如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AB =7,AD =4,CA =5,动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C →D →A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 交于点E ,与折线A -C -B 的交点为Q ,设点M 的运动时间为t .(1) 当点P 在线段CD 上时,CE =_________,CQ =_________;(用含t 的代数式表示) (2) 在(1)的条件下,如果以C 、P 、Q 为顶点的三角形为等腰三角形,求t 的值;(3) 当点P 运动到线段AD 上时,PQ 与AC 交于点G ,若S △PCG ∶S △CQG =1∶3,求t 的值.22.(满分14分)已知抛物线y =ax 2+bx +c (a ≠0)经过点A (1,0)、B (3,0)、C (0,3),顶点为D . (1) 求抛物线的解析式;(2) 在x 轴下方的抛物线y =ax 2+bx +c 上有一点G ,使得∠GAB =∠BCD ,求点G 的坐标;(3) 设△ABD 的外接圆为⊙E ,直线l 经过点B 且垂直于x 轴,点P 是⊙E 上异于A 、B 的任意一点,直线AP 交l 于点M ,连接EM 、PB .求tan ∠MEB ·tan ∠PBA 的值.E第20题图第21题图 A B C D 备用图 B C D 备用图第22题图备用图学生体育活动条形统计图2019年福州市初中毕业班质量检测 数学试卷参考答案及评分标准一、选择题1.A 2.B 3.C 4.D 5.C 6.D 7.A 8.B 9.B 10.C 二、填空题11.xy (y +1) 12.随机 13.-2 14.x <4 15.49或218 三、解答题16.(1) 解:16-( 1 3)-1+(-1)2019=4-3+1 ···································································· 6分 =2. ·········································································· 7分(2) 解:原式=1-a 2+a 2-4a +4 ······················································· 4分=-4a +5,································································· 5分当a = 12时,原式=-2+5=3. ·········································· 7分17.(1) 证明:∵∠1=∠2, ∴∠1+∠ECA =∠2+∠ECA , ························································· 2分 即 ∠ACB =∠DCE . ······································································ 3分 又∵CA =CD ,BC =EC , ································································ 5分 ∴△ABC ≌△DEC . ····································································· 6分∴AB =DE . ················································································· 7分(2) ① 画图正确2分,A 1(4,3),B 1(0,3)……………4分;② 如图,在Rt △OAB 中,∵OB 2+AB 2=OA 2,∴OA =32+42 =5.…………………5分∴l = 90×5π 180= 5π 2. …………………6分 因此点A 所经过的路径长为 5π2.…………………7分18.(1) 20;50;如图所示; …………………………………6分 (2) 360;………………………8分 (3) 列树状图如下:……10分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种. …………………11分∴抽到一男一女的概率P =6 12 = 12. ··············································· 12分解法二:列表如下:………10分由列表可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的男1 男2 男3 女男1 男2,男1 男3,男1 女,男1 男2 男1,男2 男3,男2 女,男2 男3 男1,男3 男2,男3 女,男3 女 男1,女 男2,女 男3,女 女男3男2男1女男2男1女男3男1女男3男2男3男2男1情况有6种.………………………………11分∴抽到一男一女的概率P =6 12 = 12. ··············································· 12分19.解:(1) 设购进这种衣服每件需a 元,依题意得: ··························· 1分60-a =20%a , ··································································· 3分 解得:a =50. ···································································· 4分答:购进这种衣服每件需50元. ············································ 5分 (2) 设一次函数解析式为y =kx +b ,由图像可得: ································· 6分 ⎩⎨⎧60k +b =4070k +b =30,解得:k =-1,b =100, ·············································· 7分 ∴y =-x +100.∴利润为w =(x -50)(-x +100) ································ 8分=-x 2+150x -1500 =-(x -75)2+625. ······················································· 9分∵函数w =-(x -75)2+625的图像开口向下,对称轴为直线x =75, ∴当50≤x ≤70时,w 随x 的增大而增大, ······································· 10分 ∴当x =70时,w 最大=600.答:当销售单价定为70元时,商店销售这种衣服的利润最大. ……11分 20.解:(1) 证明:连接OD . ························································ 1分 ∵PD 是⊙O 的切线,∴OD ⊥PD . 又∵BH ⊥PD ,∴∠PDO =∠PHB =90°,……2分 ∴OD ∥BH ,∴∠ODB =∠DBH .……………………………3分 而OD =OB ,∴∠ODB =∠OBD ,……………4分 ∴∠OBD =∠DBH ,∴BD 平分∠ABH . ……………………………5分 (2) 过点O 作OG ⊥BC ,G 为垂足, 则BG =CG =3, ············································································ 6分 在Rt △OBG 中,OG =OB 2-BG 2 =4. ∵∠ODH =∠DHG =∠HGO =90°, ∴四边形ODHG 是矩形. ······························································ 7分 ∴OD =GH =5,DH =OG =4,BH =8. ············································· 8分 在Rt △DBH 中,BD =45. ···························································· 9分 (3) 连接AD ,AE ,则∠AED =∠ABD ,∠ADB =90°. 在Rt △ADB 中,AD =25. ··························································· 10分又∵E 是⌒AB 的中点,即⌒AE =⌒BE ,∴∠ADE =∠EDB , ∴△ADE ∽△FDB . ····································································· 11分 即 DE DB = AD FD,∴DE ·DF =DB ·AD =40. ······································· 12分 21.解:(1) CE =3-t , ··································································· 1分CQ =5- 53t ; ················································································ 3分(2) 当CP =CQ 时,得:5- 5 3t =t ,解得: t = 158;………………………………4分 当QC =QP 时(如图1), ∵QE ⊥CD , ∴CP =2CE ,……………………5分即:t =2(3-t ), 解得:t =2; ················································································· 6分 当QP =CP 时,由勾股定理可得:DC A BM Q lE P 图 1→←DC AB M QlEPN图 2→←DC A BQ G H F l M P图 3PQ 2=(2t -3)2+(4- 43t )2,∴(2t -3)2+(4- 43t )2=t 2, ······························································· 7分整理得:43t 2-204t +225=0,解得:t 1=3(舍去),t 2= 7543······························································ 8分解法二:如图2,当QP =CP 时,过点P 作PN ⊥CQ ,N 为垂足,则CN = 1 2CQ = 1 2(5- 5 3)∵△CPN ∽△CAD .∴ CP CA = CN CD , 即 t 3= 1 2(5- 5 3t )3, 解得:t = 7543. ·············································································· 8分因此当t = 15 8,t =2或t = 7543时,以C 、P 、Q 为顶点的三角形为等腰三角形.(3) 如图3,过点C 作CF ⊥AB 交AB 于点F ,交PQ 于点H . P A =DA -DP =4-(t -3)=7-t .在Rt △BCF 中,由题意得, BF =AB -AF =4. ∴CF =BF ,∴∠B =45°,…………………9分∴QM =MB =7-t , ∴QM =P A .又∵QM ∥P A , ∴ 四边形AMQP 为平行四边形. ∴PQ =AM =t . ··········································································· 10分∵S △PCG ∶S △CQG =1∶3,且S △PCG = 1 2PG ·CH ,S △CQG = 12QG ·CH ,∴PG ∶QG =1∶3. ······································································ 11分得: 3 4(7-t )= 14t , ······································································ 12分解得:t = 214. ············································································ 13分因此当t = 214时,S △PCG ∶S △CQG =1∶3.22.解:(1) 由抛物线y =ax 2+bx +c 经过点A 、B 、C ,可得: ⎩⎪⎨⎪⎧c =3a +b +c =09a +3b +c =0,解得:⎩⎪⎨⎪⎧a =1b =-4c =3, ····················································· 3分 ∴抛物线的解析式为y =x 2-4x +3. ················································· 4分 (2) 解:过点G 作GF ⊥x 轴,垂足为F .设点G 坐标为(m ,m 2-4m +3), ∵点D (2,-1), ··········································································· 5分 又∵B (3,0),C (0,3),∴由勾股定理得:CD =25,BD =2,BC =32, ∵CD 2=BC 2+BD 2,∴△CBD 是直角三角形,………………………6分∴tan ∠GAF = tan ∠BCD = 13.∵tan ∠GAF = GF AF = 13,∴ AF =3GF ……7分即 -3(m 2-4m +3)=m -1,解得:m 1=1(舍去),m 2= 83. ·························································· 8分∴点G 的坐标为( 8 3,- 59). ··························································· 9分(3)∵点D 的坐标为(2,-1), ∴△ABD 是等腰直角三角形,∴圆心E 是线段AB 的中点,即E (2,0),半径为1,………10分 设P (x 1,y 1)(1<x 1<3,y 1≠0),M (3,y 0),作PF ⊥x 轴,F 为垂足. ∵点A 、P 、M 三点在一条直线上, ∴ y 0 y 1=2x 1-1 ,即y 0=2y 1x 1-1 .∴tan ∠MEB = y 0 EB =2y 1x 1-1,…… 11分∵AB 为直径, ∴∠APB =90°,∴∠PBA =∠APF , ……………12分∴tan ∠PBA =tan ∠APF = x 1-1y 1,……………13分∴tan ∠MEB ·tan ∠PBA =2y 1x 1-1 · x 1-1y 1=2.……………14分 另解:同上,连接PE ,∵PE =1,PF =y 1, EF =x 1-2,在Rt △PEF 中, 根据勾股定理得:(x 1-2)2+y 21=1, 即1-(x 1-2)2=y 2 1, ………………………………………12分, ∵tan ∠PBA =y 13-x 1, ……………………………………13分∴tan ∠MEB ·tan ∠PBA =2y 2 1 -(x 21-4x 1+3) =2y 2 11-(x 1-2)2 =2.……14分 (没有加绝对值或没有分类讨论扣1分)。
2019年福建省中考数学试题及答案

2019年福建省初中学业水平考试数 学(试卷满分:150分 考试时间:120分钟)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.计算22+(-1)0的结果是( )A .5B .4C .3D .22.北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ) A .72×104 B .7.2×105 C .7.2×106 D .0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .直角三角形 C .平行四边形 D .正方形4.右图是由一个长方体和一个球组成的几何体,它的主视图是( )A .B .C .D .5.已知正多边形的一个外角是36°,则该正多边形的边数为( ) A .12 B .10 C .8 D .66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A .甲的数学成绩高于班级平均分,且成绩比较稳定B .乙的数学成绩在班级平均分附近波动,且比丙好C .丙的数学成绩低于班级平均分,但成绩逐次提高D .就甲、乙、丙三个人而言,乙的数学成绩最不稳定 7.下列运算正确的是( ).A .a ·a 3=a 3B .(2a )3=6a 3C .a 6÷a 3=a 2D .(a 2)3-(-a 3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ) A .x +2x +4x =34 685 B .x +2x +3x =34 685 C .x +2x +2x =34 685 D .x +12x +14x =34 685次数主视图9.如图,P A 、PB 是⊙O 的两条切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( ) A .55° B .70° C .110° D .125°10.若二次函数y =|a |x 2+bx +c 的图象过不同的五点A (m ,n ),B (0,y 1),C (3-m ,n ),D (2,y 2),E (2,y 3),则y 1, y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 二、填空题(每小题4分,共24分) 11.因式分解:x 2-9= .12.如图,数轴上A 、B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 . 13.某校征集校运会会徽图案,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100位学生, 其中60位学生喜欢甲图案,若该校共有学生2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生 有 人.14.在平面直角坐标系xOy 中,□OABC 的三个顶点分别为O (0,0),A (3,0),B (4,2),则其第四个顶点C 的坐标 是 .15.如图,边长为2的正方形ABCD 的中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交 点,则图中阴影部分的面积为 .(结果保留π)16.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为 .第15题图 第16题图三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组:⎩⎪⎨⎪⎧x -y =52x +y =4.18.(本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF =CE .A19.(本小题满分8分)先化简,再求值:(x -1)÷(x -2x -1x ),其中x =2+1已知△ABC为和点A',如图,(1)以点A'为一个顶点作△A'B'C',使得△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D,E,F分别是△ABC三边AB,BC,CA的中点,D',E',F'分别是你所作的△A'B'C'三边A'B',B'C',A'C'的中点,求证:△DEF∽△D'E'F'.AA'21.(本小题满分8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一个角度α得到△DEC,点A,B的对应点分别为D,E.(1)若点E恰好落在边AC上,如图1,求∠ADE的大小;(2)若α=60°,F为AC的中点,如图2,求证:四边形BEDF是平行四边形.图1 图2某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元。
2019年福州市质检理科试卷与解答

2019年福州市普通高中毕业班质量检测参考答案数学(理科)试卷 (完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足i 1i z ⋅=-,则z 的共轭复数为 A.1i -+ B. 1i + C. 1i -- D. 1i -【简解】因为1i1i iz -==--,所以1+i z =-,故选A . 2.已知集合{}{}2213,20A x x B x x x =+>=--<,则AB =A. {}12x x <<B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >- 【简解】因为{}{}1,12A x x B x x =>=-<<,所以{}1AB x x =>-,故选D .3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25【简解】A 中的m 值应为12; B 中应为380人; C 是正确的; D 中的分段间隔应为20,故选C . 4.等比数列{}n a 的各项均为正实数,其前n 项和为n S .若3264,64aa a ==,则5S =A. 32B. 31C. 64D.63【简解】解法一:设首项为1a ,公比为q ,因为0n a >,所以0q >,由条件得21511464a q a q a q ⎧⋅=⎪⎨⋅=⎪⎩,解得112a q =⎧⎨=⎩,所以531S =,故选B .解法二:设首项为1a ,公比为q ,由226464a a a ==,又34a =,∴2q =,又因为214a q ⋅=所以11a =,所以531S =,故选B .5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1 D. 32【简解】解法一:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得, πcos 3θ⎛⎫- ⎪⎝⎭=cos01=,故选C .解法二:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3cos 62θ⎛⎫-= ⎪⎝⎭, 所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C . 6.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线 AF 的斜率为3-,则PAF △的面积为A. 23B. 43C.8D. 83【简解】解法一:设准线与x 轴交于点Q ,因为直线AF 的斜率为3-, 2FQ =,60AFQ ∴∠=, 4FA =,又因为PA PF =,所以PAF △是边长为4的等边三角形,所以PAF △的面积为22334=4344FA ⨯=⨯.故选B . 解法二:设准线与x 轴交于点Q ,,)Pm n (,因为直线 AF 的斜率为3-, 2FQ =,60AFQ ∴∠=,所以23AQ =,所以23n =±,又因为24n m =,所以3m =,又因为4PA PF ==, 所以PAF △的面积为11423=4322PA n ⨯⨯=⨯⨯.故选B . 7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A.32 B.16 C.323 D.803【简解】由三视图知,所求几何体的体积为直三棱柱的体积减去三第7题棱锥的体积321180442=323⨯-⨯⨯⨯12.故选D . 8.已知函数()()2sin f x x ωϕ=+0,ωϕπ⎛⎫><⎪2⎝⎭图象的相邻两条对称轴之间的距离为π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象.若函数()g x 为偶函数,则函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是 A. 1,12⎛⎤- ⎥⎝⎦B. ()1,1-C. (]0,2D.(]1,2- 【简解】由图象的相邻两条对称轴之间的距离为π2,所以T =π,又因为0ω>,所以2ωπ=π,解得=2ω.0,ωϕ><π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数2()2sin 23g x x ϕπ⎛⎫=++ ⎪⎝⎭的图象.因为函数()g x 为偶函数,所以2,32k k ϕππ+=π+∈Z ,由ϕπ<2,解得 =6ϕπ- ,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭.因为02x π<<,所以1sin 2126x π⎛⎫-<-≤ ⎪⎝⎭,所以函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是(]1,2-,故选D .9. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]11x ∈-,,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为A.-1B.35 C. 1 D. 35- 【简解】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()()2222,22x x x xg x h x --+==-.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ---≤==-+++-,∵2141xy =-+为增函数,∴max 231415x ⎛⎫-= ⎪+⎝⎭,故选B .10.如图,双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过2F 作线段2F P 与C 交于点Q ,且Q 为2PF 的中点.若等腰△12PF F 的底边2PF 的长等于C 的半焦距,则C 的离心率为A.22157-+ B. 23 C. 22157+ D.32【简解】连结1QF ,由条件知12QF PF ⊥,且22c QF =.由双曲线定义知122cQF a =+,在12Rt F QF △中,()2222222c c a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,解得C 的离心率22157e +=,故选C .11.如图,以棱长为1的正方体的顶点A 为球心,以2为半径做一个球面,则该正方体的表面被球面所截得的所有弧长之和为 A. 34πB.2π C.32π D.94π【简解】正方体的表面被该球面被所截得的弧长有相等的三部分,例如,与上底面截得的弧长是以1A 为圆心,1为半径的圆周长的14,所以弧长之和为23342ππ⨯=.故选C. 12. 已知数列{}n a 满足11a =,()2122124n n n n n a a a na n ++=++,则8a =A.64892- B. 32892- C. 16892- D. 7892- 【简解】因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n na na n a n a +++=+, 所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 第10第11题图所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n n b a =+,则21n n b b +=,两边取对数得1lg 2lg n n b b +=,又111lg lg 2lg3b a ⎛⎫=+=⎪⎝⎭,所以数列{}lg n b 是首项为lg 3,公比为2的等比数列. 所以112lg lg32lg3n n n b --=⋅=,所以123n n b -=,即1232n n n a -+=,从而1232n n na -=-,将8n =代入,选A.法二、因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n n a na n a n a +++=+, 所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n n b a =+,则21n n b b +=,因为13b =,所以223b =,所以()224333b ==,所以()248433b ==,…,所以7264839b ==。
2019年福州市质检理科数学试卷

2019年福州市普通高中毕业班质量检测数学(理科)试卷 (完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足i 1i z ⋅=-,则z 的共轭复数为 A. 1i -+ B. 1i + C. 1i -- D. 1i -2.已知集合{}{}2213,20A x x B x x x =+>=--<,则A B U = A. {}12x x << B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >-3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:参加场数1234567参加人数占调查人数的百分比 8% 10% 20% 26% 18% m% 4% 2% 以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 4.等比数列{}n a 的各项均为正实数,其前n 项和为n S .若3264,64a a a ==,则5S =A. 32B. 31C. 64D.63 5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1 D. 326.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥错误!未找到引用源。
福建省晋江区安海片区2019年春季期中联合教学质量监测八年级数学学科测试卷

安海片区2019年春季期中联合教学质量监测初二年数学科试卷(考试时间120分钟,总分150分) 命题者:养正中学 肖栋梁 审核者:林火炬第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有理式()3211215,,,,,321x y x m n R m n x a m n yπππ+--+-+,中,分式有( )个. A .7 B .2 C .5 D . 42.将分式2x yx-中的x y ,的值同时扩大为原来的3倍,则分式的值( ) A .缩小为原来的13 B .扩大到原来的9倍 C .不变 D .扩大到原来3倍3.将方程11122xx x--=--的两边同乘()2x -,约去分母,得( )A .()111x --=B .()111x +-=C .()112x x --=-D .()112x x +-=-4. 如果2206x x x -=--,则x 等于( ) A .2± B .2- C. 2 D .35. 已知点()1,23P a a +-在第一象限,则a 的取值范围是( ) A .1a <- B .32a > C.312a -<< D .312a -<< 6. 函数y =的自变量x 的取值范围是( ) A .3x < B .3x ≠ C .3x > D .3x ≥7. 如图所示,在ABC 中,,AB AC =点D 为BC 上一点,//DE AC 交AB 于点,//E DF AB 交AC 于点F ,则四边形AEDF 的周长等于这个三角形的( )A .周长B .周长的一半C .两腰长和的一半D .两腰长的和8. 一次函数(,y kx b k b =+是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )A .2x >-B .0x >C .2x >D .0x <9.如果长方形的面积为26cm ,那么它的长ycm 与宽xcm 之间的函数关系用图象表示大致( )A .B .C .D .10. 如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1131)),(,22(A B C ,,,,当直线12y x b =+与ABC 有交点时,b 的取值范围是( )A .11b ≤≤-B .112b ≤≤-C .1122b ≤≤-D .112b ≤≤- 二、填空题(每题4分,满分24分,将答案填在答题纸上)11.当x 时,分式31xx +有意义. 12.生物学家发现一种病毒的直径为0.000043,m 用科学计数法表示为 _m . 13. 点2(3)P -,关于y 轴的对称点为P ',则点P '的坐标为_ .14. 已知m 是整数,且一次函数()32y m x m =+++的图象不过第二象限,则m = .15.在函数2(1k y k x --=为常数)的图象上有三个点()()12312,,1,,,(),2y y y --函数值123, ,y y y 的大小为 . 16.如图,已知反比例函数()0ky x x=>与正比例函数(0)y x x =≥的图象,点4(1)A ,,点)'(4A b ,与点'B 均在反比例函数的图象上,点B 在直线y x =上,四边形''AA B B 是平行四边形,则B 点的坐标为_ .三、解答题 (本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17. 计算:()2120192π-⎛⎫- ⎪⎝⎭18.先化简,再求值:224124x x x +⎛⎫-÷ ⎪--⎝⎭,其中2x =. 19. 解方程:283111x x x ++=--. 20.如图,在平行四边形ABCD 中,对角线,AC BD 交于点,O 经过点O 的直线交AB 于E ,交CD 于,F 求证:OE OF =.21.如图,在平面直角坐标系中,过点()2,0A -作y 轴的平行线交反比例函数ky x=的图象于点B ,32AB =.()1求反比例函数的表达式;()2若()1122(),P x y Q x y ,,是该反比例函数图象上的两点,且12x x <时,12,y y >指出点,P Q 各位于哪个象限?并简要说明理由.22.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.()1求原计划每天生产的零件个数和规定的天数;()2为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.23.设,a b 是任意两个不等实数,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],a b .对于一个函数,如果它的自变量x 与函数值y 满足:当m y n ≤≤,我们就称此函数是闭区间[],m n 上的“闭函数”.()1反比例函数2019y x=是闭区间[1]2019,上的“闭函数”吗?请判断并说明理由; ()2若一次函数()0y kx b k =+≠是闭区间[],m n 上的“闭函数”,求此函数的解析式; 24.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A B ,两处出发,沿轨道到达C 处,B 在AC 上,甲的速度是乙的速度的1.5倍,设t (分)后甲、乙两遥控车与B 处的距离分别为12d d ,,则12d d ,与t 的函数关系如图,试根据图象解决下列问题:()1填空:乙的速度2v =______ ___米/分; ()2写出1d 与t 的函数关系式;()3若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?25.如图()1,在平面直角坐标系中,()(),0,0,A a B b ,且a b 、满足()220a -=.()1写出直线AB 的解析式_ ;()2若点C 为直线y mx =一点,且ABC 是等腰直角三角形,求m 值;()3如图()2,过A 点的直线2y kx k =-交y 轴负半轴于,P N 点的横坐标为1-,过N 点的直线22k k y x =-交AP 于点,M 试证明PM PNAM-的值为定值.安海片区2019年春季期中联合教学质量监测初二数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题4分,共40分)1.D 2.A 3.D 4.C 5.B 6.A 7.C 8.A 9.C 10.B 二、填空题(每小题4分,共24分) 11、31-≠x ; 12、5-103.4⨯; 13、(-3,-2); 14、-2; 15、213y y y <<; 16、()1313,。
2019年福建省福州市中考数学试卷及解析(word版)

2019年福建省福州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2019年福建福州)﹣5的相反数是()A.﹣5 B.5C.D.﹣分析:根据相反数的定义直接求得结果.解:﹣5的相反数是5.故选:B.点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(2019年福建福州)地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×105C.1.1×104D.0.11×105分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将110000000用科学记数法表示为:1.1×105.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2019年福建福州)某几何体的三视图如图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选D.点评:考查了由三视图判断几何体的知识,主视图和左视图的大致轮廓为长方形的几何体为锥体.4.(2019年福建福州)下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a分析:根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.解;A.x4•x4=x16,故本小题错误;B.(a3)2=a5,故本小题错误;C.(ab2)3=ab6故本小题错误;D.a+2a=3a,正确.故选:D.点评:本题主要考查了同底数幂相乘,幂的乘方的性质,积的乘方的性质,合并同类项,熟练掌握运算性质并理清指数的变化是解题的关键.5.(2019年福建福州)若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44 B.45 C.46 D.47分析:先求出这组数的和,然后根据“总数÷数量=平均数”进行解答即可;解:平均数为:(40+42+43+45+47+47+58)÷7=322÷7=46(千克);故选C.点评:此题考查了平均数的计算方法,牢记计算方法是解答本题的关键,难度较小.6.(2019年福建福州)下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°分析:分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选B.点评:本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.7.(2019年福建福州)若(m﹣1)2+=0,则m+n的值是()A.﹣1 B.0C.1D.2分析:根据非负数的性质,可求出m、n的值,然后将代数式化简再代值计算.解:∵(m﹣1)2+=0,∴m﹣1=0,n+2=0;∴m=1,n=﹣2,∴m+n=1+(﹣2)=﹣1故选:A.点评:考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2019年福建福州)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=分析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.点评:此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.(2019年福建福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°分析:根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.解:∵四边形ABCD是正方形,∴AB=AD又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°∴AD=AE∴∠ABE=∠AEB,∠BAE=90°+60°=150°∴∠ABE=(180°﹣150°)÷2=15°又∵∠BAC=45°∴∠BFC=45°+15°=60°故选:C.点评:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.10.(2019年福建福州)如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1C.D.分析:作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图象上点的坐标特征得到A(2,0),B(0,2),易得△AOB为等腰直角三角形,则AB=OA=2,所以EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1;设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),根据反比例函数图象上点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,这样可确定E点坐标为(,),然后根据反比例函数图象上点的坐标特征得到k=×.解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形∴FD=DE=EF=1,设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选D.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(共5小题,每小题4分,满分20分)11.(2019年福建福州)分解因式:ma+mb=.分析:这里的公因式是m,直接提取即可.解:ma+mb=m(a+b).点评:本题考查了提公因式法分解因式,公因式即多项式各项都含有的公共的因式.12.((2019年福建福州)若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.分析:根据不合格品件数与产品的总件数比值即可解答.解:∵在5个外观相同的产品中,有1个不合格产品,∴从中任意抽取1件检验,则抽到不合格产品的概率是:.故答案为:.点评:本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(2019年福建福州)计算:(+1)(﹣1)=.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解:(+1)(﹣1)=.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.14.(2019年福建福州)如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD 的周长是.分析:根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.点评:本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.15.(2019年福建福州)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.分析:根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.点评:本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.三、解答题(满分90分)16.(2019年福建福州)(1)计算:+()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式、单项式成多项式,可化简整式,根据代数式求值,可得答案.解:(1)原式=3+1+1=5;(2)原式=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=2+4=6.点评:本题考查了实数的运算,熟练掌握零指数幂、绝对值、二次根式的运算.17.(2019年福建福州)(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D.(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连接AA1,BB1,并计算梯形AA1B1B的面积.分析:(1)根据全等三角形的判定与性质,可得答案;(2)根据正弦函数的定义,可得答案;根据轴对称性质,可作轴对称图形,根据梯形的面积公式,可得答案.(1)证明:BE=CF,∴BE+EF=CF+EF.即BF=CE.在△ABF和△DCE中,,∴△ABF≌△DCE(SAS).∴∠A=∠D;(2)解:①∵AC=3,BC=4,∴AB=5.sinB=;②如图所示:由轴对称性质得AA1=2,BB1=8,高是4,∴==20.点评:本题考查了全等三角形的判定与性质,利用了等式的性质,全等三角形的判定与性质.18.(2019年福建福州)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?分析:(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.点评:此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(2019年福建福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?分析:(1)设A商品每件x元,B商品每件y元,根据关系式列出二元一次方程组.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件,根据关系式列出二元一次不等式方程组.求解再比较两种方案.解:(1)设A商品每件x元,B商品每件y元,依题意,得,解得.答:A商品每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件解得5≤a≤6根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.点评:此题主要考查二元一次方程组及二元一次不等式方程组的应用,根据题意得出关系式是解题关键.20.(2019年福建福州)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.分析:(1)根据题意得出AE的长,进而得出BE=AE,再利用tan∠ACB=,求出EC的长即可;(2)首先得出AC的长,再利用圆周角定理得出∠D=∠M=60°,进而求出AM的长,即可得出答案.解:(1)过点A作AE⊥BC,垂足为E,∴∠AEB=∠AEC=90°,在Rt△ABE中,∵sinB=,∴AE=ABsinB=3sin45°=3×=3,∵∠B=45°,∴∠BAE=45°,∴BE=AE=3,在Rt△ACE中,∵tan∠ACB=,∴EC====,∴BC=BE+EC=3+;(2)连接AO并延长到⊙O上一点M,连接CM,由(1)得,在Rt△ACE中,∵∠EAC=30°,EC=,∴AC=2,∵∠D=∠M=60°,∴sin60°===,解得:AM=4,∴⊙O的半径为2.点评:此题主要考查了解直角三角形以及锐角三角函数关系应用,根据题意正确构造直角三角形是解题关键.21.(2019年福建福州)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=1,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.分析:(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•cos30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PBO,∴,即,化简得:AQ•PB=3.点评:本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.22.(2019年福建福州)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.分析:(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=()2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,).点评:本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.第 11 页共 11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年年福州市九年年级质量量检测数学试题
⼀一、选择题:本题共10⼩小题,每⼩小题4分,共40分
1.下列列天⽓气预报的图标中既是轴对称图形⼜又是中⼼心对称图形的是().
2.地球绕太阳公转的速度约为110000千⽶米/时,将110000⽤用科学记数法表示正确是(
).A.1.1×106 B.1.1×105 C.11×104 D.11×106
3.已知△ABC ∽△DEF ,若⾯面积⽐比为4:9,则它们对应⾼高的⽐比是(
).A.4:9 B.16:81 C.3:5 D.2:3
4.若正数x 的平⽅方等于7,则下列列对x 的估算正确的是(
).A.1<x <2 B.2<x <3 C.3<x <4 D.4<x <5
5.已知a ∥b ,将等腰直⻆角三⻆角形ABC 按如图所示的⽅方式放置,其中锐⻆角顶
点B ,直⻆角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是(
).A.15° B.22.5° C.30° D.45°
6.下列列各式的运算或变形中,⽤用到分配律律的是(). A.2×3=6 B.(ab )2=a 2b 2 C.由x +2=5得x =5-2
D.3a +2a =5a 7.不不透明的袋⼦子中装有除颜⾊色外完全相同的a 个⽩白球、b 个红球、c 个⻩黄球,则任意摸出⼀一个球是红球的概率是(). A. B. C. D.
8.如图,等边三⻆角形ABC 边⻓长为5、D 、E 分别是边AB 、AC 上的点,
将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,
则BD 的⻓长是(
). A. B. C.3 D.2
9.已知Rt △ABC ,∠ACB =90,AC =3,BC =4,AD 平分∠BAC ,
则点B 到射线AD 的距离是().A.2 B. C. D.3
10.⼀一套数学题集共有100道题,甲、⼄乙和丙三⼈人分别作答,每道题⾄至少有⼀一⼈人解对,且每⼈人都解对了了其中的60道.如果将其中只有1⼈人解对的题称作难题,2⼈人解对的题称作中档题,3⼈人都解对的题称作容易易题,那么下列列判断⼀一定正确的是().
D .
C .A .B .
A.容易易题和中档题共60道
B.难题⽐比容易易题多20道
C.难题⽐比中档题多10道
D.中档题⽐比容易易题多15道
⼆二、填空题:本题共6⼩小题,每⼩小题4分,共24分
11.分解因式:m 3-4m =________.
12.若某⼏几何体从某个⽅方向观察得到的视图是正⽅方形,
则这个⼏几何体可以是________.
13.如图是甲、⼄乙两射击运动员10次射击成城的折线
统计图,则这10次射击成绩更更稳定的运动员是________.
14.若分式的值是负整数,则整数m 的值是________.15.在平⾯面直⻆角坐标系中,以原点为圆⼼心,5为半径的⊙O 与线y=kx +2k +3(k ≠0)交于A ,B 两点,则弦AB ⻓长的最⼩小值是________.
16.如图,在平⾯面直⻆角坐标系中,O 为原点,点A 在第⼀一象限,
点B 是x 轴正半轴上⼀一点,∠OAB =45°,双曲线y =过
点A ,交AB 于点C ,连接OC ,若OC ⊥AB ,则tan ∠ABO
的值是________.
三、解答题:本题共9⼩小题,共86分
17.(8分)计算:|-3|+·tan30°-(3.14-)°
18.(8分)如图,已知∠1=∠2,∠B =∠D ,求证:CB=CD .⼄乙甲次数
12345678910O 678910成绩/环2
1
D A
B
C
19.(8分)先化简,再求值:(1-)÷,其中x=+1
20.(8分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得点O在边AB上,且⊙O经过B、D两点;并证明AC与⊙O相切.(尺规作图,保留留作图痕迹,不不写作法)
21.(8分)
如图,将△ABC沿射线BC平移得到△A'B'C',使得点A'落在
∠ABC的平分线BD上,连接AA'、AC'.
(1)判断四边形ABB'A'的形状,并证明;
(2)在△ABC中,AB=6,BC=4,若AC⊥A'B',
求四边形ABB'A'的⾯面积.
22.(10分)为了了解某校九年年级学⽣生体能训练情况,该年年级在3⽉月份进⾏行行了了⼀一次体育测试,决定对本次测试的成绩进⾏行行抽样分析.已知九年年级共有学⽣生480⼈人,请按要求回答下列列问题:(1)把全年年级同学的测试成绩分别写在没有明显差别的⼩小纸⽚片上,揉成⼩小球,放到⼀一个不不透明的袋⼦子中,充分搅拌后,随意抽取30个,展开⼩小球,记录这30张纸⽚片中所写的成绩
得到⼀一个样本,你觉得上⾯面的抽取过程是简单随机抽样吗?
答:________(填“是”或“不不是”)
(2)下表是⽤用简单随机抽样⽅方法抽取的30名同学的体育测试成绩(单位:分):
59697773726279786691
85848384868788858689
90979198909596939299
若成绩为x分,当x≥90时记为A等级,80≤x<90时记为B等级,70≤x<80时记为C
等级,x<70时记为D等级,根据表格信息,解答下列列问题:
①本次抽样调查获取的样本数据的中位数是________;
估计全年年级本次体育测试成绩在A、B两个等级的⼈人数是________;
②经过⼀一个多⽉月的强化训练发现D等级的同学平均成绩提⾼高15分,C等级的同学平均
成绩提⾼高10分,B等级的同学平均成绩提⾼高5分,A等级的同学平均成绩没有变化,
请估计强化训练后全年年级学⽣生的平均成绩提⾼高多少分?
23.(10分)某汽⻋车销售公司销售某⼚厂家的某款汽⻋车,该款汽⻋车现在的售价为每辆27万元,每⽉月可售出两辆.市场调查反映:在⼀一定范国内调整价格,每辆降低0.1万元,每⽉月能多卖⼀一辆.已知该款汽⻋车的进价为每辆25万元.另外,⽉月底⼚厂家根据销售量量⼀一次性返利利给销售公司,销售量量在10辆以内(含10辆),每辆返利利0.5万元:销售量量在10辆以上,超过的部分每辆返利利1万元.设该公司当⽉月售出x辆该款汽⻋车.(总利利润=销售利利润⼗十返利利)
(1)设每辆汽⻋车的销售利利润为y万元,求y与x之间的函数关系式;
(2)当x>10时,该公司当⽉月销售这款汽⻋车所获得的总利利润为20.6万元,求x的值
24.(13分)在正边形ABCD中,E是对⻆角线AC上⼀一点(不不与点A、C重合),以AD、AE为邻边作平⾏行行四边形AEGD,GE交CD于点M,连接CG.
(1)如图1,当AE<AC时,过点E作EF⊥BE交CD于点F,连接GF并延⻓长交AC于点H.
①求证:EB=EF;
②判断GH与AC的位置关系,并证明.
(2)过点A作AP⊥直线CG于点P,连接BP,若BP=10,当点E不不与AC中点重合时,求PA 与PC的数量量关系.
25.(13分)已知抛物线y=-(x+5)(x-m)(m>0)与x轴交于点A、B(点A在点B的左边),
与y轴交于点C.
(1)直接写出点B、C的坐标;(⽤用含m的式⼦子表示)
(2)若抛物线与直线y=x交于点E、F,且点E、F关于原点对称,求抛物线的解析式;
(3)若点P是线段AB上⼀一点,过点P作x轴的垂线交抛物线于点M,交直线AC于点N,当线段MN⻓长的最⼤大值为时,求m的取值范围.
参考答案
⼀一、ABDBC DCBCB
⼆二、11.m(m+2)(m-2)12.正⽅方体13.甲14.415.416.三、
2019福州质检(彭雪林林制)第11⻚页共5⻚页。