斑岩型矿床

合集下载

高级矿床学8找矿案例斑岩矿床

高级矿床学8找矿案例斑岩矿床

找矿过程中遇到的问题及解决方案
01
地质条件复杂
针对复杂的地质条件,采用多种地质勘探手段(如地质填图、钻探、坑
探等)进行综合分析,提高找矿准确率。
02 03
隐伏矿床识别难
对于隐伏的斑岩型矿床,运用地球物理勘探(如磁法、电法、重力勘探 等)和地球化学勘探(如土壤地球化学测量、岩石地球化学测量等)手 段进行有效识别。
02 斑岩矿床地质特征
矿区地质背景
01
02
03
构造背景
斑岩矿床通常形成于板块 俯冲带、碰撞造山带等构 造活动强烈的地区,与区 域构造演化密切相关。
地层与岩浆岩
矿区内地层发育,岩浆活 动频繁,为成矿提供了丰 富的物质来源和热能。
地球化学特征
矿区地球化学异常明显, 表现为元素组合复杂、异 常强度高、规模大等特点。
在有利成矿区域加强地质调查,查 明区域构造、岩浆活动和地层岩性
条件,为找矿提供基础资料。
深化综合找矿方法
运用地质、地球物理、地球化 学和遥感等综合找矿方法,提 高找矿效果和精度。
重视成矿预测研究
在成矿规律研究的基础上,开展 成矿预测研究,圈定找矿远景区 和靶区,为找矿提供科学依据。
加强国际合作与交流
战略意义
斑岩型矿床是当今世界铜、钼、金等有 色金属和贵金属的重要来源,对国家的 经济建设和国防安全具有战略意义。
研究背景与目的
研究背景
随着全球经济的持续发展和资源需求的不断增加,寻找新的斑岩矿床成为地质学 领域的重要任务。
研究目的
通过对斑岩矿床的深入研究,旨在揭示其成矿规律、控矿因素和找矿标志,为地 质找矿工作提供理论指导和技术支持。同时,通过对斑岩矿床的地球化学、地球 物理和遥感等勘探方法的研究,提高找矿效率和准确性。

宝山矿区斑岩型矿床地质特征与找矿思路

宝山矿区斑岩型矿床地质特征与找矿思路

宝山矿区斑岩型矿床地质特征与找矿思路宝山矿区是我国重要的矿产资源区之一,位于江苏南部的宝应县境内,是一处以斑岩型矿床为主的矿区。

本文将分析宝山矿区斑岩型矿床的地质特征与找矿思路。

一、地质背景宝山矿区位于扬子板块东缘中段,是长江与淮河之间,由华南岩体与华北岩体相互交错的地带。

该地区早生代时期经历了岛弧的形成和消失,从而形成了岩浆-热液成矿作用的良好条件。

随着板块构造演化,该地区先后发生了多期活动的岩浆侵入和断裂变形作用,形成了一系列的斑岩型矿床。

二、矿床类型宝山矿区主要矿化类型为铜、钼、铅、锌、金、银等多金属矿床。

其中,铜、钼矿床主要分布在宝山南部和西南部,以斑岩型矿床为主,富含铜、钼等元素。

铅、锌矿床则主要分布在矿区东部和北部,以层控型矿床为主。

金、银矿床则分布广泛,主要是以层控型、脉状型和胶体型为主。

三、地质特征1. 斑岩体:宝山矿区的斑岩体主要是花岗斑岩、斑岩和正长岩等,都是岩浆热液作用的产物。

这些斑岩体与区域断裂和构造破碎带密切相关,形成了多个矿化中心。

2. 矿化类型:宝山矿区的矿化类型多样,主要包括硫化物型、氧化物型、碳酸盐型和含钼型矿床。

这些矿床的矿物组成、成矿物质来源和成矿环境各异。

3. 矿化特征:宝山矿区的铜、钼矿床主要由斑岩体内嵌的硫化物矿物组成,包括黄铜矿、黄铜母矿、闪锌矿、黝黑铜矿等。

这些矿物形成了复杂的矿物粒度和组成结构,有些还具有显微孪生现象。

另外,钼矿床中还含有蓝鸟石、黄钾石、鸟石石等常见的硅酸盐矿物。

4. 控矿因素:宝山矿区斑岩型矿床控矿因素主要是构造和岩体特征。

区域性断裂和构造破碎带是矿床形成的重要地质背景,是矿床形成的重要条件。

而岩体特征主要是指斑岩体的形状、构造和化学成因等,这些因素都对矿床的形成、成矿物质的来源和矿床特征产生了影响。

四、找矿思路1. 选址:在找矿前需要对区域的地形、地质、地球物理等方面进行综合分析,选择可能具有矿化条件和找矿潜力的区域。

2. 实施地质调查:在选定的矿区内进行实地地质调查,主要包括岩石、地形、地貌、断层、岩浆岩、热液交代等方面的调查和分析。

简述斑岩型矿床围岩蚀变分带特征

简述斑岩型矿床围岩蚀变分带特征

简述斑岩型矿床围岩蚀变分带特征
1斑岩型矿床围岩蚀变分带
斑岩型矿床所产生的放射性蚀变被称为斑岩蚀变,其中的围岩蚀变也受到了较大的关注。

围岩蚀变是由矿体周围的岩石在矿体形成过程中受到放射性蚀变的影响而形成的。

围岩蚀变的分带特征表明了矿体的放射性腐蚀和热作用的分布规律,指示出矿床特征,也可以为矿藏的空间分布和勘探提供有效依据。

矿体放射性蚀变所形成的围岩蚀变分带现象一般表现为以绿色—黄色—红色沿外部放射性腐蚀台地向内部无放射性腐蚀台地递增分布,并且呈现出核-壳向外递减的趋势。

这种分带现象可分为三个分带,即绿色氧化带、黄色氧化半氧化带和红色半氧化带。

绿色氧化带是岩石的表层处于斑岩放射腐蚀的影响下,形成的最活跃的氧化分带,岩石表面中会表现出氧化、泥状裂痕等特征。

黄色氧化半氧化带是斑岩放射性腐蚀影响较轻,岩石表面变紫黄色,表面出现半氧化现象,岩石内多出现裂隙。

红色半氧化带是斑岩放射性腐蚀影响最弱,岩石表面出现红、褐色,表现出半氧化、抽屉现象和钢类结晶变形现象,岩石内出现大量的放射性腐蚀裂痕。

围岩蚀变的缝隙带现象在斑岩放射性腐蚀缘带内表现特别明显,这种缝隙带形式多样,分为水平缝隙带和垂直缝隙带。

水平缝隙带形成在斑岩放射性腐蚀台地内,通常与围岩蚀变分带形成横截面。

垂直
缝隙带表现为在矿体外围、周围,以及与矿体联系紧密的地方,垂直于矿体表面上形成块状装配裂隙。

围岩蚀变可以提供有效的矿化正常和非正常分布状态的线索,从而可以有助于勘探过程中发现未被发现的矿赋矿性。

围岩蚀变的研究也是当今矿床学的重要分支,也是许多诸如矿物学,岩石学,放射性放射带控制等学科发展的基础。

热液矿床类型及特征(斑岩型矿床)

热液矿床类型及特征(斑岩型矿床)

斑岩型矿床
--特点
• 经济特点
矿床埋藏深度浅,适合于大规模、机械化露天开采。
矿石品位较低( Cu 一般为 0 .4 - 1 % ) ,但矿化分布均匀, 矿石工艺性能稳定,可选性好。
矿床常成群、成带分布,规模巨大;
矿石中常伴生有多种有用组份可供综合利用,除 Cu 、 Mo 、Au 、W 、Sn 、Pb 、Zn 外,尚可综合回收 Ag 、 Re(铼)、 Co 、S 、Se(硒)、Te(碲)等元素。
本节内容
斑 斑岩型矿床的概念 岩 斑岩型矿床的形成条件
斑岩型矿床的特点
型 斑岩型矿床的成因 矿 斑岩型矿床的类型 床
斑岩型矿床
① 物理化学条件 ② 岩浆岩条件 ③ 地层条件 ④ 构造条件
--形成条件
斑岩型矿床 形成条件——物理化学条件
• 温度 • ——斑岩型矿床的形成经历了高、中温热液阶段 • ——黑云母化和钾长石化形成于 700 ~ 600 ℃ • ——石英-绢云母化形成于 420 ℃ 左右 • ——泥化蚀变形成于300 ~ 100 ℃ • ——硫化物形成于 350 ~ 250 ℃ • 深度 • ——中深到浅成的范围(2 ~ 5公里) • (次火山环境的产物)
非金属矿物主要为石英,次为绢云母、绿泥石、重晶石等。
斑岩型矿床
--特点
• 地质特点-矿石组构
矿石构造以细脉浸染状为主; 由矿化中心向外依次为:浸染状→细脉浸染状→细脉状、脉状。
斑岩型矿床
--特点
斑岩型矿床典型矿化及其分带
斑岩型矿床典型矿石构造及其分带
斑岩型矿床
--特点
• 地质特点-矿床的氧化和次生富集作用
这是当前世界上最大的人为挖掘矿坑
斑岩型矿床
--概念

第六章3 斑岩型矿床及玢岩型矿床

第六章3 斑岩型矿床及玢岩型矿床

Stockwork of wolframite-bearing fractures cutting intensely altered breccia
Mineralized breccia containing granite clasts with wolframite-bearing fractures that are truncated at the margins of the clasts, indicating that the granite was mineralized prior to the incorporation of the clasts in the breccia; wolframite (wf) also occurs as disseminated grains in breccia matrix
中国斑岩型矿床
陆内环境
陆内环境
大陆碰撞带
大陆碰撞带
陆内环境
From:侯增谦
中国东部燕山期陆内斑岩型矿床
德兴Cu-Au
冷水坑Pb-Zn-Ag
From:侯增谦
东秦岭斑岩Mo矿带
From:侯增谦
岩浆岩
在时间上、空间上和成因上均与斑状结构的中酸性浅成 − 超浅成侵入体有关,如花岗闪长斑岩、石英二长斑岩、二长 斑岩、石英斑岩、粗安斑岩、英安斑岩等,它们常与玄武岩
Chalcopyrite disseminated along foliation planes and in a crosscutting quartz vein in deformed biotite-rich mafic breccia
From:gsc.nrcan.gc.ca
矿体形态产状
受侵入体和接触 面的形态产状、裂 隙构造等因素控制, 主要有柱状、筒状、 环状、似层状等

斑岩型矿床

斑岩型矿床

中国大陆环境斑岩型矿床包括斑岩型Cu(-Mo、-Au)、斑岩型Mo、斑岩型Au和斑岩型Pb-Zn 等矿床类型,主要产出于青藏高原大陆碰撞带、东秦岭大陆碰撞带和中国东中部燕山期陆内环境,在地球动力学背景、深部作用过程、岩浆起源演化、流体与金属来源等方面与岩浆弧环境斑岩型矿床存在重要差异。

在大洋板块俯冲形成的岩浆弧,主要发育斑岩Cu-Au矿床或富金斑岩Cu矿(岛弧)和斑岩Cu-Mo及斑岩Mo矿床(陆缘弧)。

相比,在大陆碰撞带,晚碰撞构造转换环境发育斑岩Cu、Cu-Mo和Cu-Au矿床,矿床受斜交碰撞带的走滑断裂系统控制,后碰撞地壳伸展环境则主要发育斑岩Cu-Mo矿床,矿床受垂直于碰撞带的正断层系统控制;在陆内造山环境,早期发育斑岩Cu-Au矿床,晚期发育斑岩Pb-Zn矿床,它们主要沿古老的但再活化的岩石圈不连续带分布,受网格状断裂系统控制;在后造山(或非造山)伸展环境,则大量发育斑岩Mo矿和斑岩Au矿,它们则主要围绕大陆基底—克拉通(或地块)边缘分布,受再活化的岩石圈不连续带控制。

大陆环境斑岩Cu(-Mo,-Au)矿床的含矿斑岩多为高钾钙碱性和钾玄质,以高钾为特征,显示埃达克岩地球化学特性。

岩浆通常起源于加厚的新生镁铁质下地壳或拆沉的古老下地壳。

上地幔通过三种可能的方式向岩浆系统供给金属Cu(和Au):①提供大批量的幔源岩浆并底垫于加厚下地壳底部,构成含Cu岩浆的源岩;②提供小批量的软流圈熔体交代和改造下地壳,并诱发其熔融;③与拆沉的下地壳岩浆熔体发生反应。

大陆环境含Mo岩浆系统高SiO2、高K2O,岩相以花岗斑岩为主,花岗闪长斑岩次之,既不同于Climax 型,又有别于石英二长斑岩型Mo矿床,岩浆起源于古老的下地壳。

金属Mo主要为就地熔出,部分萃取于上部地壳。

大陆环境含Pb-Zn花岗斑岩多属铝过饱和型,与S型花岗岩相当,以高δ18O(〉10‰)和高放射性Pb为特征,Sr-Nd-Pb同位素组成反映其来源于中下地壳的深熔作用,金属Pb-Zn主要来源于深融的壳层。

斑岩型矿床试验指导

斑岩型矿床试验指导

《斑岩型矿床》实验指导实验类型:综合实验学时:2实验要求:必修一、目的要求1、初步掌握本类矿床形成的特殊地质条件、地质环境、成矿作用及其基本地质特征。

2、掌握斑岩型铜(钼)矿床的围岩蚀变分带规律。

二、实验内容江西德兴斑岩型铜(钼)矿床标本:1-围岩:灰绿色凝灰质千枚岩(附薄片)矿体上部2-围岩:灰白绿色变余凝灰质千枚岩(附薄片)矿体上部3-围岩:橄榄辉石岩(附薄片)矿体上部4-围岩:花岗闪长斑岩(附薄片)矿体上部5-矿石矿物:含铜弱蚀变千枚岩(附光片)矿体6-矿石矿物:含铜强蚀变千枚岩(附光片)矿体7-矿石矿物:含铜中蚀变千枚岩(附光片)矿体8-矿石矿物:含铜蚀变千枚岩(铜矿石含镜铁矿,附光片)矿体三、实习要点1.区域地层时代及岩性特点。

2.区域构造特点及次火山岩体侵入与构造的关系。

3.侵入岩体的规模、产状、化学成分特点及含矿性特点。

4.矿体产状、分布与次火山岩体接触带的关系。

5.围岩蚀变类型、分带及其与矿化的关系。

6.矿石矿物共生组合及矿石结构构造特点四、思考题1.斑岩铜(钼)矿床的成矿地质条件是什么?找矿应注意哪些问题?2.根据实习课所观察到的资料,你认为德兴斑岩铜矿床的围岩蚀变与成矿有什么关系?五、分析讨论观察实习材料,讨论、描述江西德兴斑岩铜(钼)矿床的地质特征。

参考数据:矿种矿石类型边界品位(≥%)工业品位(≥%)最低可采厚度(m)夹石剔除厚度(m) Mo辉钼矿>0.03>0.061—22—4Cu硫化矿0.3—0.5>0.50.8—1.32—3六、实验报告矿床名称成矿地质条件矿源条件岩浆岩条件控矿构造条件控矿地层、围岩条件矿床地质特征矿体产出部位矿体产状、形态矿石结构构造矿石矿物共生组合成矿与岩体的时间关系矿床成因类型。

6-斑岩型矿床

6-斑岩型矿床

二、斑岩型矿床 o 大地构造背景
1. 概念及特点
— 斑岩型矿床主要产于汇聚板块的边界,包括 大洋板片俯冲产生的岛弧和陆缘弧环境 (滨 太平洋带) ,以及陆 − 陆碰撞造山 (特提斯 − 喜马拉雅带,中亚−蒙古带)环境。
z 岛弧环境的斑岩型矿床: 主要环绕西太平洋广泛分布 (印尼、菲律宾、巴布亚新 几内亚、澳大利亚等国)
二、斑岩型矿床
1. 概念及特点
Hale Waihona Puke z 陆缘弧环境的斑岩型矿床:广泛分布于太平洋东海 岸,经典成矿省包括安第斯中部(智利、阿根廷、秘 鲁)和美国西部
二、斑岩型矿床
1. 概念及特点
z 碰撞造山环境的斑岩型矿床: 主要分布于特提斯 − 喜马拉雅带(西起西班牙,经克罗地亚、罗马尼亚、 保加利亚、土耳其、亚美尼亚、伊朗、巴基斯坦,东 到中国西藏和缅甸等地)和中亚 − 蒙古带(西起乌兹 别克斯坦和哈萨克斯坦,经中国新疆、甘肃和内蒙, 东到黑龙江)
Phyllic zone
ne zo
fresh intrusion
二、斑岩型矿床 t 矿体形态产状
1. 概念及特点
—受侵入体和接触面的形态产状、裂隙构造等因素控 制,主要有柱状、筒状、环状、似层状等 Simplified geologic map of the Yulong Cu (Mo) deposit
中亚−蒙古带
1. 概念及特点
特提斯−喜马拉雅带
滨太平洋带
Distribution of porphyry Cu-Mo deposits worldwide
二、斑岩型矿床
1. 概念及特点
德兴 玉龙
二、斑岩型矿床
1. 概念及特点
世界超大型斑岩铜矿(Cu储量>500万t)时代分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 斑岩型矿床研究现状斑岩型矿床最早源于“斑岩铜矿”一词,由于上世纪初美国西南部亚利桑那州和新墨西哥州斑岩铜矿带的发现而得名,原意是指产于强烈绢云母化和石英化中酸性斑岩中的细脉浸染型铜矿(芮宗瑶等,1984)。

因为斑岩型矿床在共生火成岩组合、蚀变特征、矿化类型等方面具有全球性的广泛一致性,所以具有相似特征的钼矿床被称之为斑岩型钼矿床。

经过一个多世纪的发展演化,斑岩型矿床的概念业已逐步得到完善。

综合前人研究成果,可对斑岩型矿床作如下定义:斑岩型矿床系指与斑岩体(高位侵入体)有关的、以Cu、Mo、Au为主的多金属矿床,是热液矿床或岩浆-热液矿床的组成部分(芮宗瑶等,1984,2006);斑岩型矿床可以产出在不同的构造环境(Sillitoe, 1972;安三元等,1984;Hou et al., 2003,2004;Cooke et al., 2005),其成因与大规模流体活动和钙碱性岩浆活动(Sillitoe, 1972;Dilles, 1987;Cline et al., 1991)有关;斑岩型矿床的典型特征是伴随有同心(环)带状蚀变及相应的细脉状和(或)浸染状金属矿化(Lowell and Guilbert,1970),矿体全部或部分产于中酸性(斑)岩体内。

典型的斑岩型矿床产出于岩浆弧环境(Hedenquist et al.,1998;Richards,2003),板片俯冲作用及其相关的地质过程被认为具有决定性的意义。

但这并不是说,斑岩型矿床产出的构造环境就只是单纯的俯冲和挤压。

以下构造条件也是斑岩型矿床的形成前提:(1)上地壳处于较长时期挤压状态后的应力松驰期;(2)成矿域存在早期深大断裂,而且这些断裂在应力松驰期活化张开(Richards, 2001),即斑岩型矿床常形成于构造机制的转化阶段,特别是挤压向伸展环境的转变。

由此,近年来研究认为斑岩型矿床不仅产生于岛弧及陆缘弧环境,成矿作用与大洋板片的俯冲有关(Sillitoe, 1972),也可以产出于碰撞造山环境(Hou et al., 2003,2004)及板内造山环境(安三元等,1984;罗照华等,2007a)。

目前,关于斑岩型矿床的研究主要集中在斑岩浆的性质与起源,成矿流体及成矿金属的来源及沉淀机制和矿床蚀变分带等方面,以及建立在此基础上的矿床成矿模式等。

下面分别简要阐述几方面的研究现状。

(1)斑岩浆的性质与起源Sillitoe(1972)在总结斑岩铜矿的分布规律和岩浆岩地球化学特征后认为,俯冲环境下斑岩铜矿主要与钙碱性中酸性火成岩有关,岩性变化于石英闪长岩、石英二长岩、花岗闪长岩、花岗岩之间(Misra, 2000)。

板内造山环境下,主要与高钾钙碱性岩石有关(Hou et al., 2003, 2004)。

随着埃达克岩概念的提出(Defant et al., 1990)和研究的升温,国内外很多与斑岩铜矿密切相关的斑岩被归入埃达克岩的研究范畴(张旗等,2001,2002;曲晓明,2001;侯增谦等,2003),并认为世界级斑岩型矿床多与O型埃达克岩有关,其成因与大洋板块的消减作用或玄武质岩浆的底侵作用相联系;中国的德兴和西藏玉龙斑岩铜矿则被认为与C型埃达克岩有关,成矿母岩可能是玄武质岩浆底侵到加厚下地壳底部导致下地壳中基性物质部分熔融的产物(张旗等,2001)。

通常认为,斑岩型矿床的相关斑岩浆是一定构造环境中花岗质岩浆晚阶段的演化产物或是它们高侵位的衍生物(芮宗瑶等,1984)。

如俯冲环境下,俯冲的大洋板片直接熔融(Sillitoe, 1972)或俯冲大洋板片在一定深度发生相变,大规模脱水交代上地幔楔部分熔融均可产生含矿斑岩岩浆(Richards, 2003)。

板内造山带环境下,斑岩是区域地质发展末期特定的产物(安三元等,1984),特别是新生下地壳的部分熔融可能是最重要的成岩机制,这已被越来越多的证据所证明(侯增谦等,2005;Hou et al., 2008;杨志明等,2008)。

近年来,在成矿斑岩中发现发育有中基性深源包体(王晓霞等,1986)或暗色微粒包体(曹殿华等,2009),指示斑岩岩浆起源较深,直接来自下地壳或下地壳底部,甚至发生过与来自幔源基性岩浆的混合作用,因而斑岩型矿床的相关斑岩浆具有深源浅成的特点(卢欣祥等,2002)。

从岩浆起源的热体制角度,不论在何种环境下,壳源岩浆的产生都需要有深部热能的注入,如幔源岩浆的底侵作用(罗照华等,1999)。

与斑岩型矿床相关的斑岩岩浆的形成可能是一个较复杂的深部过程,例如MASH过程。

MASH过程(Hildreth & Moorbath, 1988; Hildreth, 2007)可以表述为幔源岩浆导致地壳部分熔融(melting),两种熔浆的相互混染(assimilation),然后其混合物被装载(storage)到某一空间因混合作用和化学扩散而均一化(homogenisation),MASH过程可能是一个非常漫长的过程,而且有可能反复发生。

最后,所形成的岩浆将上升到浅部地壳。

很可能,壳幔边界附近一个完整的MASH过程是影响斑岩岩浆产生的基础(Richards, 2003)。

(2)成矿流体及成矿金属的来源成矿金属及成矿流体的来源是斑岩型矿床成矿的关键问题,也是斑岩型矿床系统蚀变发生的主导因素。

由于流体中成矿金属的溶解度强烈依赖于压力(Loucks et al., 1999),成矿物质的来源问题可以主要归结为流体的来源问题。

目前,主要存在三种可能的流体来源:a,来自岩浆本身(正岩浆模型),包括两种途径,一是传统的观点,流体来自岩浆期后由岩浆本身出溶的热液(Nielsen, 1968);二是直接来自深部透过岩浆活动的透岩浆流体(罗照华等,2007b);b, 来自变质事件中的变质水。

随着变质作用温度压力的增加,早期形成的低温含水矿物将发生脱水反应,当这种水在围岩中循环时有可能萃取围岩的金属组分到特殊的位置成矿。

因此,围岩变质水也可作为含矿流体来源之一;c, 近地表围岩中的地下水或天水,可能在成矿晚期或成矿期后对整个成矿体系产生重要影响。

虽然斑岩型矿床与侵入斑岩的同源性被广泛接受,但近年来的研究已经认识到,斑岩型矿床并不是含金属元素异常高的小岩体侵位结晶的产物(卢欣祥等,2002),应该多强调流体成矿的作用,即大量的热液流体对金属的运移和沉淀成矿起了重要的作用(罗照华等,2007b,2009)。

从早期成矿物质来源主要与钙碱性火成岩的紧密时空关系(Sillitoe, 1973)、成矿作用早期流体的氢氧同位素特征(Taylor, 1974)和金属在岩浆活动过程中的化学特性(Candela et al., 1986)等方面的认识,到近年来的流体包裹体研究工作为斑岩铜矿金属来自岩浆提供的证据(Campos et al., 2002;Ulrich et al., 1999, 2001),都没有脱离成矿物质由岩浆中聚集,即来自岩浆的解释。

但是,斑岩型矿床中的成矿元素是不是岩浆起源时本身与生俱有的呢?最新的研究表明,特别是矿石中硫化物同位素证据显示,斑岩型矿床的成矿金属为直接深部来源(卢欣祥等,2002;Solomon, 1990; Sillitoe, 1997; Mungall, 2002),具壳幔混源的特征,并且被很多学者所接受(Solomon, 1990; Sillitoe, 1997; Mungall, 2002; Robb, 2005)。

并且,在地球的深部存在有大量的流体,这对成岩成矿有着重要的影响(杜乐天,1998;毛景文等,2005)。

(3)矿床蚀变分带模式/机制众所周知,斑岩型矿床的形成往往伴随着大规模的流体活动并导致岩体和围岩的广泛蚀变,这已成共识。

对此,Lowell and Guilbert(1970)的工作极富创造性,他们在研究美国西南部亚利桑那州的San Manuel-Kalamazoo矿床时提出了一个建立在岛弧-陆缘弧环境下适用于与钙碱性中酸性斑岩(花岗闪长斑岩-二长斑岩)有关的斑岩型矿床的蚀变经验模式。

这种分带模式以斑岩体为中心向外依次为连续的钾化带(石英、黑云母、钾长石±绢云母、绿泥石、钠长石、硬石膏、磁铁矿等)、绢云母化带(石英、绢云母、黄铁矿±绿泥石)、泥化带(石英、高岭石、蒙脱石)和青磐岩化带(绿泥石、绿帘石、碳酸盐)。

并划分出与之相应的矿化分带,由内向外是:与蚀变带等间距的黄铜矿-辉钼矿-黄铁矿组合到方铅矿-闪锌矿组合。

蚀变也常常与闪长岩侵入体有关,因而侵入体的原始成分可能也是蚀变带的控制因素(Hollister et al., 1974; Hollister, 1978)。

这种蚀变与Lowell and Guilbert(1970)模式类似,但又具有明显的不同:绢云母化带和泥化带不发育或弱发育,以钾化带(以黑云母为特征)和青磐岩化矿物组合为主要的蚀变类型。

最近,Hou et al.(2003,2004)提出并发展了以中国青藏高原的玉龙斑岩铜(钼)矿床和冈底斯斑岩铜(钼)矿床为代表的大陆碰撞造山型斑岩型矿床,并依此提出了大陆成矿理论(侯增谦,2010),其蚀变分带模式与岛弧环境类似(Hou et al.,2003;孟祥金等,2004;侯增谦等,2007),出现不连续的环状蚀变分带(Hou et al,2003),由岩体中心向外依次为:强硅化带、含钾硅酸盐蚀变带、云英岩化带、粘土岩化带、角岩化带以及矽卡岩-大理岩化带等。

由上论述可知,斑岩型矿床产出在非常宽广的地质构造背景环境中(Titley and Beane, 1981;芮宗瑶等,1984),与不同组成的侵入体相关(Hollister, 1978;Gustafson, 1978;Titley and Beane, 1981;张旗等,2001,2002;侯增谦等,2003),并且侵位在地壳的不同层位(Sutherland Brown, 1976)。

尽管如此,斑岩型矿床一般产于地壳浅部,其矿化和蚀变模式具有广泛相似性(孟祥金等,2004),这可能暗示它们的相似成因(Lowell and Guilbert, 1970)。

但需要注意的是,不同斑岩系统的蚀变分带会有所不同,并不要求出现所有的蚀变带,而是其中的几个蚀变带的规律组合。

这取决于成矿流体体系的性质及发育程度,产出的构造环境,岩体和围岩性质以及后期剥蚀程度等。

如,当蚀变牵涉到碳酸盐岩时,将会变得很复杂(Einaudi et al, 1981),高级泥化带的出现标志着成矿体系向低温热液体系的转化(Perello, 2001;孟祥金等,2004),且多受构造控制(孟祥金等,2004),但泥质蚀变很难确定,特别是风化后将会变得更复杂。

相关文档
最新文档