二次函数与一元二次方程课件
合集下载
二次函数与一元二次方程(第1课时)PPT课件

(1) h和t的关系式是什么?
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:
们
函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:
们
函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。
《二次函数与一元二次方程》PPT课件

(2)当h=20时,20t-5t2=20, 化简得t2-4t+4=0, t1=t2=2. 当球飞行2s时,它的高度为20m.
思考:结合图形,你知道为什么在1)中有两个点符合题意,而在2)中只有一个点符合题意?
情景思考
分析:由于小球的飞行高度h与飞行时间t有函数关系h=20t-5t2,所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程.【注意】根据实际问题,讨论h的取值.
一元二次方程ax2+bx+c=0(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
思考
判别式(△)b2-4ac
二次函数y=ax2+bx+c(a≠0)
图象
一元二次方程ax2+bx+c=0(a≠0)的根
b2-4ac>0
(3)当h=20.5时,20t-5t2=20.5, t2-4t+4.1=0, 因为(-4)2-4×4.1<0,所以方程无实根. 故球的飞行高度达不到20.5m.
(4)当h=0时,20t-5t2=0,化简得t2-4t=0, t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时,球从地面飞出,4s时球落回地面.
以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间t (单位:s)之间具有关系:h= 20t–5t2 . 考虑下列问题:(1)球的飞行高度能否达到 15 m? 若能,需要多少时间?(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?(3)球的飞行高度能否达到 20.5 m?为什么?(4)球从飞出到落地要用多少时间?
思考:结合图形,你知道为什么在1)中有两个点符合题意,而在2)中只有一个点符合题意?
情景思考
分析:由于小球的飞行高度h与飞行时间t有函数关系h=20t-5t2,所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程.【注意】根据实际问题,讨论h的取值.
一元二次方程ax2+bx+c=0(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
思考
判别式(△)b2-4ac
二次函数y=ax2+bx+c(a≠0)
图象
一元二次方程ax2+bx+c=0(a≠0)的根
b2-4ac>0
(3)当h=20.5时,20t-5t2=20.5, t2-4t+4.1=0, 因为(-4)2-4×4.1<0,所以方程无实根. 故球的飞行高度达不到20.5m.
(4)当h=0时,20t-5t2=0,化简得t2-4t=0, t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时,球从地面飞出,4s时球落回地面.
以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间t (单位:s)之间具有关系:h= 20t–5t2 . 考虑下列问题:(1)球的飞行高度能否达到 15 m? 若能,需要多少时间?(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?(3)球的飞行高度能否达到 20.5 m?为什么?(4)球从飞出到落地要用多少时间?
《二次函数与一元二次方程》二次函数PPT教学课件

情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1
两
(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,
二次函数与一元二次方程ppt课件

垂直于直线x=2于点E.
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
二次函数与一元二次方程、不等式_课件

对于比较简单的分式不等式,可直接转化为一元二次 不等式或一元一.次不等式组求解,但要注意分母不 为零.
对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为 零,然后再用上述方法求解.
拓展练习 变式训练2:解下列不等式 :
∴原不等式的解集 为
拓展练习 变式训练2:解下列不等式 :
(3){x|x≠2}
2.当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于 0? (1)y=3x²-6x+2;(2)y=25-x²; (3)y=x²+6x+10;(4)y=-3x²+12x-12.
(2) 令25-x²=0,则z=±5,又由y=25-x²图象的开口方向朝下,故z=±5 时 ,函数的值等于0,当-5 (3)令x²+6z+10=0,则方程无解,又由y=x²+6x+10 图象的开口方向上, 故无论x须何值,函数值均大于0; (4)x=2时,函数的值等于0;当x≠2时,函数值小于 0.
∴原不等式的解集 为
知识拓展
简单高次不等式的解 法
知识拓展 [解析]原不等式等价于x(x+2)(x3)<0. 结合数轴穿针法(如图)可知
[答案]A
拓展练习 变式训练3:解不等式:x(x-1)²(x+1)³(x-2)>0.
∴原不等式的解集 为
1.求下列不等式的解集∶ (1)(x+2)(x-3)>0;(2)3x²-7x≤10; (3)-x²+4x-4<0;(4)x²-x+<0; (5)-2x²+x≤-3;(6)x²-3x+4>0; 答案(1){x|x<-2,或x>3} (4)不等式的解集为
程
对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为 零,然后再用上述方法求解.
拓展练习 变式训练2:解下列不等式 :
∴原不等式的解集 为
拓展练习 变式训练2:解下列不等式 :
(3){x|x≠2}
2.当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于 0? (1)y=3x²-6x+2;(2)y=25-x²; (3)y=x²+6x+10;(4)y=-3x²+12x-12.
(2) 令25-x²=0,则z=±5,又由y=25-x²图象的开口方向朝下,故z=±5 时 ,函数的值等于0,当-5 (3)令x²+6z+10=0,则方程无解,又由y=x²+6x+10 图象的开口方向上, 故无论x须何值,函数值均大于0; (4)x=2时,函数的值等于0;当x≠2时,函数值小于 0.
∴原不等式的解集 为
知识拓展
简单高次不等式的解 法
知识拓展 [解析]原不等式等价于x(x+2)(x3)<0. 结合数轴穿针法(如图)可知
[答案]A
拓展练习 变式训练3:解不等式:x(x-1)²(x+1)³(x-2)>0.
∴原不等式的解集 为
1.求下列不等式的解集∶ (1)(x+2)(x-3)>0;(2)3x²-7x≤10; (3)-x²+4x-4<0;(4)x²-x+<0; (5)-2x²+x≤-3;(6)x²-3x+4>0; 答案(1){x|x<-2,或x>3} (4)不等式的解集为
程
《二次函数与一元二次方程》参考PPT课件

有两个不相 等的实数根
b2 – 4ac > 0
只有一个交点 有两个相等的 实数根
b2 – 4ac = 0
没有交点
没有实数根
b2 – 4ac < 0 16
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
7.一元二次方程 3 x2+x-10=0的两个根是x1-2 , x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交点坐
标是__(_-2_,_0)_(_5/_3,. 0)
19
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
20.5 m
6
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4 当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
7
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
2.若抛物线 y = ax2+bx+c= 0,当 a>0,c<0时,图
象与x轴交点情况是( C )
A. 无交点
B. 只有一个交点
C. 有两个交点 D. 不能确定
17
3. 如果关于x的一元二次方程 x2-2x+m=0有两
个相等的实数根,则m=_1__,此时抛物线 y=x2- 2x+m与x轴有_1_个交点.
人教版九年级数学上册课件:22.2二次函数与一元二次方程 (共12张PPT)

(2)若该抛物线的对称轴为直线x=5/2. ①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的 抛物线与x轴只有一个公共点.
能力提升
挑战中考
12.(2016·江苏省宿迁)若二次函数y=ax2﹣2ax+c的图象
经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( C )
与y轴的交点坐标是_(__0_,__3_)____.
8.若二次函数y=mx2-2x+1的图像与x轴只有一个交点,则 m=____1_____.
9.画出抛物线y=x2-3x-4的图像,根据图像回答: (1)方程x2-3x-4=0的解是什么? (2)不等式x2-3x-4>0的解是什么? (3)不等式x2-3x-4<0的解是什么?
的对称轴是直线___X_=_-_1___.
类比精练
1.二次函数
的图象与x轴有两个交点,其中
一个交点坐标为(-1,0)则一元二次方程
的
解为__X__1_=_-1_,__X_2_=_3___.
课堂精讲
知识点2.运用一元二次方程根的判别式处理二次函数图
象与"轴的交点问题
例2.若二次函数
的图象与x轴有交点,则k
6.如果关于x的二次函数y=x2﹣2x+k与x轴只有1个交点, 则k= 1 .
7.若抛物线
则
= 10 .
经过点(-1,10),
课前小测
8.二次函数y=ax+bx+c的图象如图所示,则函数值y<0时 x的取值范围是 - 1<x元二次方程的关系
例1.方程
的两根为-3和1,那么抛物线
能力提升
10.如图是二次函数y=ax2+bx+c的图象,则下列说法: ① a>0;②2a+b=0; ③a+b+c=0; ④当-1<x<3时,y>0. 其中正确的个数为( B )
②把该抛物线沿y轴向上平移多少个单位长度后,得到的 抛物线与x轴只有一个公共点.
能力提升
挑战中考
12.(2016·江苏省宿迁)若二次函数y=ax2﹣2ax+c的图象
经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( C )
与y轴的交点坐标是_(__0_,__3_)____.
8.若二次函数y=mx2-2x+1的图像与x轴只有一个交点,则 m=____1_____.
9.画出抛物线y=x2-3x-4的图像,根据图像回答: (1)方程x2-3x-4=0的解是什么? (2)不等式x2-3x-4>0的解是什么? (3)不等式x2-3x-4<0的解是什么?
的对称轴是直线___X_=_-_1___.
类比精练
1.二次函数
的图象与x轴有两个交点,其中
一个交点坐标为(-1,0)则一元二次方程
的
解为__X__1_=_-1_,__X_2_=_3___.
课堂精讲
知识点2.运用一元二次方程根的判别式处理二次函数图
象与"轴的交点问题
例2.若二次函数
的图象与x轴有交点,则k
6.如果关于x的二次函数y=x2﹣2x+k与x轴只有1个交点, 则k= 1 .
7.若抛物线
则
= 10 .
经过点(-1,10),
课前小测
8.二次函数y=ax+bx+c的图象如图所示,则函数值y<0时 x的取值范围是 - 1<x元二次方程的关系
例1.方程
的两根为-3和1,那么抛物线
能力提升
10.如图是二次函数y=ax2+bx+c的图象,则下列说法: ① a>0;②2a+b=0; ③a+b+c=0; ④当-1<x<3时,y>0. 其中正确的个数为( B )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
友情提示:二次函数有哪几种表达形式?
例2 :已知抛物线与X轴交于A(-1,0),B(2,0)
并经过点M(0,2),求抛物线的解析式?
y x o
思考: 你能用什么方法做呢? 哪个方法更好? 解:设所求的二次函数为 因为 y=a(x+1)(x-2)
点M( 0,2 )在抛物线上
所以:a(0+1)(0-2)=2 得 : a=-1 故所求的抛物线为 y=- (x+1)(x-2) 即:y=-x2+x+2
两个不相等的实数根 (1)关于ax2+bx+c=0的一元二次方程的根的情况是 ( ) 无实数根
(3)关于ax2+bx+c=2的一元二次方程的根的情况是( ) 两个相等的实数根
Y=4
4 2
y
Y=2 Y=0
0
-2
x
例1学以致用
由上抛小球落地的时间想到
竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式 h=-5t2+40t表示
两个交点 (1). 图象y=x2+2x与x轴交点个数( ) 一元二次方程x2+2x=0根的个数 ( △﹥0,有两个不相等实数根 一个交点 (2)图象y=x2-2x+1与x轴交点个数( 一元二次方程x2-2x+1=0根的个数( △=0,有两个相等实数根
) )
)
(3)图象y=x2-2x+2与x轴交点个数( 一元二次方程x2-2x+2=0根的个数(
抛物线
,
自主学习一:
1、二次函数图像与x轴交点个数有几种情况?想一想, 画一画
y x
三种可能:①两个交点 ②一个交点 ③没有交点。
0
自主学习二: 二次函数与x轴交点与一元二次方程的根有
什么关系? 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图:
y=x2-2x+2
y=x2-2x+1 y=x2+2x
没有交点 △﹤0无实数根
) )
想一想 填一填 . 二次函数y=ax2+bx+c的图象和x轴交点的个数 与一元二次方程ax2+bx+c=0的根有什么关系?
一元二次方程 ax2+bx+c=0根的判别式 =b2-4ac
b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
一元二次方程 ax2+bx+c=0的根的情况
2 1 0
(x-2)2=1
..
M 1 2 3
直线y=1
(x-2)=±1
X-2=-1 或 x-2=1
x
想一想
一元二次方ax2+bx+c=k的根是函数y=ax2+bx+c
的图象和
直线y=k
y
交点横坐标
. .
x1
0
直线y=k
x2 x
跟踪练习二
函数的图象y=ax2+bx+c如图所示, 那么 (2)关于ax2+bx+c=4的一元二次方程的根的情况是( )
能力升华
y 一元二次方程x2-4x+4=0的根是函数 y=x2-4x+4的图象与( X轴 )交点的横坐标。
N
y=x2-4x+4
直线y=0
一元二次方程x2-4x+4=1的根二次函数y=x2-4x+4 的图象与直线( 直线y=1 )交点的横坐标 y
0
1 2
.
直线y=0
x
正确 ?
y=x2-4x+4
N
方程x2-4x+4=1的根(x1= 1 x2= 3 )
-2
1
0
(2,0) _____
(-5,0)
3.二次函数y=kx2+4x-4的图象与x轴有交点, 则k 的取值范围 . K>-1且k≠0 4.已知二次函数图象过(-1,0),(3,0)和(1,-8)三点, 求二次函数表达式。 Y=2(x+1)(x-3) 即:Y=2x2-4x-6
二次函数与一元二次方程
复习提问
1、 一元二次方程ax2+bx+c=0(a≠0)的根的判别式△ = b2-4ac 。 方程根的情况是:当△﹥0 时方程 有两个不等实数根 ;
当△=0时,方程
当△﹤0时,方程
有两个相等、 二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)图像 是一条
1).小球经过多少秒后落地?你有几种 求解方法?与同伴进行交流.
100 80 60 40 20
h
1.8s, 可以利用图象,
也可以把h 0代入函数h 5t 2 40t 解方程 5t 40t 0.
2
0
.
2
4
6
.
8
2) 小球上抛问题中,何时小球离地面的高度是60m,
你是如何知道的,你有几种方法 (1)方法一:利用图像 (2)方法二:利用方程:把h=60 代入得 解得x1=2 x2=6
跟踪练习一
1 . 若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数 (-2,0)、(3,0) y=ax2+bx+c的图象与x轴交点坐标是 。 2.抛物线y=x2-4x+4与轴有 一 个交点,坐标是 (2,0) 。 3.抛物线y=0.5x2-x+3与x轴的交点情况是( c ) A 两个交点 B 一个交点 C 没有交点 D 画出图象后才能说明
要化成 一般式
跟踪练习三
二次函数的图象与轴交于(2,0)(-1,0)且过点(0, -2)求这个二次函数的解析式
解:设所求的二次函数为 y=a(x-2)(x+1) 因为: 点M( 0,-2 )在抛物线上
所以:a(0-2)(0+1)=-2 得 : a=1 故所求的抛物线为 y=(x-2)(x+1) 即:y=x2-x-2
课堂小结
1.二次函数y=ax2+bx+c与X轴交点个数的确定 2. 二次函数与一元二次方程的关系
y=ax2+bx+c
与直线 y=k
ax2+bx+c=k y取定值k
交点的横坐标 3.用交点式求二次函数表达式
方程的根
数 形 结 合 的 思 想
目标检测
相信自己,我能行
y
1、已知二次函数y=ax2+bx+c(a≠0)的图象如 下图所示,请写出方程ax2+bx+c=0(a≠0)的根 X1=-2 ,x2=1 2、抛物线y=-3(x-2)(x+5)与x轴的交点坐标为
有两个相异的实数根 有两个相等的实数根
二次函数y=ax2+bx+c的图 象和x轴交点个数 有两个交点 有一个交点
没有交点
没有实数根
自主学习三: 二次函数图象和x轴交点坐标与 一元二次方程的根有什么关系? 交 点 的 横 坐 标 是 一 元 二 次 方 程 的 根
y=x2+2x与 x轴交点
(-2,0)
4 不画图象,求抛物线y=x2-3x-4与x轴的交点坐标。
解:∵解方程x2-3x-4=0得: x1=-1,x2=4 ∴抛物线y=x2-3x-4与x轴的交点坐标是: (-1,0)和(4,0) 5.若函数 y mx2 6 x 1图象与x 轴是只有一个公共点,求m 的值. 解:∵ 图象与x 轴是只有一个公共点 则△=0 即 36-4m=0 ∴ m=9
3)对于上题来说,方程-5t2+40t=80的根
-5t2+40t=60
h
的实际意义是什么?
-5t2+40t=80 当h=80时,相对应的t
100 80 60
40
20
0
2
4
6
8
课堂小结
想一想 议一议
若一元二次方程ax 2+bx+c=0两个根为x 1 , x2 则一 元二次方程可化为 (x-x1)(x-x2)=0 若二次函数y=ax 2+bx+c的图象和x轴交点坐标(X1 ,0) (X2 ,0),则二次函数的表达式可表示为Y=a(x-x1)(x-x2)这种表示 方法称为二次函数的交点式。
(0,0)
令 y=0 x2+2x=0方程的根是
X1 =-2 X2 =0
y=x2-6x+8与x轴交点是 (2, 0)(4,0 )
令 y=0
x2-6x+8=0方程的根是 X1 =2 X2 =4
想一想
二次函数y=ax2+bx+c的图象和x轴交点坐标与一元二次方 ax2+bx+c=0的根有什么关系? 与x轴交点的横坐标是当y=0时自 变量x的值 即方程ax2+bx+c=0的根.