高考数学一轮复习: 专题8.4 直线、平面平行的判定与性质(练)
2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。
高考数学复习8.4直线、平面平行的判定与性质

/ / a / / a
性质定理
/ / a a / / b. b
面//面 线 面
如果两个平面中有一 个垂直于一条直线, 那 么另一个平面也垂直 于这条直线
/ / l l
高考数学复习-第四节
直线、平面平行的判定与性质
考纲解读 1.要理解空间直线和平面各种位置关系的定义. 2.以立体几何的定义,公理和定理为出发点,认识和理解空间中线面平行的有关性质与判 定,理解其判定定理与性质定理. 命题趋势探究 有关平行的问题是高考的必考内容,主要分为两大类:一类是空间线面关系的判定和 推理;一类是几何量的计算,主要考查学生的空间想象能力,思维能力和解决问题的能力. 平行关系是立体几何中的一种重要位置关系,在高考中,选择题、填空题几乎每年都 考,难度一般为中档题,且常常以棱柱、棱锥为背景. (1)高考始终把直线与平面、平面与平面平行的判定与性质作为考查的重点,通常 以棱柱、棱锥为背景设计命题.考查的方向是直线与平面、平面与平面的位置关系,结合平 面几何有关知识考查. (2)以棱柱、棱锥为依托考查两平行平面的距离,可转化为点面距离,线面距离和 两异面直线间的距离问题,通常是算、证结合,考查学生的渗透转化思想. 预测 2015 年高考对直线、平面平行的判定与性质的考查集中在两个方面:客观题中, 结合线面垂直考查平行,垂直的判定,主要针对判定定理的条件是否充分、平行条件是否可 以推广到空间中来进行考查;解答题中,考查在特定的几何题中证明线面、面面平行. 知识点精讲 一、直线和平面平行 1.定义 直线与平面没有公共点,则称此直线 l 与平面 平行,记作 l ∥ 2.判定方法(文字语言、图形语言、符号语言)(见表 8-9) 表 8-9 文字语言 线 ∥ 线 面 图形语言 符号语言 如果平面外的一条直线和 行, 那么这条直线和这个平 面平行(简记为“线线平行 线面平行 如果两个平面平行,那么在 平行于另一个平面
新高考数学复习考点知识归类与题型专题讲解训练 专题8.4 直线、平面平行的判定及性质

新高考数学复习考点知识归类与题型专题讲解训练专题8.4 直线、平面平行的判定及性质【考纲要求】1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;2. 掌握公理、判定定理和性质定理.【知识清单】知识点1.直线与平面平行的判定与性质a⊂α,b⊄α,a a∥α,a⊂β,知识点2.面面平行的判定与性质α∥β,α∩γ=结论α∥βα∥βa∥b a∥α知识点3.线面、面面平行的综合应用1.平面与平面的位置关系有相交、平行两种情况.2.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:a⊄α,b⊂α,且a∥b⇒a∥α;(3)其他判定方法:α∥β;aα⇒a∥β.3.直线和平面平行的性质定理:a∥α,a⊂β,α∩β=l⇒a∥l.4.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.5.两个平面平行的性质定理(1)α∥β,aα⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.6.与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b;(2)a⊥α,a⊥β⇒α∥β.【考点梳理】考点一:直线与平面平行的判定与性质【典例1】4.(2019·全国高考真题(文))如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.-,底面【典例2】(2020·临猗县临晋中学月考(文))如图,已知四棱锥P ABCD四边形ABCD为菱形,2,==M.N分别是线段PA.PC的中点.AB BD(1)求证:MN∥平面ABCD;(2)求异面直线MN与所成角的大小.【规律方法】判断或证明线面平行的常用方法: 利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).【变式探究】1.(2019·安徽高考模拟(文))如图,在正三棱柱111ABC A B C -中,,,,D E F G 分别为111,,,CC BB AA BC 的中点,12 4.BB AB ==()I 求证://FG 平面1;A DE ()II 求1G A DE -三棱锥的体积2.(2019·江西高考模拟(文))已知空间几何体ABCDE 中,BCD ∆与CDE ∆均为边长为2的等边三角形,ABC ∆CDE ⊥平面BCD ,平面ABC ⊥平面BCD .(1)试在平面BCD 内作一条直线,使直线上任意一点F 与A 的连线AF 均与平面CDE 平行,并给出详细证明(2)求点B 到平面AEC 的距离 【特别提醒】解决有关线面平行的基本问题的注意事项:(1)易忽视判定定理与性质定理的条件,如易忽视线面平行的判定定理中直线在平面外这一条件;(2)结合题意构造或绘制图形,结合图形作出判断;(3)可举反例否定结论或用反证法判断结论是否正确.考点二 平面与平面平行的判定与性质【典例3】(2020·安徽省太和第一中学高二开学考试)已知直线l ,m ,平面α,β,下列命题正确的是( )A .//l β,//ααβ⊂⇒lB .//l β,//m β,l α⊂,//ααβ⊂⇒mC .//l m ,l α⊂,//βαβ⊂⇒mD .//l β,//m β,l α⊂,m α⊂,//αβ=⇒lm M【典例4】(2015·北京高考真题(理))设α,β是两个不同的平面,m是直线且mα⊂.“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【规律方法】判定面面平行的常用方法:(1)面面平行的定义,即判断两个平面没有公共点;(2)面面平行的判定定理;(3)垂直于同一条直线的两平面平行;(4)平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行.【变式探究】1.(2019·江苏辅仁高中高一期中)如图,在三棱柱ABC﹣A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.2. (2020·赣州市赣县第三中学月考(文))如图,在三棱柱111ABC A B C -中,E ,F ,G 分别为11B C ,11A B ,AB 的中点.()1求证:平面11//A C G 平面BEF ;()2若平面11AC G BC H ⋂=,求证:H 为BC 的中点.【总结提升】证明两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行⇒面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明; ④借助“传递性”来完成.面面平行问题常转化为线面平行,而线面平行又可转化为线线平行,需要注意转化思想的应用.考点三 线面、面面平行的综合应用【典例5】21.(2020·全国高一课时练习)如图,已知在三棱锥P ABC -中,,D E F 分别是棱,,PA PB PC 的中点,则平面DEF 与平面ABC 的位置关系是______.【典例6】(2019·兴仁市凤凰中学期末)如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B . 【规律方法】1.证明线面平行的常用方法与思路(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,解题的思路是利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.(2)应用线面平行性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.2.判定面面平行的四种方法(1)利用定义:即证两个平面没有公共点(不常用).(2)利用面面平行的判定定理(主要方法).(3)利用垂直于同一条直线的两平面平行(客观题可用).(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).3.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.4.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,其转化关系为在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.【变式探究】1.(2020·全国高三其他(文))如图,在正方体ABCD EFGH -中,M 、N 、P 、Q 分别是FG 、GH 、AD 、AB 的中点,则下列说法:①//HP 平面BMN ;②PQ EG ⊥;③//MQ NP ;④//FQ 平面BMN , 其中正确的命题序号是________.2.(2019·唐山质检)如图所示,四边形ABCD 与四边形ADEF 都为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.【易错提醒】1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.3.解题中注意符号语言的规范应用.11 / 11。
2021届高考数学一轮总复习第8章立体几何第4节直线平面平行的判定及性质跟踪检测文含解析202101

第八章立体几何第四节直线、平面平行的判定及性质A级·基础过关|固根基|1.已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A 若m⊄α,n⊂α,m∥n,由线面平行的判定定知m∥α.若m∥α,m⊄α,n⊂α,不一定推出m∥n,直线m与n可能异面,故“m∥n”是“m∥α”的充分不必要条件.故选A.2.已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是( )A.l⊂α,m⊂β,α∥βB.α∥β,α∩γ=l,β∩γ=mC.l∥α,m⊂αD.l⊂α,α∩β=m解析:选B 选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交.故选B.3.(2019届长沙市统一模拟)设a,b,c表示不同直线,α,β表示不同平面,下列命题:①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若a⊂α,b⊂β,α∥β,则a∥b.真命题的个数是( )A.1 B.2C.3 D.4解析:选A 由题意,对于①,根据线线平行的传递性可知①是真命题;对于②,根据a∥b,b∥α,可以推出a∥α或a⊂α,故②是假命题;对于③,根据a∥α,b∥α,可以推出a 与b平行、相交或异面,故③是假命题;对于④,根据a⊂α,b⊂β,α∥β,可以推出a∥b或a与b异面,故④是假命题.所以真命题的个数是1.故选A.4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形解析:选B 由AE∶EB=AF∶FD=1∶4知,EF 15BD,又EF⊄平面BCD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HG 12BD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.5.如图,正方体ABCD-A1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1M=AN=2a3,则MN与平面BB1C1C的位置关系是( )A.相交B.平行C .垂直D .不能确定解析:选B 由题意可得A 1M =13A 1B ,AN =13AC ,所以分别取BC ,BB 1上的点P ,Q ,使得CP =23BC ,BQ =23BB 1,连接MQ ,NP ,PQ ,则MQ23B 1A 1,NP23AB ,又B 1A 1AB ,故MQNP ,所以四边形MQPN 是平行四边形,则MN ∥QP ,QP ⊂平面BCC 1B 1,MN ⊄平面BCC 1B 1,则MN ∥平面BCC 1B 1,故选B.6.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ; ②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).解析:①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β 或m ⊂β,故③错误;④α∥β或α与β相交,故④错误.答案:②7.如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则EF =________.解析:根据题意,因为EF ∥平面AB 1C ,所以EF ∥AC .又E 是AD 的中点,所以F 是CD 的中点.因为在Rt △DEF 中,DE =DF =1,故EF =2.答案:28.如图,平面α∥平面β,△ABC ,△A ′B ′C ′分别在α,β内,线段AA ′,BB ′,CC ′相交于点O ,O 在α,β之间,若AB =2,AC =1,∠BAC =60°,OA ∶OA ′=3∶2,则△A ′B ′C ′的面积为________.解析:相交直线AA ′,BB ′所在平面和两平行平面α,β相交于AB ,A ′B ′,所以AB ∥A ′B ′.同理BC ∥B ′C ′,CA ∥C ′A ′.所以△ABC 与△A ′B ′C ′的三内角相等,所以△ABC ∽△A ′B ′C ′,A ′B ′AB=OA ′OA=23.又因为S △ABC =12×2×1×32=32,所以S △A ′B ′C ′=32×⎝ ⎛⎭⎪⎫232=32×49=239. 答案:2399.(2020届广东七校联考)如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2,∠ABC =90°,AB =3,BC =1,AD =23,CD =4,E 为CD 的中点.(1)求证:AE ∥平面PBC ; (2)求三棱锥C -PBE 的体积.解:(1)证明:∵AB =3,BC =1,∠ABC =90°,∴AC =2,∠BCA =60°. 在△ACD 中,AD =23,AC =2,CD =4,∴AC 2+AD 2=CD 2,∴∠CAD =90°,则△ACD 是直角三角形. 又E 为CD 的中点,∴AE =12CD =CE =2,∴△ACE 是等边三角形,∴∠CAE =60°,∴∠CAE =60°=∠BCA ,∴BC ∥AE .又AE ⊄平面PBC ,BC ⊂平面PBC ,∴AE ∥平面PBC . (2)∵PA ⊥底面ABCD ,∴PA ⊥底面BCE , ∴PA 为三棱锥P -BCE 的高.∵∠BCA =60°,∠ACD =60°,∴∠BCE =120°. 又BC =1,CE =2,∴S △BCE =12×BC ×CE ×sin ∠BCE =12×1×2×32=32,∴V 三棱锥C -PBE =V 三棱锥P -BCE =13×S △BCE ×PA =13×32×2=33.10.如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC ,SC 的中点,求证:(1)EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1. 证明:(1)如图,连接SB ,在△SBC 中,因为E ,G 分别是BC ,SC 的中点, 所以EG ∥SB .又因为SB ⊂平面BDD 1B 1,EG ⊄平面BDD 1B 1,所以EG∥平面BDD1B1.(2)连接SD,因为F,G分别是DC,SC的中点,所以FG∥SD.又因为SD⊂平面BDD1B1,FG⊄平面BDD1B1,所以FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B1.B级·素养提升|练能力|11.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列说法中,错误的为( )A.AC⊥BDB.AC=BDC.AC∥截面PQMND.异面直线PM与BD所成的角为45°解析:选B 因为截面PQMN是正方形,所以PQ∥MN,QM∥PN,则PQ∥平面ACD,QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM,可得AC⊥BD,故A正确;由PQ∥AC,可得AC∥截面PQMN,故C正确;由BD∥PN,所以∠MPN(或其补角)是异面直线PM与BD所成的角,且为45°,故D正确;由上面可知,BD ∥PN ,MN ∥AC . 所以PN BD =AN AD,MN AC=DN AD,而AN ≠DN ,PN =MN , 所以BD ≠AC ,故B 错误.故选B. 12.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________时,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD ,所以平面FHN ∥平面B 1BDD 1,只需M ∈FH ,则MN ⊂平面FHN ,所以MN ∥平面B 1BDD 1.答案:点M 在线段FH 上(或点M 与点H 重合)13.(2020届成都模拟)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA =PD ,AB =AD ,PA ⊥PD ,AD ⊥CD ,∠BAD =60°,M ,N 分别为AD ,PA 的中点.(1)证明:平面BMN ∥平面PCD ;(2)若AD =6,求三棱锥P -BMN 的体积.解:(1)证明:如图,连接BD .∵AB =AD ,∠BAD =60°,∴△ABD 为正三角形.∵M 为AD的中点,∴BM⊥AD.∵AD⊥CD,CD,BM⊂平面ABCD,∴BM∥CD.又BM⊄平面PCD,CD⊂平面PCD,∴BM∥平面PCD.∵M,N分别是AD,PA的中点,∴MN∥PD.又MN⊄平面PCD,PD⊂平面PCD,∴MN∥平面PCD.又BM,MN⊂平面BMN,BM∩MN=M,∴平面BMN∥平面PCD.(2)在(1)中已证BM⊥AD.∵平面PAD⊥平面ABCD,BM⊂平面ABCD,∴BM⊥平面PAD.又AD=6,∠BAD=60°,∴BM=3 3.∵M,N分别是AD,PA的中点,PA=PD=22AD=32,∴△PMN的面积S△PMN=14S△PAD=14×12×(32)2=94.∴三棱锥P-BMN的体积V P-BMN=V B-PMN=13S△PMN·BM=13×94×33=934.14.在如图所示的多面体中,四边形ABB1A1和四边形ACC1A1都为矩形.设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使DE∥平面A1MC?请证明你的结论.解:存在点M为线段AB的中点,使DE∥平面A1MC,证明如下:如图,取线段AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C与AC1的交点.由已知,O为AC1,A1C的中点.连接MD,OE,OM,则MD,OE分别为△ABC,△ACC1的中位线,所以MD 12AC,OE12AC,因此MD OE.从而四边形MDEO为平行四边形,则DE∥MO.因为DE⊄平面A1MC,MO⊂平面A1MC,所以DE∥平面A1MC.即线段AB上存在一点M(线段AB的中点),使DE∥平面A1MC.。
高考数学一轮复习 专题8.4 直线、平面平行的判定与性质(测)

第04节 直线、平面平行的判定与性质班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.【2017届福建省泉州市高三3月检测】已知直线,平面,则是的 ( )A. 充分但不必要条件B. 必要但不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B 【解析】因为直线时不一定平行,而时平面内任意直线都平行平面,即,因此是的必要但不充分条件,选B.2.已知互不重合的直线,a b ,互不重合的平面,αβ,给出下列四个命题,错误..的命题是( ) (A )若a //α,a //β,b αβ=I ,则a //b (B)若βα⊥,a α⊥,β⊥b ,则b a ⊥ (C)若βα⊥,γα⊥,a =γβI ,则a α⊥ (D)若α//β,a //α,则a //β 【答案】D3.【青岛质量检测】设a ,b 是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b 的是( )A .a ⊥α,b ∥β,α⊥βB .a ⊥α,b ⊥β,α∥βC .a ⊂α,b ⊥β,α∥βD .a ⊂α,b ∥β,α⊥β【答案】 C【解析】 A 中,两直线可以平行、相交或异面,故不正确;B 中,两直线平行,故不正确;C 中,由α∥β,a ⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D 中,两直线可以平行,相交或异面,故不正确.4.【2017届四川省资阳市高三4月模拟】对于两条不同的直线m ,n 和两个不同的平面αβ,,以下结论正确的是A. 若m α⊂, n ∥β,m ,n 是异面直线,则αβ,相交B. 若m α⊥, m β⊥, n ∥α,则n ∥βC. 若m α⊂, n ∥α,m ,n 共面于β,则m∥nD. 若m α⊥,n⊥β,α,β不平行,则m ,n 为异面直线 【答案】C5.【广东省揭阳市高三第一次模拟】设平面α、β,直线a 、b ,a α⊂,b α⊂,则“//a β,//b β”是“//αβ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】B【解析】由平面与平面平行的判定定理可知,若直线a 、b 是平面α内两条相交直线,且有“//a β,//b β”,则有“//αβ”,当“//αβ”,若a α⊂,b α⊂,则有“//a β,//b β”,因此“//a β,//b β”是“//αβ”的必要不充分条件.选B.6.【2017届云南省曲靖市第一中学高三第六次月考】已知,m n 是两条不同的直线, α是平面,则下列命题中是真命题的是( )A. 若//m α, //m n ,则//n αB. 若m α⊥, n α⊥,则//m nC. 若//m α, m n ⊥,则//n αD. 若m α⊥, n m ⊥,则//n α 【答案】B7.【皖北协作区高三联考】设n m 、是不同的直线,βα、是不同的平面,有以下四个命题: ①若βα⊥,α//m ,则β⊥m ②若α⊥m ,α⊥n ,则n m // ③若α⊥m ,n m ⊥,则α//n ④若α⊥n ,β⊥n ,则αβ// . 其中真命题的序号为( )A. ①③B. ②③C. ①④D. ②④ 【答案】D【解析】①若βα⊥,α//m ,则m 与β包含直线与平面的所有关系,所以①错误; ②若α⊥m ,α⊥n ,则n m //,所以②正确; ③若α⊥m ,n m ⊥,则α//n 或n α⊆,所以③错误; ④若α⊥n ,β⊥n ,则αβ// ,所以④正确; 故选D8.【浙江省金丽衢十二校高三第二次联考】已知,,a b c 为三条不同的直线,且a ⊂平面M ,b ⊂平面N ,M N c =I ①若a 与b 是异面直线,则c 至少与,a b 中的一条相交;②若a 不垂直于c ,则a 与b 一定不垂直;③若a b P ,则必有a c P ;④若,a b a c ⊥⊥,则必有M N ⊥.其中正确的明确的命题的个数是( )A.0B.1C.2D.3 【答案】C【解析】根据题意可得若a 与b 是异面直线,则c 至少与,a b 中的一条相交成立. 若a 不垂直于c ,则a 与b 有可能垂直,只需将a 向平面N 做投影,直线b 垂直于投影即可. 若a b P ,则必有a c P 这是线面平行的判定定理,所以是正确的. 若,a b a c ⊥⊥.若b c P 则M N ⊥不一定成立.所以①③正确.9.【广东七校联考】设a ,b 是两条直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α 【答案】 D10.【2017届河北省武邑中学高三下三模】如图,平面α⊥平面β, αβ⋂=直线l , ,A C 是α内不同的两点, ,B D 是β内不同的两点,且,,,A B C D ∉直线l 上,M N 分别是线段,AB CD 的中点,下列判断正确的是( )A. 当2CD AB =时, ,M N 两点不可能重合B. ,M N 两点可能重合,但此时直线AC 与l 不可能相交C. 当AB 与CD 相交,直线AC 平行于l 时,直线BD 可以与l 相交D. 当,AB CD 是异面直线时,直线MN 可能与l 平行 【答案】B【解析】由位置关系判断就可,本题宜用直接法来进行判断,B 项正确易证解答:对于A 选项,当|CD|=2|AB|时,若A ,B ,C ,D 四点共面AC ∥BD 时,则M ,N 两点能重合.故A 不对;对于B选项,若M,N两点可能重合,则AC∥BD,故AC∥l,此时直线AC与直线l不可能相交,故B对;对于C选项,当AB与CD相交,直线AC平行于l时,直线BD可以与l平行,故C不对;对于D选项,当AB,CD是异面直线时,MN不可能与l平行,故选B.11.如图边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形(A′不在平面ABC内),则下列结论中正确的是( )①动点A′在平面ABC上的投影在线段AF上;②BC∥平面A′DE;③三棱锥A′FED的体积有最大值.A.① B.①② C.①②③D.②③【答案】C12.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,当点Q在()位置时,平面D1BQ∥平面PAO.A.Q与C重合B.Q与C1重合C.Q为CC1的三等分点D.Q为CC1的中点【答案】D【解析】当Q为CC1的中点时,平面D1BQ∥平面PAO.证明如下:∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.∵P、O分别为DD1、DB的中点,∴D 1B ∥PO.又∵D 1B 平面PAO ,PO 平面PAO , QB 平面PAO ,PA 平面PAO , ∴D 1B ∥平面PAO ,QB ∥平面PAO , 又D 1B∩QB=B ,D 1B 、QB 平面D 1BQ , ∴平面D 1BQ ∥平面PAO.二、填空题(本大题共4小题,每小题5分,共20分。
高三理数一轮讲义:8.4-直线、平面平行的判定及其性质(练习版)

第4节直线、平面平行的判定及其性质最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.知识梳理1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b⇒a∥b2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定理两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a⊂α⇒a∥β如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()2.(必修2P61A1(2)改编)下列说法中,与“直线a∥平面α”等价的是()A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交3.(必修2P61A1(1)改编)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α4.(2018·长沙模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β5.(2019·成都月考)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线6.(2019·衡水开学考试)如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.考点一与线、面平行相关命题的判定【例1】(1)(2019·开封模拟)在空间中,a,b,c是三条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是()A.若a⊥c,b⊥c,则a∥bB.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,b∥β,α∥β,则a∥bD.若α∥β,a⊂α,则a∥β(2)(2018·聊城模拟)下列四个正方体中,A,B,C为所在棱的中点,则能得出平面ABC∥平面DEF的是()规律方法 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】(1)下列命题正确的是()A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行(2)(2018·安庆模拟)在正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在BD1上且BP=23BD1,则下面说法正确的是________(填序号).①MN∥平面APC;②C1Q∥平面APC;③A,P,M三点共线;④平面MNQ∥平面APC.考点二直线与平面平行的判定与性质多维探究角度1直线与平面平行的判定【例2-1】(2019·东北三省四市模拟)在如图所示的几何体中,四边形ABCD是正方形,P A⊥平面ABCD,E,F分别是线段AD,PB的中点,P A=AB=1.(1)证明:EF∥平面PDC;(2)求点F到平面PDC的距离.角度2直线与平面平行性质定理的应用【例2-2】(2018·上饶模拟)如图所示,在正方体ABCD-A1B1C1D1中,棱长为2,E,F分别是棱DD1,C1D1的中点.(1)求三棱锥B1-A1BE的体积;(2)试判断直线B1F与平面A1BE是否平行,如果平行,请在平面A1BE上作出与B1F平行的直线,并说明理由.规律方法 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【训练2】(2017·江苏卷)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.考点三面面平行的判定与性质典例迁移【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【迁移探究1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.【迁移探究2】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值. 规律方法 1.判定面面平行的主要方法(1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行).2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.提醒利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.【训练3】(2019·南昌二模)如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2CD=2AD=4,侧面P AB是等腰直角三角形,P A=PB,平面P AB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面P AD.(1)确定点E,F的位置,并说明理由;(2)求三棱锥F-DCE的体积.[思维升华]1.转化思想:三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[易错防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.基础巩固题组(建议用时:40分钟)一、选择题1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交2.(2019·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是()A.l⊂α,m⊂β,α∥βB.α∥β,α∩γ=l,β∩γ=mC.l∥α,m⊂αD.l⊂α,α∩β=m3.(2018·长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能4.设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α5.(2019·合肥模拟)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有()A.0条B.1条C.2条D.1条或2条二、填空题6.如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.7.如图,平面α∥平面β,△ABC,△A′B′C′分别在α,β内,线段AA′,BB′,CC′共点于O,O在α,β之间,若AB=2,AC=1,∠BAC=60°,OA∶OA′=3∶2,则△A′B′C′的面积为________.8.(2019·郑州调研)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若m∥α,n∥β,m∥n,则α∥β.其中是真命题的是________(填上正确命题的序号).三、解答题9.(2019·武汉模拟)已知四棱锥P-ABCD的底面ABCD是平行四边形,侧面P AB⊥平面ABCD,E是棱P A的中点.(1)求证:PC∥平面BDE;(2)平面BDE分此棱锥为两部分,求这两部分的体积比.10.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.能力提升题组(建议用时:20分钟)11.(2019·石家庄模拟)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A.4条B.6条C.8条D.12条12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面P AO.14.(2018·河南六市三模)已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.。
新高考一轮复习人教版 直线、平面平行的判定和性质 作业

8.3直线、平面平行的判定和性质基础篇固本夯基考点一直线与平面平行的判定和性质1.(2021江苏扬州大学附中2月检测,5)已知直三棱柱ABC-A1B1C1中,M,N分别是A1B1,AB的中点,P点在线段B1C上,则NP与平面AMC1的位置关系是()A.垂直B.平行C.相交但不垂直D.要依P点的位置而定答案B2.(2021济南二模,7)已知正四面体ABCD的棱长为2,平面α与棱AB、CD均平行,则α截此正四面体所得截面面积的最大值为()A.1B.√2C.√3D.2答案A3.(多选)(2021山东青岛胶州调研,10)在三棱柱ABC-A1B1C1中,E,F,G分别为线段AB,A1B1,AA1的中点,下列说法正确的是()A.平面AC1F∥平面B1CEB.直线FG∥平面B1CEC.直线CG与BF异面D.直线C1F与平面CGE相交答案AC4.(2020福建漳州适应性测试,16)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在正方形D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q的轨迹的长为.答案√105.(2022届山东潍坊10月过程性测试,18)如图,平面ABCD⊥平面AEBF,四边形ABCD为矩形,△ABE和△ABF 均为等腰直角三角形,且∠BAF=∠AEB=90°.(1)求证:平面BCE⊥平面ADE;(2)若点G为线段FC上任意一点,求证:BG∥平面ADE.证明(1)因为四边形ABCD为矩形,所以BC⊥AB,又因为平面ABCD⊥平面AEBF,BC⊂平面ABCD,平面ABCD∩平面AEBF=AB,所以BC⊥平面AEBF,又因为AE⊂平面AEBF,所以BC⊥AE.因为∠AEB=90°,即AE⊥BE,且BC、BE⊂平面BCE,BC∩BE=B,所以AE⊥平面BCE,又因为AE⊂平面ADE,所以平面ADE⊥平面BCE.(2)因为BC∥AD,AD⊂平面ADE,BC⊄平面ADE,所以BC∥平面ADE.因为△ABF和△ABE均为等腰直角三角形,且∠BAF=∠AEB=90°,所以∠EAB=∠ABF=45°,所以AE∥BF,又AE⊂平面ADE,BF⊄平面ADE,所以BF∥平面ADE,又BC∩BF=B,所以平面BCF∥平面ADE.又BG⊂平面FBC,所以BG∥平面ADE.6.(2022届广东佛山一中10月月考,20)如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA=PD=√2,四边形ABCD为等腰梯形,BC∥AD,BC=CD=1AD=1,E为PA的中点.2(1)证明:EB∥平面PCD;(2)求平面PAD与平面PCD所成的二面角θ的正弦值.解析(1)证明:取AD的中点O,连接EO,OB,∵E为PA的中点,O为AD的中点,∴OE∥PD,又OE⊄平面PCD,PD⊂平面PCD,∴OE∥平面PCD,又∵BC ∥AD,BC=12AD,∴四边形BCDO 为平行四边形,∴BO ∥CD, 又OB ⊄平面PCD,CD ⊂平面PCD,∴BO ∥平面PCD,又OE ∩BO=O,∴平面EBO ∥平面PCD, 又∵BE ⊂平面EBO,∴BE ∥平面PCD.(2)连接PO,∵PA=PD,O 为AD 的中点,∴PO ⊥AD, 又平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD, 所以PO ⊥平面ABCD,取BC 的中点M,连接OM, ∵四边形ABCD 是等腰梯形,∴OM ⊥AD, 建立如图所示的空间直角坐标系,则P(0,0,1),A(0,-1,0),D(0,1,0),C (√32,12,0),∴PD⃗⃗⃗⃗ =(0,1,-1),CD ⃗⃗⃗⃗ =(−√32,12,0),设平面PCD 的法向量为n=(x,y,z),则{n ·PD ⃗⃗⃗⃗ =y −z =0,n ·CD⃗⃗⃗⃗ =−√32x +12y =0,令x=1,则y=z=√3,则n=(1,√3,√3), 易知平面PAD 的一个法向量为m=(1,0,0), ∴|cos θ|=|cos<m,n>|=|m·n||m||n|=√7,则sin θ=√427. 7.(2019江苏,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,D,E 分别为BC,AC 的中点,AB=BC.求证: (1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E.证明(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE ⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E ⊂平面A1ACC1,所以BE⊥C1E.8.(2020江苏,15,14分)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.证明(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,又EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB.又AB⊥AC,B1C⊂平面AB1C,AC⊂平面AB1C,B1C∩AC=C,所以AB⊥平面AB1C,又因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.9.(2020北京,16,13分)如图,在正方体ABCD-A1B1C1D1中,E为BB1的中点.(1)求证:BC1∥平面AD1E;(2)求直线AA1与平面AD1E所成角的正弦值.解析 (1)证明:∵ABCD-A 1B 1C 1D 1为正方体,∴D 1C 1∥A 1B 1,D 1C 1=A 1B 1.又AB ∥A 1B 1,AB=A 1B 1,∴D 1C 1∥AB,D 1C 1=AB,∴四边形ABC 1D 1为平行四边形,∴AD 1∥BC 1,又AD 1⊂平面AD 1E,BC 1⊄平面AD 1E,∴BC 1∥平面AD 1E.(2)不妨设正方体的棱长为2,如图,以{AD ⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗ }为正交基底建立空间直角坐标系A-xyz,则A(0,0,0),A 1(0,0,2),D 1(2,0,2),E(0,2,1),∴AA 1⃗⃗⃗⃗⃗⃗ =(0,0,2),AD 1⃗⃗⃗⃗⃗⃗ =(2,0,2),AE ⃗⃗⃗⃗ =(0,2,1),设平面AD 1E 的法向量为n=(x,y,z),直线AA 1与平面AD 1E 所成的角为θ, 则{n ·AD 1⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗ =0,即{2x +2z =0,2y +z =0,令z=-2,则{x =2,y =1,此时n=(2,1,-2),∴sin θ=|cos<n,AA 1⃗⃗⃗⃗⃗⃗ >|=|n·AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√4+1+4×2=23, ∴直线AA 1与平面AD 1E 所成角的正弦值为23.考点二 平面与平面平行的判定和性质1.(2022届重庆巴蜀中学11月月考,8)在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点E,F,G,H 分别为棱AB,BC,C 1D 1,A 1D 1的中点,若平面α∥平面EFGH,且平面α与棱A 1B 1,B 1C 1,B 1B 分别交于点P,Q,S,其中点Q 是棱B 1C 1的中点,则三棱锥B 1-PQS 的体积为( ) A.1 B.12C.13D.16答案 D2.(2019课标Ⅱ文,7,5分)设α,β为两个平面,则α∥β的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线D.α,β垂直于同一平面 答案 B3.(2021河北邢台月考,19)在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB=4,M,N,P 分别是AD,DD 1,CC 1的中点.(1)证明:平面MNC ∥平面AD 1P;(2)求直线DP 与平面MNC 所成角的正弦值.解析 (1)证明:因为M,N,P 分别是AD,DD 1,CC 1的中点,所以MN ∥AD 1,CN ∥PD 1.又AD 1⊄平面MNC,MN ⊂平面MNC,所以AD 1∥平面MNC,同理PD 1∥平面MNC, 又AD 1∩PD 1=D 1,所以平面MNC ∥平面AD 1P.(2)以D 为坐标原点,建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),P(0,2,2),M(1,0,0),N(0,0,2),C(0,2,0),则DP ⃗⃗⃗⃗ =(0,2,2),MN ⃗⃗⃗⃗⃗ =(-1,0,2),MC⃗⃗⃗⃗⃗ =(-1,2,0). 设平面MNC 的法向量为n=(x,y,z),则{MN⃗⃗⃗⃗⃗ ·n =−x +2z =0,MC ⃗⃗⃗⃗ ·n =−x +2y =0,令z=1,得n=(2,1,1). 设直线DP 与平面MNC 所成角为θ,则sin θ=|cos<DP⃗⃗⃗⃗ ,n>|=|DP⃗⃗⃗⃗⃗ ·n||DP ⃗⃗⃗⃗⃗ ||n|=√33, 所以直线DP 与平面MNC 所成角的正弦值为√33.综合篇 知能转换A 组考法一 判断或证明线面平行的方法1.(2022届T8联考,7)如图,已知四棱柱ABCD-A 1B 1C 1D 1的底面为平行四边形,E,F,G 分别为棱AA 1,CC 1,C 1D 1的中点,则( )A.直线BC 1与平面EFG 平行,直线BD 1与平面EFG 相交B.直线BC 1与平面EFG 相交,直线BD 1与平面EFG 平行C.直线BC 1、BD 1都与平面EFG 平行D.直线BC 1、BD 1都与平面EFG 相交 答案 A2.(2022届湖南岳阳一中入学考试,18)如图,在三棱柱ABC-A 1B 1C 1中,侧面ABB 1A 1是菱形,∠BAA 1=60°,E 是棱BB 1的中点,CA=CB,F 在线段AC 上,且AF=2FC. (1)证明:CB 1∥平面A 1EF;(2)若CA ⊥CB,平面CAB ⊥平面ABB 1A 1,求二面角F-A 1E-A 的余弦值.解析 (1)证明:连接AB 1交A 1E 于点G,连接FG, 易得△AGA 1∽△B 1GE,所以AG GB 1=AA 1EB 1=2,又因为AF FC =2,所以AF FC =AGGB 1,所以FG ∥CB 1,又CB 1⊄平面A 1EF,FG ⊂平面A 1EF,所以CB 1∥平面A 1EF.(2)过C 作CO ⊥AB 于点O,因为CA=CB,所以O 是线段AB 的中点.因为平面CAB ⊥平面ABB 1A 1,平面CAB ∩平面ABB 1A 1=AB,所以CO ⊥平面ABB 1A 1.连接A 1B,OA 1,由题意易知△ABA 1是等边三角形,又O 是线段AB 的中点,所以OA 1⊥AB.以O 为坐标原点,OA ⃗⃗⃗⃗ ,OA 1⃗⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗ 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,不妨设AB=2,则A(1,0,0),A 1(0,√3,0),C(0,0,1),B(-1,0,0),F (13,0,23),B 1(-2,√3,0),E (−32,√32,0),则A 1E ⃗⃗⃗⃗⃗⃗ =(−32,−√32,0),A 1F ⃗⃗⃗⃗⃗ =13,-√3,23.设平面A 1FE 的法向量为n 1=(x 1,y 1,z 1), 则{A 1F ⃗⃗⃗⃗⃗ ·n 1=0,A 1E ⃗⃗⃗⃗⃗⃗ ·n 1=0,即{x 13−√3y 1+23z 1=0,−32x 1−√32y 1=0,令x 1=1,则n 1=(1,-√3,-5).易知平面ABB 1A 1的一个法向量为n 2=(0,0,1), 则cos<n 1,n 2>=n 1·n 2|n 1||n 2|=-5√2929,由题图可知,二面角F-A 1E-A 的平面角为锐角,所以二面角F-A 1E-A 的余弦值为5√2929. 3.(2022届南京二十九中10月月考,20)如图,在四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AD ∥BC,AB ⊥AD,AB=2BC=4,E 是棱PD 上的动点(除端点外),F,M 分别为AB,CE 的中点. (1)证明:FM ∥平面PAD;(2)若直线EF 与平面PAD 所成的最大角为30°,求平面CEF 与平面PAD 所成锐二面角的余弦值.解析 (1)证明:取CD 的中点N,连接FN,MN,因为F,N 分别为AB,CD 的中点,所以FN ∥AD,又FN ⊄平面PAD,AD ⊂平面PAD,所以FN ∥平面PAD,因为M,N 分别是CE,CD 的中点,所以MN ∥PD,又MN ⊄平面PAD,PD ⊂平面PAD,所以MN ∥平面PAD,又FN ∩MN=N,所以平面MFN ∥平面PAD,又因为FM ⊂平面MFN,所以FM ∥平面PAD.(2)连接AE,因为平面PAD ⊥平面ABCD,且平面PAD ∩平面ABCD=AD,AB ⊥AD,AB ⊂平面ABCD,所以AB ⊥平面PAD,所以∠AEF 即为直线EF 与平面PAD 所成的角,且tan ∠AEF=AF AE =2AE, 当AE 最小,即AE ⊥PD,亦即E 为PD 中点时,∠AEF 最大,为30°,又因为AF=2,所以AE=2√3,所以AD=4. 取AD 的中点O,连接PO,OC,易知PO ⊥平面ABCD,因为AO ∥BC 且AO=12AD=BC,所以四边形ABCO 为平行四边形,所以AB ∥CO,又AB ⊥AD,所以AO ⊥OC,以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.则O(0,0,0),C(4,0,0),D(0,2,0),P(0,0,2√3),E(0,1,√3),F(2,-2,0),则CE ⃗⃗⃗⃗ =(-4,1,√3),FC ⃗⃗⃗⃗ =(2,2,0),设平面CEF 的法向量为n 1=(x,y,z),则{n 1·FC⃗⃗⃗ =0,n 1·CE ⃗⃗⃗ =0,即{2x +2y =0,−4x +y +√3z =0,可取n 1=(√3,-√3,5).易知平面PAD 的一个法向量为n 2=(1,0,0), 所以cos<n 1,n 2>=n 1·n 2|n 1|·|n 2|=√3√31=√9331,所以平面CEF 与平面PAD 所成锐二面角的余弦值为√9331.4.(2019课标Ⅰ理,18,12分)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E,M,N 分别是BC,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE; (2)求二面角A-MA 1-N 的正弦值.解析 (1)证明:连接B 1C,ME.因为M,E 分别为BB 1,BC 的中点,所以ME ∥B 1C,且ME=12B 1C.又因为N 为A 1D 的中点,所以ND=12A 1D.由题设知A 1B 1 DC,可得B 1C A 1D,故ME ND,因此四边形MNDE 为平行四边形,则MN ∥ED.又MN ⊄平面EDC 1,所以MN ∥平面C 1DE.(2)由已知可得DE ⊥DA.以D 为坐标原点,DA⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz, A(2,0,0),A 1(2,0,4),M(1,√3,2),N(1,0,2),A 1A ⃗⃗⃗⃗⃗⃗ =(0,0,-4),A 1M ⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-2),A 1N ⃗⃗⃗⃗⃗⃗ =(-1,0,-2),MN ⃗⃗⃗⃗⃗ =(0,-√3,0).设m=(x,y,z)为平面A 1MA 的法向量,则{m ·A 1M ⃗⃗⃗⃗⃗⃗⃗ =0,m ·A 1A ⃗⃗⃗⃗⃗⃗ =0.所以{−x +√3y −2z =0,−4z =0.可取m=(√3,1,0).设n=(p,q,r)为平面A 1MN 的法向量,则{n ·MN⃗⃗⃗⃗⃗ =0,n ·A 1N ⃗⃗⃗⃗⃗⃗ =0.所以{−√3q =0,−p −2r =0.可取n=(2,0,-1).于是cos<m,n>=m·n |m||n|=√32×√5=√155, 所以二面角A-MA 1-N 的正弦值为√105.5.(2021广东珠海一模,19)如图,三棱锥P-ABC 中,PA ⊥AB,AB ⊥AC,AB=AC=√2,PB=PC=√6,点M 是PA 的中点,点D 是AC 的中点,点N 在PB 上,且PN=2NB. (1)证明:BD ∥平面CMN;(2)求直线CN 与平面ABC 所成角的正切值.解析 (1)证明:如图,连接PD 交CM 于O,则O 为△PAC 的重心,PO=2OD,连接ON,因为PN=2NB,所以ON ∥BD,因为ON ⊂平面CMN,BD ⊄平面CMN,所以BD ∥平面CMN.(2)因为PB=PC,AB=AC,PA=PA,所以△PAB ≌△PAC,所以∠PAC=∠PAB=90°,所以PA=√PC 2−AC 2=√6−2=2,又因为PA ⊥AB,AB ∩AC=A,所以PA ⊥平面ABC,过N 作NH ⊥AB 于H,连接HC,因为NH ∥PA,所以NH ⊥平面ABC,所以NH ⊥HC,且AH=23AB,直线CN 与平面ABC 所成角为∠NCH,所以直线CN 与平面ABC 所成角的正切值tan ∠NCH=NH HC=13PA √AC 2+(23AB )2=13×2√(√2)2+(23×√2)2=√2613.6.(2017课标Ⅱ理,19,12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.解析 (1)证明:取PA 的中点F,连接EF,BF.因为E 是PD 的中点,所以EF ∥AD,EF=12AD.由∠BAD=∠ABC=90°得BC ∥AD,又BC=12AD,所以EF BC,所以四边形BCEF 是平行四边形,所以CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB.(2)由已知得BA ⊥AD,以A 为坐标原点,AB ⃗⃗⃗⃗ 的方向为x 轴正方向,|AB ⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,√3),则PC⃗⃗⃗⃗ =(1,0,-√3),AB ⃗⃗⃗⃗ =(1,0,0). 设M(x,y,z)(0<x<1),则BM ⃗⃗⃗⃗⃗ =(x-1,y,z),PM⃗⃗⃗⃗⃗ =(x,y-1,z-√3).因为BM 与底面ABCD 所成的角为45°,而n=(0,0,1)是底面ABCD 的一个法向量,所以|cos<BM⃗⃗⃗⃗⃗ ,n>|=sin45°,即√(x−1)+y 2+z 2=√22,即(x-1)2+y 2-z 2=0.①又M 在棱PC 上,设PM⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗ ,则 x=λ,y=1,z=√3-√3λ.②由①,②解得{ x =1+√22,y =1,z =−√62(舍去),或{ x =1−√22,y =1,z =√62,所以M (1−√22,1,√62),从而AM⃗⃗⃗⃗⃗ =(1−√22,1,√62).设m=(x 0,y 0,z 0)是平面ABM 的法向量,则{m ·AM⃗⃗⃗⃗⃗ =0,m ·AB⃗⃗⃗⃗ =0,即{(2−√2)x 0+2y 0+√6z 0=0,x 0=0,所以可取m=(0,-√6,2). 于是cos<m,n>=m·n |m||n|=√105. 易知所求二面角为锐二面角. 因此二面角M-AB-D 的余弦值为√105.考法二 判断或证明面面平行的方法(2021太原一模,19)如图,在三棱锥P-ABC 中,△PAB 是正三角形,G 是△PAB 的重心,D,E,H 分别是PA,BC,PC 的中点,点F 在BC 上,且BF=3FC. (1)求证:平面DFH ∥平面PGE;(2)若PB ⊥AC,AB=AC=2,BC=2√2,求二面角A-PC-B 的余弦值.解析 (1)证明:连接BG,GD,由题意得BG 与GD 共线,且BG=2GD, ∵E 是BC 的中点,BF=3FC,∴F 是CE 的中点, ∴BGGD =BEEF=2,∴GE ∥DF,∵GE ⊂平面PGE,DF ⊄平面PGE,∴DF ∥平面PGE, ∵H 是PC 的中点,∴FH ∥PE,∵HF ⊄平面PGE,PE ⊂平面PGE,∴FH ∥平面PGE, ∵DF ∩FH=F,∴平面DFH ∥平面PGE.(2)∵AB=AC=2,BC=2√2,∴AB 2+AC 2=8=BC 2,∴AB ⊥AC,又∵PB ⊥AC,AB ∩PB=B,∴AC ⊥平面PAB,以A 为坐标原点,向量AB ⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗ 的方向为x 轴,y 轴的正方向建立如图所示的空间直角坐标系A-xyz,由题意得A(0,0,0),B(2,0,0),C(0,2,0),P(1,0,√3),则AC⃗⃗⃗⃗ =(0,2,0),AP ⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗ =(-1,2,-√3),BC ⃗⃗⃗⃗ =(-2,2,0),设平面PAC 的法向量是m=(x 1,y 1,z 1),则{m ·AC⃗⃗⃗⃗ =0,m ·AP⃗⃗⃗⃗ =0,∴{2y 1=0,x 1+√3z 1=0,则y 1=0,令z 1=-1,则x 1=√3,∴m=(√3,0,-1), 设平面PBC 的法向量是n=(x 2,y 2,z 2),则{n ·PC⃗⃗⃗ =0,n ·BC⃗⃗⃗⃗ =0,∴{−x 2+2y 2−√3z 2=0,−2x 2+2y 2=0,令z 2=1,则{x 2=√3,y 2=√3,∴n=(√3,√3,1), ∴cos<m,n>=m·n |m||n|=√77,又知二面角A-PC-B 是锐二面角,∴二面角A-PC-B 的余弦值为√77. B 组1.(多选)(2021南京航空航天大学附中期中,10)已知棱长为1的正方体ABCD-A 1B 1C 1D 1,过对角线BD 1作平面α交棱AA 1于点E,交棱CC 1于点F,以下结论正确的是( ) A.四边形BFD 1E 不一定是平行四边形 B.平面α分正方体所得两部分的体积相等 C.平面α与平面DBB 1不可能垂直 D.四边形BFD 1E 面积的最大值为√2答案 BD2.(多选)(2021广东肇庆二模,12)在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,P 是线段BC 1上的一动点,则下列说法中正确的是( ) A.A 1P ∥平面AD 1CB.A 1P 与平面BCC 1B 1所成角的正切值的最大值是2√55C.A 1P+PC 的最小值为√1705D.以A 为球心,√2为半径的球面与侧面DCC 1D 1的交线长是π2答案 ACD。
高三数学一轮复习 8.4 直线、平面平行的判定与性质

考点1
考点2
考点3
-19-
解题心得证明线面平行的关平行的关键是设法在平面内找到一条与已知 直线平行的直线; (2)利用几何体的特征,合理利用三角形中位线定理、线面平行的 性质,或者构造平行四边形、寻找比例式证明两直线平行; (3)注意说明已知的直线不在平面内,即三个条件缺一不可.
关闭
(1思)D考(如2)何D 借助几何模型来找平行关系?
解析 答案
考点1
考点2
考点3
-14-
解题心得线面平行、面面平行的命题真假判断多以小题出现,处 理方法是数形结合,画图或结合正方体等有关模型来解题.
-15-
考点1
考点2
考点3
对点训练1(1)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位
关闭
(1)CA.中若,m与⊥nn可,m相⊂交α,n、⊂可β,异则面α⊥、β可平D.行若;mB中⊥,αm,与m∥n可n,n平∥行β,、则可α⊥异β面;C中,若
α∥(2β),仍设然m,可n表满示足不m⊥同n直,m⊂线α,,αn,⊂ββ表,故示C不错同误;平D正面确,则. 下列结论中正确的是
((2)A错)误,n有可能在平面α内;B错误,平面α有可能与平面β相交;C错误,n也
考点1
考点2
考点3
-20-
对点训练2如图,在三棱锥A-BCD中,AB⊥平面BCD,BC⊥BD, E,F,G分别是CD,AD,AB的中点,H是CE的中点.
(1)求证:HG∥平面BEF; (2)若BC=BD=2AB=2,求三棱锥G-BEF的体积.
-21-
考点1
考点2
考点3
(1)证明 取BC中点M,连接GM,MH,
b∥α
a∩α=⌀ a∥b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第04节直线、平面平行的判定与性质A 基础巩固训练1.【福建卷】若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α的() A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“l m ⊥”是“//l α的必要不充分条件,故选B .2.【陕西五校一模】已知直线a 和平面α,那么a ∥α的一个充分条件是(). A .存在一条直线b ,a ∥b 且b ⊂αB .存在一条直线b ,a ⊥b 且b ⊥α C .存在一个平面β,a ⊂β且α∥βD .存在一个平面β,a ∥β且α∥β 【答案】C3.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是()A .①③B .②③C .①④D .②④ 【答案】C【解析】对于图形①:平面MNP 与AB 所在的对角面平行,即可得到AB ∥平面MNP ,对于图形④:AB ∥PN ,即可得到AB ∥平面MNP ,图形②,③都不可以,故选C. 4.已知a ,b 为异面直线,下列结论不正确的是() A .必存在平面α使得//a α,//b α B .必存在平面α使得a ,b 与α所成角相等 C .必存在平面α使得a α⊂,b α⊥ D .必存在平面α使得a ,b 与α的距离相等 【答案】C.【解析】若C 成立,则可知b a ,故C 不正确,A ,B ,D 均正确,故选C.5.如图,在三棱锥A-BCD 中,AB ⊥AD,BC ⊥BD,平面ABD ⊥平面BCD,点E,F(E 与A,D 不重合)分别在棱AD,BD 上,且EF ⊥AD.求证:(1)EF ∥平面ABC ;(2)AD ⊥AC.【答案】D(第15题)ADBC EFB能力提升训练1.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G 分别为BC,CD的中点,则()A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形【答案】B【解析】如图,由题意知EF ∥BD , 且EF =15BD .HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG . ∴四边形EFGH 是梯形.又EF ∥平面BCD ,而EH 与平面ADC 不平行.故选B.2.给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题: ①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β; ②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数为() A .3B .2C .1 D .0【答案】C3.对于平面α和共面的直线m 、n ,下列命题是真命题的是() A .若m ,n 与α所成的角相等,则m ∥n B .若m ∥α,n ∥α,则m ∥n C .若m ⊥α,m ⊥n ,则n ∥αD.若m⊂α,n∥α,则m∥n【答案】D【解析】正三棱锥P-ABC的侧棱PA、PB与底面成角相等,但PA与PB相交应排除A;若m∥α,n∥α,则m与n平行或相交,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.4.在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.【答案】平行5.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,12BC CD AD==.P(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.【答案】(Ⅰ)取棱AD的中点M,证明详见解析;(Ⅱ)证明详见解析.【解析】试题分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,只要在平面ABCD上作//CM AB交AD于M即得;(Ⅱ)要证面面垂直,先证线面垂直,也就要证线线垂直,本题中有PA BD⊥(由线面垂直的性质或定义得),另外可以由平面几何知识证明BD AB ⊥,从而有线面垂直,再有面面垂直. 试题解析:P(I )取棱AD 的中点M(M ∈平面PAD),点M 即为所求的一个点.理由如下: 因为AD‖BC,BC=12AD ,所以BC‖AM,且BC=AM. 所以四边形AMCB 是平行四边形,从而CM‖AB. 又AB ⊂平面PAB,CM ⊄平面PAB, 所以CM ∥平面PAB.(说明:取棱PD 的中点N,则所找的点可以是直线MN 上任意一点) (II )由已知,PA ⊥AB,PA ⊥CD, 因为AD ∥BC,BC=12AD ,所以直线AB 与CD 相交, 所以PA ⊥平面ABCD. 从而PA ⊥BD. 因为AD ∥BC,BC=12AD , 所以BC ∥MD,且BC=MD. 所以四边形BCDM 是平行四边形. 所以BM=CD=12AD ,所以BD ⊥AB. 又AB∩AP=A,所以BD ⊥平面PAB. 又BD ⊂平面PBD,所以平面PAB ⊥平面PBD.z.x..xkC 思维扩展训练1.已知m 、n 为直线,α、β为平面,给出下列命题:①⎭⎪⎬⎪⎫m ⊥αm ⊥n⇒n ∥α;②⎭⎪⎬⎪⎫m ⊥βn ⊥β⇒m∥n ;③⎭⎪⎬⎪⎫m ⊥αm ⊥β⇒α∥β;④⎭⎪⎬⎪⎫m ⊂αn ⊂βα∥β⇒m ∥n .其中正确命题的序号是()A .③④B .②③C .①②D .①②③④【答案】B【解析】①不正确,n 可能在α内. ②正确,垂直于同一平面的两直线平行. ③正确,垂直于同一直线的两平面平行. ④不正确,m 、n 可能为异面直线.故选B.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内与过B 点的所有直线中() A .不一定存在与a 平行的直线B .只有两条与a 平行的直线 C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线 【答案】A【解析】当直线a 在平面β内且经过B 点时,可使a ∥平面α,但这时在平面β内过B 点的所有直线中,不存在与a 平行的直线,而在其他情况下,都可以存在与a 平行的直线. 3.已知m ,n 是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:①若m ⊥α,m ⊥β,则α∥β;②若m α,n β,m ∥n ,则α∥β;③若α⊥γ,β⊥γ则α∥β;④若m ,n 是异面直线,m α,m ∥β,n β,n ∥α,则α∥β. 其中真命题的序号是________. 【答案】①④4.如图,在三棱锥P -ABC 中,平面PAC ⊥平面ABC ,PA ⊥AC ,AB ⊥BC .设D 、E 分别为PA 、AC 中点.(1)求证:DE ∥平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,E ,F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.【答案】(1)见解析;(2)见解析;(3)当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行.【解析】(1)证明:因为点E是AC中点,点D为PA的中点,所以DE∥PC.又因为DE⊄平面PBC,PC⊂平面PBC,所以DE∥平面PBC.(2)证明:因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,又PA⊂平面PAC,PA⊥AC,所以PA⊥平面ABC.所以PA⊥BC.又因为AB⊥BC,且PA∩AB=A,所以BC⊥平面PAB.(3)当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行.取AB中点F,连EF,DF.由(1)可知DE∥平面PBC.因为点E是AC中点,点F为AB的中点,所以EF∥BC.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC.又因为DE∩EF=E,所以平面DEF∥平面PBC,所以平面DEF内的任一条直线都与平面PBC平行.故当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行.5.如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,AD BC //,CD⊥AD,PC=AD=2DC=2CB ,E 为PD 的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值. 【答案】(Ⅰ)见解析;(Ⅱ)82. 【解析】试题解析:MFH QNPABCDEMH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD=1.在△PCD 中,由PC=2,CD=1,PD=2得CE=2, 在△PBN 中,由PN=BN=1,PB=3得QH=41, 在Rt△MQH 中,QH=41,MQ=2, 所以sin∠QMH=82,所以直线CE 与平面PBC 所成角的正弦值是82.。