七年级上册数学作业4

合集下载

人教版数学七年级上册《复习题4》教学设计

人教版数学七年级上册《复习题4》教学设计

人教版数学七年级上册《复习题4》教学设计一. 教材分析人教版数学七年级上册《复习题4》主要包括了分数、小数的运算,以及它们在实际问题中的应用。

本节课的内容是对前面所学知识的巩固和复习,通过解决一些实际问题,让学生掌握分数、小数运算的规律和方法。

教材内容由浅入深,逐步提高学生的运算能力和解决问题的能力。

二. 学情分析学生在之前的学习中已经掌握了分数、小数的基本运算方法,但对于一些复杂的问题,可能会存在理解困难和运算错误的情况。

因此,在教学过程中,需要关注学生的学习情况,及时发现并解决问题。

同时,学生应该具备一定的解决问题的能力,能够将实际问题转化为数学问题,并运用所学的知识进行解决。

三. 教学目标1.知识与技能:使学生掌握分数、小数的运算方法,能够解决相关的实际问题。

2.过程与方法:通过复习题目的练习,提高学生的运算速度和准确性,培养学生的解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:分数、小数的运算方法及实际应用。

2.难点:解决一些复杂实际问题时,如何正确转化问题和运用所学的知识。

五. 教学方法采用问题驱动的教学方法,引导学生通过自主学习、合作交流的方式,解决问题。

在教学过程中,注重启发式教学,让学生在思考中掌握知识,提高能力。

同时,运用巩固式教学法,通过对复习题目的练习,加深学生对知识的理解和运用。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和问题。

2.学生准备:完成前置学习任务,了解分数、小数的运算方法。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引发学生对分数、小数运算的兴趣,进而引入本节课的内容。

2.呈现(10分钟)教师展示复习题目,让学生明确学习目标。

题目包括简单和复杂的实际问题,涉及分数、小数的运算。

3.操练(10分钟)学生分组进行讨论和练习,解决呈现的题目。

教师巡回指导,解答学生的疑问,纠正错误。

全品作业本七年级上册数学2024

全品作业本七年级上册数学2024

全品作业本七年级上册数学2024一、概述在学习数学的过程中,作业本作为学生巩固知识、提高能力的重要工具,扮演着至关重要的角色。

针对七年级上册数学知识点和难点,全品作业本七年级上册数学2024应运而生,旨在帮助学生巩固知识、提高解题能力。

二、教材内容1. 整数及其运算:涉及正数、负数的概念和运算规则,包括加法、减法、乘法、除法等,让学生从数轴的角度了解整数。

2. 分数及其运算:引导学生了解分数的概念与性质,包括加减乘除四则运算,培养学生建立正确的分数概念。

3. 代数式及其计算:介绍代数式的定义与性质,以及代数式的计算方法,引导学生初步了解代数式的基本概念。

4. 方程与不等式:教授方程与不等式相关的基本概念和解法,引导学生学会解决一元一次方程与不等式问题。

三、难点突破1. 整数加减法:通过造型图和实际问题引导学生理解整数加减法的本质,帮助学生克服对负数的恐惧和困惑。

2. 分数的大小比较:通过举例比较大小,引导学生掌握分数大小比较的技巧,培养学生分数比较的直观感受。

3. 代数式的变形:通过多组练习和实例演练,帮助学生掌握代数式的常见变形方法,提高学生解题的灵活性。

4. 方程与不等式的转化:针对学生在方程与不等式转化过程中容易出错的地方,进行详细讲解和练习,帮助学生掌握转化的技巧。

四、作业设计1. 学而思作业本:结合教材内容和难点,设计了大量的练习题和案例分析,帮助学生巩固所学知识。

2. 习题集:为了方便学生每日复习和检验所学成果,编写了丰富多样的习题和测验题,帮助学生查漏补缺。

3. 考试卷模拟:根据教材要求和课程标准,编写了模拟考试卷,帮助学生在考前进行有针对性的复习。

五、教学效果评价通过实际教学实践和学生反馈,全品作业本七年级上册数学2024在提高学生数学成绩、培养学生解题能力、巩固知识点方面取得了明显效果。

学生在使用作业本后,更加自信和熟练地进行数学学习和解题,全品作业本受到了师生的一致好评。

六、结语全品作业本七年级上册数学2024在丰富知识体系、突破难点、提高解题能力等方面均有突出表现,对于帮助学生在七年级上学期的数学学习中取得更好的成绩和进步起到了积极的作用。

人教版数学七年级上册作业本答案完整版

人教版数学七年级上册作业本答案完整版

参考答案第一章 有理数1.1正数和负数(1)1.(1)-60(2)逆时针旋转45ʎ2.D3.6,+212,+8.5;-21,-30%4.D5.B,C,D地区农业总产值增加了,A,E地区农业总产值减少了,F地区农业总产值没有变化6.A(7,0),C(15,-3),D(0,-12)1.1正数和负数(2)1.23,+14,0.78;-178,-0.75,-12.200,0,-503.-0.5秒4.上,95.星期一低于警戒水位3c m,星期二恰为警戒水位,星期四超过警戒水位12c m6.(1)负数(2)正数,A1.2有理数1.2.1有理数1.0,负整数,负分数2.有理3.略4.(1)+2,+3(答案不唯一)(2)-2,-3(答案不唯一)(3)0(4)-13(答案不唯一)5.整数:{4,0,-6,208,-37}分数:-23,3.5,97,-20%,-4.6负分数:-23,-20%,-4.6有理数:4,-23,3.5,0,97,-6,-20%,208,-4.6,-376.答案不唯一.如-4,-3,2,1,12,0.6数学作业本七年级上义务教育教材1.2.2 数轴1.(1)负,正 (2)左,42.D3.略4.-3,-1,1,2.5和45.点A 表示的数是-2,点B 表示的数是+1,点C 表示的数是+56.(1)(2)C 地位于A 地西面,且两地相距4k m1.2.3 相反数1.左右两侧;-4,42.(1)-6 (2)0.5 (3)-34 (4)163.(1)C (2)A4.(1)23 (2)-3 (3)9.6 (4)-1945.③④6.(1)略 (2)距离相等7.略1.2.4 绝对值1.(1)65,3.78,0,-4.9 (2)ʃ2,2 2.(1)<,> (2)>,< 3.C 4.(1)数轴表示略,-1<0<134<|-2|<3.2 (2)-2,-1,0,1,25.(1)20 (2)16 (3)169(4)3 6.(1)-67>-78 (2)-+12<-(-1)1.3 有理数的加减法1.3.1 有理数的加法(1)1.(1)0 (2)-30 (3)10 (4)-1 2.(1)+,-或-,+ (2)- (3)+ (4)-,-3.(1)-6 (2)-1 (3)-37 (4)-123244.(-36)+(+160)=124(元)5.(1)(-7)+(-1)等 (2)0+(-8) (3)(-9)+1等 6.-1或91.3.1 有理数的加法(2)1.加法交换律,加法结合律 2.C 3.(1)-3 (2)2 (3)-12(4)-84.550+(-260)+150=440(元) 5.(1)3.84 (2)-34考答参案6.(1)16,120,142 (2)14082420*7.原式=(-2020-2019+4040-1)+-56-23-12=-21.3.2 有理数的减法(1)1.(1)3,3 (2)+,-8 (3)10,20 (4)2.4,-3.2 2.-6,8,-73.(1)-3 (2)-34 (3)6.79 (4)-91314 4.A 5.(1)3 (2)0.1 6.矿井下A 处最高,B 处最低,A 处与B 处相差92.2m*7.(1)7 (2)-61.3.2 有理数的减法(2)1.-10+2-3 2.(1)3 (2)4 (3)2 3.(1)0 (2)-11.2 4.(+11)+(+7)+(-21)+(+3)=(11+7+3)+(-21)=0,该班这个月收支平衡,没有结余5.(1)-9 (2)16.能.例如:(+1)+(-2)+(+3)+(-4)+(+5)+(-6)+(+7)+(+8)+(-9)+(-10)=1-2+3-4+5-6+7+8-9-10=-7(答案不唯一)*7.表示数a 的点与表示数b 的点,表示数b 的点与表示数-3的点1.4 有理数的乘除法1.4.1 有理数的乘法(1)1.(1)< (2)> (3)= (4)< 2.C 3.C 4.(1)2020 (2)-5 (3)-0.35 (4)05.(1)-23 (2)23(3)-7 (4)16.如4与-2,4+(-2)=2,4ˑ(-2)=-8.归纳:这两个数一个为正数,一个为负数,且正数的绝对值大于负数的绝对值1.4.1 有理数的乘法(2)1.(1)> (2)< (3)=2.(1)乘法交换律 (2)乘法分配律 (3)乘法交换律与乘法结合律3.(1)1200 (2)-180 (3)-10 4.(1)173 (2)-1 (3)-79125.(1)12.5 (2)-136.0义务教育教材数学作业本七年级上1.4.2有理数的除法(1)1.(1)< (2)< (3)> (4)=2.(1)5(2)-9(3)-15(4)343.(1)-12(2)-30(3)176(4)14.(1)-3(2)43(3)-13(4)235.(1)12(2)-1506.(1)抽取-3,-5,最大的乘积是15(2)抽取-5,+3,最小的商是-531.4.2有理数的除法(2)1.C2.标下划线略(1)-49(2)-723.(1)-17(2)-104.(1)-539(2)0.545.(1)-7(2)-126.6.5小时*7.①3ˑ(10+4-6);②(10-4)ˑ3-(-6);③4-(-6)ː3ˑ101.5有理数的乘方1.5.1乘方(1)1.(1)4,5(2)-6,3,-2162.D3.(1)18(2)-125(3)0.0001(4)2594.(1)32768(2)-7776(3)2541.1681(4)731.16165.14平方米,18平方米,128平方米6.(1)3的正整数次幂的个位数字只有3,9,7,1四种情形(2)11.5.1乘方(2)1.A2.3或-3,-23.正确答案为(1)-45(2)-2344.(1)4(2)-9(3)-607(4)15495.-436.a m㊃a n=a m+n7.461.5.2科学记数法1.5.3近似数1.(1)6.371ˑ107(2)8.64ˑ104(3)2.8ˑ1072.(1)200000(2)7080000(3)-20040000考答参案3.(1)3.14 (2)0.003 (3)0.017 (4)4104.(1)十 (2)85.5.6ˑ1056.70ˑ60ˑ24ˑ365=3.6792ˑ107(次),3.6792ˑ107<1亿复习题1.(1)-2.5 (2)23,23,-32(3)3ˑ1082.正整数:{4}负整数:{-100}正有理数:{4,0.01}负有理数:{-3.5,-314,-100,-2.15}3.数轴略,-3<0<112<|-2.5|<-(-4)4.(1)-75(2)-16 (3)-20 (4)5185.(-1)2,|-1|,-1-1,-(-1)6.百分,37.495,37.505 7.C 8.(1)25 (2)-609.(1)-712(2)当b 为0时,0做除数没有意义,屏幕上显示: 该操作无法进行 10.当a =1时,值为3;当a =-1时,值为-1 11.猜想略,3025第二章 整式的加减2.1 整式(1)1.4a 2.πr 2-a 23.(1)24x y (2)-13a (3)0.85m 元 4.(1)12a -b 2 (2)(40-2x )页 5.(1)10m +n (2)(500+8a -6b )米6.答案不唯一.例如:(1)买5支单价为a 元/支的铅笔的费用 (2)长为5㊁宽为a 的长方形的面积2.1 整式(2)1.(1)②③④,①⑤⑥ (2)3,-3,-12.第一行:-2;5;-116π.第二行:5;8;4;2;4.第三行:3x 2,-2;4a 4,-4a 2b 2,b 4义务教育教材数学作业本七年级上3.D4.05.(1)2a-400,12a+245(2)1539人6.(1)4039x2020(2)40804002.2整式的加减(1)1.(1)0(2)32a2(3)-1.5x32.C3.B4.(1)-2x2(2)-12a(3)0(4)-x2y5.(1)2a2-8a+5(2)26.3πa2.2整式的加减(2)1.(1)-x(2)92a2.A3.(1)2a2+3a b+b2(2)404.(1)23a b,4(2)x-2,-2.55.-5x y,-136.增加了(0.5a+2)吨2.2整式的加减(3)1.(1)a-b(2)2-6x(3)-x2+3x(4)-6x2+32.(1)错误,-3a-3b(2)错误,3x+24(3)正确(4)错误,2b-3a+13.B4.(1)2a-2(2)2(3)7(4)8x-55.(1)-2a+5b(2)-152x-46.(1)10(a+2)+a=11a+20(2)由题意可得,新的两位数是10a+a+2=11a+2,它与原两位数的和是11a+20+11a+2=22(a+1),故新的两位数与原两位数的和能被22整除2.2整式的加减(4)1.(1)+ (2)-2.4a+63.(1)2y(2)-12a+4b(3)4a2-b24.0.568ˑ60%a+0.288ˑ40%a-0.538a=0.3408a+0.1152a-0.538a= -0.082a<0,能节省电费5.94x+94y6.(120000+2000a)元*7.602.2整式的加减(5)1.(1)80%x(2)-y2.5x-6考答参案3.(1)4x -3,-1 (2)12a 2b -6a b 2,-6 4.12y +5,2y -6,52y -15.(1)(4x 2+14x )米(2)当x =7时,2(x 2+5x +x 2+4x )=4x 2+18x =196+126=322(米)6.20复习题1.(1)B (2)C (3)D 2.(1)12x 3y +3x 2y -7(答案不唯一) (2)2a +4.5b (3)-183.(1)-2x 2y -6 (2)-10x 2y (3)2x -6 4.-x +212,4125.(1)15a -15 (2)3285台6.-7a 2+397.13,16,3n +1*8.设原来两位数的十位数字为a ,个位数字为b ,则原来两位数为10a +b ,交换后新的两位数为10b +a .因为(10a +b )-(10b +a )=10a +b -10b -a =9a -9b=9(a -b ),所以这个结果一定能被9整除第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程(1)1.C 2.A 3.2(x +x +25)=3104.(1)2a +1=6 (2)12x +3=5 (3)-13a =10 (4)50%x -6=-35.设这种药品的原价为a 元,则(1-10%)a =14.56.(1)乐乐一共能写出6个等式,分别是3x +2=8,12x -3=8,x 2+2=8,3x +2=12x -3,3x +2=x 2+2,12x -3=x 2+2 (2)3个3.1.1 一元一次方程(2)1.2y =4(答案不唯一) 2.(1)2,解 (2)② 3.(1)不是 (2)是4.填表略,x =8 5.设经过x 小时后,水池中还剩下11吨水,则20-1.5x =116.(1)2(x +6)=5x (2)x =43.1.2 等式的性质(1)1.(1)8 (2)-1 2.(1)3,减x (2)2,乘以-2 3.B 4.C数学作业本七年级上义务教育教材5.C6.加2y ,x 有可能是0*7.不能从等式(2a -1)x =3a +5中得到x =3a +52a -1,理由:2a -1的值可能为0;能从x =3a +52a -1中得到(2a -1)x =3a +5,理由:在等式两边同时乘以(2a -1)3.1.2 等式的性质(2)1.(1)-1 (2)-3 (3)-2 2.C 3.加6,除以3,133 4.①③④5.(1)x =6 (2)x =-12 (3)x =2 (4)x =126.设这个班有x 名学生,则4x +35=215,解得x =453.2 解一元一次方程(一) 合并同类项与移项(1)1.(1)-2x =8 (2)5y =5,12.1.5x m 2,1.8x m 2,第一天修剪的面积+第二天修剪的面积+第三天修剪的面积=50m 2,x +1.5x +1.8x =503.2x +2ˑ1.2x =6604.(1)x =5 (2)t =2 (3)x =-8 (4)y =105.设硝酸钾㊁硫黄㊁木炭的质量分别是15x k g ,2x k g ,3x k g,则15x +2x +3x =400,解得x =20.因此硝酸钾需要300k g ,硫黄需要40k g ,木炭需要60k g6.设乒乓球拍的单价为x 元,则x +1.5x +4x =130,解得x =20.因此篮球㊁羽毛球拍和乒乓球拍的单价分别是80元㊁30元㊁20元3.2 解一元一次方程(一) 合并同类项与移项(2)1.C 2.20 3.32,-64,128 4.(1)x =-5 (2)x =-1725.设3月份的利润是x 万元,则x +2x +3x =42,解得x =76.(1)设十字框中间的那个数为x ,则x -2+x +x +2+x -12+x +12=215,解得x =43.这五个数分别是41,43,45,31,55(2)设十字框中间的那个数为x ,则x -2+x +x +2+x -12+x +12=305,解得x =61,而61位于第一列,故这五个数的和不能为3053.2 解一元一次方程(一) 合并同类项与移项(3)1.C 2.D 3.4x ,3x +2,4x =3x +24.(1)y =-2 (2)x =1 (3)x =2 (4)x =-35.设有x 个小朋友,则5x +8=6x ,解得x =8.因此有8个小朋友,48颗巧克力考答参案6.如果每人做6个,那么比计划多8个.这个手工小组有10名同学3.2 解一元一次方程(一) 合并同类项与移项(4)1.A 2.D 3.3x =x +5.4,解得x =2.74.(1)5x -8=2x +4,解得x =4 (2)13y +9=2y -6,解得y =95.设甲所带的钱是7x 元,乙所带的钱是6x 元,则7x -50=6x -30,解得x =20.甲所带的钱是140元,乙所带的钱是120元6.设乙书架上原来有x 本书,则52x -90=x +90,解得x =120.甲书架上原来有300本,乙书架上原来有120本*7.(a -c )x =d -b ,因为a ʂc ,即a -c ʂ0,所以x =d -ba -c3.3 解一元一次方程(二) 去括号与去分母(1)1.A 2.去括号,移项,合并同类项,系数化为13.x =85 4.(1)x =-52(2)x =0 (3)y =-12 (4)x =6.55.设甲商品的进货单价是x 元,则4(x +1)+3[2(3-x )-1]=17,解得x =1,所以甲商品的零售单价为2元,乙商品的零售单价为3元3.3 解一元一次方程(二) 去括号与去分母(2)1.D 2.(1)32 (2)93.设抽调的人数为x 人,则32+x =2(28-x ),解得x =84.(1)x =43 (2)x =14(3)y =65.设乙每小时走x 千米,则3(x +1)+3x =21,解得x =3,即甲每小时走4千米,乙每小时走3千米6.设船从开始掉头航行到追上救生艇的时间为x 秒,则(5+3)x =(5-3)ˑ10ˑ60+3ˑ(10ˑ60+x ),解得x =6003.3 解一元一次方程(二) 去括号与去分母(3)1.12,去分母,等式的性质2 2.-2 3.B 4.(1)x =-7 (2)x =-355.30千克6.设5月1日接待游客x 万人次,则x +53(x +x -6)+x -6=176,解得x =36数学作业本七年级上义务教育教材3.3 解一元一次方程(二) 去括号与去分母(4)1.D 2.133.略4.(1)x =-9 (2)x =05.(1)x =-2 (2)y =166.设火车的长度为x 米,则1000+x 60=1000-x 40,解得x =200.1000+20060=20,所以火车的长度为200米,过桥的速度为20米/秒3.4 实际问题与一元一次方程(1)1.30-x ,150x =100(30-x ) 2.200x =2ˑ50(60-x )3.D4.设挖土的有x 人,则5x =3(48-x ),解得x =18.安排18人挖土,30人运土5.设x 名工人生产桌面,则30(55-x )=4ˑ20x ,解得x =15.分配15名工人生产桌面,40名工人生产桌脚6.设第二天安排x 人制作小花,则18(25+x )=16(25+50-x )ˑ2,解得x =39.第二天安排39人制作小花,11人制作花篮3.4 实际问题与一元一次方程(2)1.B 2.B 3.90 4.5天5.设先整理的人员有x 人,则x 60+2(x +15)60=1,解得x =106.设经过x 小时后,其中一支的长度为另一支的一半,则21-16x=1-18x ,解得x =4.83.4 实际问题与一元一次方程(3)1.450,50x 2.130 3.30千克4.设进价为x 元,则x (1+45%)ˑ80%-x =270,解得x =1687.55.盈利8元6.设顾客在元旦当天累计购物x 元,则300+0.8(x -300)=200+0.85(x -200),解得x =6003.4 实际问题与一元一次方程(4)1.20分,8 2.3x +(8-x -1)=17 3.C4.(1)设成人票售出x 张,则8x +5(1000-x )=6920,解得x =640(2)设成人票售出x 张,则8x +5(1000-x )=7290,解得x =22903.因为票数考答参案不可能为分数,所以所得票款不可能是7290元5.设(1)班有x 人,因为(1)班的人数大于10人,但不到40人,所以(2)班人数在41~80人范围内,则10x +9(85-x )=85ˑ8+120,解得x =35.(1)班有35人,(2)班有50人6.(1)负一场得1分 (2)设胜m 场,总积分=3m +4-m =4+2m(3)设一个队胜了x 场,则3x =2(4-x ),解得x =85.因为x 的值是整数,所以x =85不合实际,由此判定该队的胜场总积分不能等于它的负场总积分的2倍3.4 实际问题与一元一次方程(5)1.14,10+2(x -3) 2.100+0.8ˑ10x =10x 3.设该中学需要x 件仪器时两种方案的费用相同,则10x =5x +120,解得x =244.(1)60+0.2(x -200),0.25x(2)列方程:60+0.2(x -200)=0.25x ,解得x =400.所以当x =400时,两处收费相等(3)当300<x <350时,去图书馆复印更省钱5.设第一次寄物品x 千克.当x ɤ10时,则3(24-x )+5=50,解得x =9.两次所寄的物品的质量分别为9千克与15千克;当x >10时,则2x -20+3(24-x )+5=50,解得x =7(舍去)复习题1.(1)A (2)D2.(1)103a (2)1 (3)33.(1)x =-43 (2)y =-17 (3)t =-516(4)x =1 4.85.766.数学竞赛有46名学生获奖,演讲比赛有30名学生获奖7.设‘汉语成语大词典“的标价为x 元,则50%x +60%(80-x )=45,解得x =30,80-x =50.‘汉语成语大词典“的标价为30元,‘中华上下五千年“的标价为50元8.(1)x +1,x +7,x +8(2)x +x +1+x +7+x +8=416,解得x =100(3)列方程:x +x +1+x +7+x +8=3096,解得x =770.因为770是表中第110行的最后一个数,所以框住的4个数之和不可能为3096义务教育教材数学作业本七年级上第四章 几何图形初步4.1几何图形4.1.1立体图形与平面图形(1)1.形状,大小2.①②,③④3.① 棱柱 ② 圆柱 ③ 球 ④ 圆锥 ⑤ 棱锥4.圆㊁三角形㊁正方形等5.④,⑤,①②⑥,⑦,③6.略4.1.1立体图形与平面图形(2)1.圆,长方形,长方形2.球或正方体(写出一种即可)3.B4.左图是从正面或左面看立体图形得到的,右图是从上面看立体图形得到的5.D6.丁,甲,丙,乙4.1.1立体图形与平面图形(3)1.① 五棱柱 ② 圆柱 ③ 圆锥2.B3.B4.B5.6.4.1.2点㊁线㊁面㊁体1.①②③,④⑤⑥2.面,线,点3.① 乙,② 甲,③ 丙4.点动成线,线动成面,面动成体5.9,16,96.4.2直线㊁射线㊁线段(1)1.2,两点确定一条直线2.C考答参案3.4.(1)A ,C ;B ,D (2)b ;a (3)a ;b5.5,2,射线A D ㊁射线A B ,1,直线B D (A B ,A D 均可)6.(1) (2) (3)(4)4.2 直线㊁射线㊁线段(2)1.B 2.略 3.C D =1 4.①②④ 5.略6.①当点C 在线段A B 上时,AM =3c m ;②当点C 在线段A B 的延长线上时,AM =7c m4.2 直线㊁射线㊁线段(3)1.D 2.①A ②A ③A ④B 3.D 4.6c m 5.9c m6.(1)(2)因为A D =A C =8,所以A D =8;同理,B E =B C =6.因此D E =A D +B E -A B =8+6-12=24.3 角4.3.1 角1.公共端点,射线,绕着它的端点旋转2.(1)60,160,10,15,36 (2)>3.B4.以点B 为顶点的角有3个,分别为øA B D ,øA B C ,øD B C ;可用一个字母表示的角有2个,分别为øA ,øC5.B6.略义务教育教材数学作业本七年级上4.3.2角的比较与运算(1)1.A2.(1)A O D,C O D,A O B,B O C(2)63.D4.105ʎ5.图略,øA O C=75ʎ或15ʎ6.60ʎ4.3.2角的比较与运算(2)1.(1)12ʎ31'48ᵡ(2)56.42ʎ2.363.(1)69ʎ38'37ᵡ(2)40ʎ35'(3)71ʎ39'(4)21ʎ32'36ᵡ4.66ʎ30'5.22.56.由折叠得,F G平分øB F E,所以øG F E=12øB F E.因为F H平分øE F C,所以øE F H=12øE F C.因为øB F C是平角,所以øB F E+øE F C=180ʎ.所以øG F E+øE F H=90ʎ.所以øG F H=90ʎ4.3.3余角和补角(1)1.36ʎ,126ʎ2.(1)等角的补角相等(2)同角的余角相等3.øA C E,øB C F;øA C F,øB C E4.(1)A (2)B5.65ʎ6.48ʎ4.3.3余角和补角(2)1.略2.北偏西15ʎ,南偏东55ʎ3.B4.略5.邮局,商店,学校6.略4.4课题学习设计制作长方体形状的包装纸盒略复习题1.略2.51ʎ30'3.4.44.A5.C6.A7.øB C D,øA C D8.6c m 9.28ʎ10.1条㊁4条或6条11.(1)因为O F平分øA O C,所以øC O F=12øA O C=12ˑ30ʎ=15ʎ.因为øB O C=øA O B-øA O C=90ʎ-30ʎ=60ʎ,O E平分øB O C,所以øE O C=12øB O C=30ʎ.所以øE O F=øC O F+øE O C=45ʎ(2)因为O F平分øA O C,所以øC O F=12øA O C.同理øE O C=12øB O C,考答参案所以øE O F =øC O F +øE O C =12øA O C +12øB O C =12øA O B =12α(3)23α总复习题1.ʃ32.按原价的九折出售或降价10%3.2,两点确定一条直线4.23 5.ø1>ø2>ø3 6.1.5ˑ1087.C 8.D 9.B 10.(1)1823(2)-10 (3)-9 (4)-8311.(1)x =12(2)x =212.6x 2-92x -1,3213.小李的图画得不对,正确的画法略14.M P +MN =M P +M Q +Q N =M P +M Q +P Q =M Q +M Q =2M Q =2ˑ6=12(c m )15.(1)øA O C =øB O D ,同角的补角相等 (2)50ʎ16.(1)ȵ |a |=|c |,且由图知a ,c 异号, ʑa +c =0.又ȵ |a +c |+|b |=2, ʑ |b |=2. ȵ b 为负数, ʑ b =-2(2)a >-b >b >c17.设每台投影仪的进价为x 元,则(x +35%x )ˑ0.9-50-x =208,解得x =120018.(1)设旅游团中有x 名成人,则60x +60ˑ0.5(12-x )=600,解得x =8,12-x =4.旅游团中有8名成人,4名未成年人(2)按方案①购买门票,所需费用为60ˑ0.6ˑ12=432(元);按方案②购买门票,所需费用为60ˑ0.5ˑ16=480(元).因为432元<480元,所以小李采用方案①买票更省钱19.(1)øA O C =100ʎ或60ʎ (2)øM O N =40ʎ20.(1)m =25 (2)n =4或n =-4 (3)两个方程的解分别为-2和221.7或122.(1)义务教育教材数学作业本七年级上(2)在圆内画直线条数把圆最多分成的份数探索规律121+1241+1+2371+1+2+34111+1+2+3+45161+1+2+3+4+56221+1+2+3+4+5+6(3)n2+n+22(或1+1+2+3+ +n)期末综合练习1.C2.B3.C4.D5.A6.C7.B8.D9.C 10.C11.-1312.x+1=0(答案不唯一)13.18ʎ55'14.两点之间,线段最短15.0.716.-2017.-1或-518.3.5c m 19.如-p+2020,-5352p等(答案不唯一)20.-101021.(1)9(2)322.原式=x2-x+1,其中x=-1,求值为323.(1)略(2)50ʎ24.(1)360元(2)若在甲㊁乙商场购买,则付款额为450元;若在丙商场购买,则付款额为435元,故李先生选择丙商场购买最实惠25.(1)20,1.5t+9(2)当0ɤt<6时,t=3.6s;当6<tɤ18时,t=907s(3)3s,4.2s,12s,967s。

人教版七年级上册数学课堂作业同步期中复习:数轴与一元一次方程综合(四)

人教版七年级上册数学课堂作业同步期中复习:数轴与一元一次方程综合(四)

人教版七年级上册数学课堂作业同步期中复习:数轴与一元一次方程综合(四)1.已知点A、B在数轴上分别表示数a,b.若A、B两点间的距离记为d,则d和a,b之间的数量关系是d=|a﹣b|.(1)数轴上有理数x与有理数﹣2所对应两点之间的距离可以表示为;(2)|x+6|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+6|=|x﹣2|,则x=;(3)若a=1,b=﹣2,将数轴折叠,使得A点与﹣7表示的点重合,则B点与数表示的点P重合;(4)若数轴上M、N两点之间的距离为11(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:,N:;(5)在题(3)的条件下,点A为定点,点B、P为动点,若移动点B、P中一点后,能否使相邻两点间距离相等?若能,请写出移动方案.2.如图,数轴上A,B两点对应的数分别﹣4,8.有一动点P从点A出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动(1)当运动到第2018次时,求点P所对应的有理数.(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A 的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.3.已知数轴上两点A,B对应的数分别为a,b,点M为数轴上一动点,其中a,b满足(a+2)2+|b﹣7|=0.(1)写出点A表示的数是;点B表示的数是.(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是[A,B]的好点.①若点M到运动到原点O时,此时点M[A,B]的好点(填是或者不是)②若点M以每秒1个单位的速度从原点O开始运动,当M是[A,B]的好点时,求点M所表示的数.(3)试探究线段BM和AM的差即BM﹣AM的值是否一定发生变化?若变化,请说明理由:若不变,请求其值.4.已知数轴上两点A、B,点A在点B的左边,A点表示的数为a,点B表示的数为b,且A、B两点的距离是6.(Ⅰ)当a=﹣2时,b=;当|b|=4时,a=;(Ⅱ)当a取何值时,|a|+|b|的值最小?最小值是多少;(Ⅲ)若|a+b|=|a|+|b|,求a的取值范围.5.一辆出租车从甲地出发,在一条东西走向的街道上往返行驶,每次行驶的路程(记向东为正),记录如下表(12<X<23,单位:km):第1次第2次第3次第4次x x﹣12 2(10﹣x)(1)说出这辆出租车每次行驶的方向;(2)这辆出租车共行驶了多少路程?6.如图,数轴上每相邻两点相距一个单位长度,点A、B、C、D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a、b、c、d.(1)若c与d互为相反数,则a=;(2)若d﹣2b=8,那么点C对应的数是;(3)若abcd<0,a+b>0,求|a﹣2b|+|b+c|﹣3+|c﹣7|+|d﹣a|的取值范围.7.如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,结果保留π的形式)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣5,﹣1①第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?8.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是c,且|a+8|与(c﹣16)2互为相反数.(忽略两辆火车的车身及双铁轨的宽度.)(1)求此时刻快车头A与慢车头C之间相距单位长度.(2)从此时刻开始,若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,再行驶秒两列火车的车头A、C 相距8个单位长度.(3)在(2)中快车、慢车速度不变的情况下,此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟內,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).则这段时间t是秒,定值是单位长度.9.点A、B在数轴上分别表示数a,b,A、B两点之间的距离表示为|AB|.数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示﹣1和﹣4的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x的值是;(3)若x表示一个有理数,且﹣1<x<3,则|x﹣3|+|x+1|=;(4)若x表示一个有理数,且|x﹣1|+|x+2|>3,则有理数x的取值范围是.10.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.参考答案1.解:(1)数轴上有理数x与有理数﹣2所对应两点之间的距离可以表示为|x+2|;(2)|x+6|可以表示数轴上有理数x与有理数﹣6所对应的两点之间的距离;若|x+6|=|x﹣2|,则x=(﹣6+2)÷2=﹣2;(3)∵a=1,A点与﹣7表示的点重合,∴对称中心为(﹣7+1)÷2=﹣3,∵b=﹣2,∴B点与数﹣2﹣2×(﹣2+3)=﹣4表示的点P重合;(4)11÷2=5.5,﹣3﹣5.5=﹣8.5,﹣3+5.5=2.5.故M、N两点表示的数分别是:M:﹣8.5,N:2.5;(5)∵A:1,B:﹣2,P:﹣4,∴B向右移动0.5个单位,或向右移动8个单位,或向左移动7个单位,或P向右移动3.5个单位,或向右移动8个单位,或向左移动1个单位,能使相邻两点间距离相等.故答案为|x+2|;﹣6,﹣2;﹣4;﹣8.5,2.5.2.解:(1)﹣4﹣1+2﹣3+4﹣5+6﹣…﹣2017+2018=﹣4+1009=1005.故点P所对应的有理数是1005.(2)①当P点在A点的左边时,∵PB=3PA,∴AB=2PA,∴PA=6,∴P点对应的数为﹣10,﹣4﹣1+2﹣3+4﹣5+6﹣7+8﹣9+10﹣11=﹣10,∴可以;②当P点在AB之间时,∵PB=3PA,∴AB=4PA,∴PA=3,∴P点对应的数为﹣1,﹣4﹣1+2﹣3+4﹣5+6=﹣1,∴可以.∴点P对应的数为﹣10或﹣1.3.解:(1)∵(a+2)2+|b﹣7|=0,∴a+2=0,b﹣7=0,∴a=﹣2,b=7;(2)①AM=2,BM=7,2×2=4≠7,故点M不是【A,B】的好点;②当点M在点B的右侧时,t+2=2(t﹣7),解得t=16;当点M在点A与B之间时,t+2=2(7﹣t),解得t=4;当点M在点A的左侧时,﹣2+t=2(7+t),解得t=﹣16(不合题意舍去).故点M的运动方向是向右,运动时间是4或16秒;(3)线段BM与AM的差即BM﹣AM的值发生变化,理由是:设点M对应的数为c,由BM=|c﹣7|,AM=|c+2|,则分三种情况:当点M在点B的右侧时,BM﹣AM=c﹣7﹣c22=﹣9;当点M在点A与B之间时,BM﹣AM=7﹣c﹣c﹣2=5﹣2c,当点M在点A的左侧时,BM﹣AM=7﹣c+c+2=9.故答案为:﹣2,7,不是.4.解:(Ⅰ)当a=﹣2时∵点A在点B的左边,且A、B两点的距离是6∴b=4;当|b|=4时b=﹣4或b=4当b=﹣4时,a=﹣10;当b=4时,a=﹣2故答案为:﹣10或﹣2.(Ⅱ)当原点在点A和点B之间(包括A、B两点)时,A,B到原点的距离和最小,∴﹣6≤a≤0时,|a|+|b|的值最小,最小值是6.(Ⅲ)当a、b同号或至少有一个为0时,|a+b|=|a|+|b|成立即点A在原点及原点右边或点B在原点及原点左边∴a≥0或a≤﹣6.∴a的取值范围为a≥0或a≤﹣6.5.解:(1)第一次向东行驶x千米,第二次向西行驶x千米,第三次向东行驶(x﹣12)千米,第四次向西行驶2(10﹣x)千米,(2)|x|+|﹣x|+|x﹣12|+|2(10﹣x|=x+x+x﹣12+2x﹣20=x﹣32,答:这辆出租车共行驶了(x﹣32)千米.6.解:(1)如图所示:∵c与d互为相反数,∴CD=4,O为原点,∴|OA|=8,∴a=﹣8;(2)如图2所示:∵BD=7,d﹣2b=8,∴b=﹣1,∴点B向右移动一个单位长度是原点,又∵OC=2,点C在原点的右侧,c=2(3)如图3所示:若abcd<0,a+b>0,求|a﹣2b|+|b+c|﹣3+|c﹣7|+|d﹣a|的取值范围.∵a+b>0,∴b>0>a,且|b|>|a|,﹣1.5<a<0,∴a﹣2b<0,又∵abcd<0,∴d>c>b>0>a,∴b+c>0,c﹣7<0,d﹣a>0.由图可知:b=a+3,c=a+6,d=a+10,|a﹣2b|+|b+c|﹣3+|c﹣7|+|d﹣a|=2b﹣a+b+c﹣3+7﹣c+d﹣a=3b﹣2a+d+4=3(a+3)﹣2a+(a+10)+4=2a+23,∵﹣1.5<a<0,∴20<2a+23<23.7.解:(1)∵2πr=2×π×1=2π,∴点A表示的数是2π,故答案为:2π;(2)①∵(+2)+(﹣1)+(+3)=4,∴第3次滚动后,Q点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣5|+|﹣1|=12,∴12×2π×1=24π,∴当圆片结束运动时,Q点运动的路程共有24π,∵2﹣1+3﹣5﹣1=﹣2,∴﹣2×2π×1=﹣4π,∴此时点Q所表示的数是﹣4π.8.解:(1)∵|a+8|与(b﹣16)2互为相反数,∴|a+8|+(b﹣16)2=0,∴a+8=0,b﹣16=0,解得a=﹣8,b=16.∴此时刻快车头A与慢车头C之间相距16﹣(﹣8)=24单位长度;故答案为:24;(2)(24﹣8)÷(6+2)=16÷8=2(秒).或(24+8)÷(6+2)=4(秒)答:再行驶2秒或4秒两列火车行驶到车头AC相距8个单位长度;故答案为:2或4;(3)∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.故答案为:0.5,6.9.解:(1)数轴上表示﹣1和﹣4的两点之间的距离是:|﹣1﹣(﹣4)|=3;故答案为:3;(2)数轴上表示x和﹣1的两点A之和B之间的距离是:|x﹣(﹣1)|=|x+1|;如果|AB|=2,|x+1|=2,∴x+1=2,x+1=﹣2,∴x=1或﹣3.故答案为:|x+1|,1或﹣3;(3)∵﹣1<x<3,∴x﹣3<0,x+1>0,∴|x﹣3|+|x+1|=3﹣x+x+1=4;故答案为:4;(4)∵|x﹣1|+|x+2|>3表示数轴上到﹣2和1的距离之和大于3的数,∴x<﹣2或x>1.故答案为:(4)x<﹣2或x>1.10.解:(1)∵|a+2|+|b﹣4|=0;∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=3,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动2个单位,此时,乙小球到原点的距离=4﹣2=2,故答案为:3,2;当t=3时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球3秒钟向左运动3个单位,此时,甲小球到原点的距离=5,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球2秒钟向左运动2个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2.②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6.故当t=秒或t=6秒时,甲乙两小球到原点的距离相等.故答案为:5,2.。

七年级数学上册第四章基本平面图形4.1线段、射线、直线作业设计北师大版

七年级数学上册第四章基本平面图形4.1线段、射线、直线作业设计北师大版

4.1线段、射线、直线1. 如图,已知线段,延长到,使,为的中点,,那么的长为.2. 已知点在直线上,且线段的长度为,线段的长度为,、分别为线段、的中点,则线段的长度为_________.3. 小宇同学在一次手工制作活动中,先把一张长方形纸片按如图所示的方式进行折叠,使折痕的左侧部分比右侧部分短;展开后按图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长,再展开后,在纸上形成的两条折痕之间的距离是______.4. 如图,是的中点,是的中点,下列等式不正确的是()A. B. C. D.5. 如图,点、、顺次在直线上,是线段的中点,是线段的中点.若想求出的长度,则只需条件()A. B. C. D.6. 如图,有、、三户家用电路接人电表,相邻电路的电线等距排列,则三户所用电线()A. 户最长B. 户最长C. 户最长D. 三户一样长7. 已知线段,直线上有一点(l)若,求的长;(2)若是的中点,是的中点,求的长.8. (1)一条直线可以把平面分成两个部分(或区域),如图,两条直线可以把平面分成几个部分?三条直线可以把平面分成几个部分?试画图说明.(2)四条直线最多可以把平面分成几个部分?试画出示意图,并说明这四条直线的位置关系.(3)平面上有条直线,每两条直线都恰好相交,且没有三条直线交于一点,处于这种位置的条直线分一个平面所成的区域最多,记为,试研究与之间的关系.思维方法天地9. 如图,、、依次是上的三点,已知,,则图中以、、、、这个点为端点的所有线段长度的和为_______.10. 平面上不重合的两点确定一条直线,不同三点最多可确定条直线.若平面上不同的个点最多确定条直线,则的值为_______.11. 如图,一根长为、宽的长方形纸条,将它按图所示的过程折叠.为了美观,希望折叠完成后纸条端到点的距离等于端到点的距离,则最初折叠时,的长应为______.12. 某班名同学分别站在公路的、两点处,、两点相距米,处有人,处有人.要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A. 点处B. 线段的中点处C. 线段上,距点米处D. 线段上,距点米处13. 公园里准备修条直的通道,并在通道交叉路口处设一个报亭,这样的报亭最多设()A. 个B. 个C. 个D. 个14. 线段上选取种点,第种是将等分的点;第种是将等分的点;第种是将等分的点,这些点连同线段的端点可组成线段的条数是()A. B. C. D.15. 电子跳蚤游戏盘为.,,,如果电子跳蚤开始时在边上点,。

人教版七年级数学上册作业课件 第二章 整式的加减 专题训练(四) 整式化简求值的常见类型

人教版七年级数学上册作业课件 第二章 整式的加减 专题训练(四) 整式化简求值的常见类型

4.已知2x2+xy=10,3y2+2xy=6,求4x2+8xy+9y2的值. 解:原式=4x2+2xy+6xy+9y2=2(2x2+xy)+3(3y2+2xy)=2×10+3×6=38 5.已知当x=2时,多项式-ax3-[8-(bx+2ax3)]的值为5,求当x=-2时该多项式的值. 解:-ax3-[8-(bx+2ax3)]=ax3+bx-8, 当x=2时,原式=8a+2b-8=5,所以8a+2b=13; 当x=-2时,原式=-8a-2b-8=-(8a+2b)-8=-13-8=-21
11.已知关于x,y的多项式(2bx2+ax-y+6)-(2x2-3x+5y-1)化简后不含x2项和x项, 求a,b的值. 解:原式=2bx2+ax-y+6-2x2+3x-5y+1=(2b-2)x2+(a+3)x-6y+7. 因为化简后不含x2项与x项,所以2b-2=0且a+3=0,则a=-3,b=1
12.已知A=2x2+3xy-2x-1,B=-x2+xy-1. (1)求3A+6B的值; (2)若3A+6B的值与x取值无关,求y的值. 解:(1)3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1) =6x2+9xy-6x-3-6x2+6xy-6=15xy-6x-9 (2)原式=(15y-6)x-9.因为其值与 x 无关,所以 15y-6=0,则 y=25
解:原式=5ab-6ab+8ab2+ab-5ab2=3ab2, 当 a=12 ,b=-23 时,原式=23
(3)3x2y-[2x2y-3(2xy-x2y)-xy],其中 x=-12 ,y=2.
解:原式=3x2y-[2x2y-6xy+3x2y-xy]=3x2y-2x2y+6xy-3x2y+xy= -2x2y+7xy,当 x=-12 ,y=2 时,原式=-2×(-12 )2×2+7×(-12 )×2=-8

苏科版七年级上册数学国庆假期作业(4)含答案

苏科版七年级上册数学国庆假期作业(4)含答案

⑵⑴□□○○○△△△△△△初一国庆假期作业四(第二章《有理数》综合复习)一、选一选:1.一个大西瓜切3刀最多能切成( ) A.3块 B.6块 C.8块 D.10块 2.下列四个运算中,结果最小的是( )A .1+(-2)B .1-(-2)C .1×(-2)D .1÷(-2) 3.下列各对数中互为相反数的是( )A .-(+3)和 +(-3)B .-(+3)和 -3C .-(-3)和 +(-3)D .+(-3)和 -34.已知有理数a 、b 在数轴上的位置如图所示,那么在关系式:① a >0 ② b <0 ③b a > ④ a +b >0中,正确的有( ) A. 4个 B.3个 C.2个 D.1个 5.下列各数:3-,5.0- ,(-3.14)-,321-,0,24.5 ,π,31-,2--,410-其中属于分数的共有( ) A.3个 B.4个 C.5 个 D.6个6.下列比较大小正确的是( ) A .-(-21)<+(-21) B .327--=)327(-- C .2110-->328 D .65-<54- 7.若x -=5-,那么x 的值( ) A.5 B.-5 C.5± D.不能确定 8.下列说法正确的是( )A. 平方是它本身的数只有0;B. 立方是它本身的数是1±;C. 绝对值是它本身的数是正数;D. 倒数是它本身的数是1±; 9.大于-2.5而不大于3的整数有( ) A. 4个 B.5个 C.6个 D. 7个 10.已知:3=x ,2=y ,且x >y ,则y x +的值为( )A. 5B.1C.5或 1D.5-或1-11.若x 为有理数,则x x -表示的数是( )A .正数B .非正数C .负数D .非负数12.设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,如图所示、那么把“○”、“□”、“△”按质量从小到大....的顺序排列为( ) A .○ □ △ B .○ △ □ C .□ ○ △ D .△ □ ○二、 填一填:13.符号是“+”号,绝对值是7的数是__ _;绝对值是5.1,符号是“-”号的数是_____. 14.-3.5的倒数是 .15.如果a 与b 互为相反数,且a =-2,则a -b =_______. 16.绝对值小于2016的所有整数和为 .17.一个数是11,另一个数比11的相反数大2,那么这两个数的和为__________.18.在数轴上,距原点4个单位长度的点表示的数为 ;与表示-1的点的距离为4个单位长度的点表示的数是 ; 19.化简符号:-{-[+(-8.5)]}= 20.按下列规律排列的一列数对(1,2),(4,6),(7,10),…,则第6个数对是_ ___。

七年级数学上册 第4章 代数式 4.1 用字母表示数作业设计 (新版)浙教版-(新版)浙教版初中七年

七年级数学上册 第4章 代数式 4.1 用字母表示数作业设计 (新版)浙教版-(新版)浙教版初中七年

4.1 用字母表示数1.用字母表示数时,下面的式子符合书写要求的是() A .ab 3B .315x 2y C.ab 4D .x ÷12克2.一个长方形的周长为12,设这个长方形的一边长为a ,则这个长方形的面积是() A. a (6-a ) B. a (12-2a )C. a (a -6) D. a (6+a )3.如果a (a ≠0)表示实数,那么a 的相反数表示为;a 的绝对值表示为;a 的倒数表示为;a 的12表示为;比a 大10%的数表示为;a 的相反数的平方与-8的差表示为.4.(1)设n 是任意整数,我们常用2n 表示偶数,由此想到,奇数可表示为,比2n 小的最大奇数为.(2)某种品牌的空调机降价20%后,每台售价为a 元,则该品牌的空调机的原价为元. 5.(1)我们知道: 52=5×10+2,963=9×100+6×10+3,类似地,2015=2×1000+0×100+1×10+5.若某三位数的个位数字为a ,十位数字为b ,百位数字为c ,则此三位数应表示为. (2)某商品提价后,价格提高到原来的32倍.若现在的价格为a 元,则原来的价格为元.6.甲每小时走a (km),乙每小时走b (km)(a >b ). (1)两人同时从某地出发,反向而行,2 h 后两人相距km. (2)两人同时从某地出发,同向而行,2 h 后两人相距km.(3)两人分别从相距s (km)的A ,B 两地同时出发相向而行,则两人相遇时走了h. 7.观察下列等式:①32-12=4×2;②42-22=4×3;③52-32=4×4;④62-42=4×5…… 则第5个等式为;第n 个等式为(n 为正整数).8.飞机第一次上升的高度是a (km),接着又下降b (km),第二次又上升c (km),则这时飞机的高度是km.9.(1)某商品打八折后的价格为a 元,则原价为.(2)某学校七年级有5个班,平均每班有x5人,则x 表示的实际意义是.(3)面积为S 的正方形的边长是.10.商店进了一批货,出售时要在进价的基础上增加一定的利润,其销售量x (kg)与售出总价c (元)之间的关系如下表:销售量x (kg) 售出总价c (元) 1 2 3 4 5 20+1 6(1)写出销售量x (kg)与售出总价c (元)之间的关系式. (2)计算当销售量为3.5 kg 时的售出总价.11.怎样的两个数,它们的和等于它们的积呢?你大概马上会想到2+2=2×2,其实这样的两个数还有很多,例如,3+32=3×32.(1)请再写出一个这样的等式.(2)你能从中发现什么规律吗?把它用字母n 表示出来.12.如图,四边形ABCD 和四边形EFGC 都是正方形.若正方形ABCD 的边长为a ,正方形EFGC 的边长为b ,求阴影部分的面积.(第12题)13.某市的出租车收费标准为:在3 km及以内收费a元,之后每增加1 km加收b元.如果某人乘坐出租车后收费20元(a<20),求这个人乘坐出租车的路程.14.用火柴棒按下面的方式搭图形.(第14题)按照这样的规律搭下去……(1)填写下表:图形编号①②③④⑤…火柴棒根数…(2)第n(3)根据第(2)小题的结果,写出第10个图形所含的火柴棒根数.(4)根据第(2)小题的结果,当用去火柴棒的根数恰好是举办奥运会的年份时,求此时正方形的个数.参考答案 1.C 2.A3.-a ;1a ;12a ; (1+10%)a ; (-a )2-(-8).4.(1) 2n -1或2n +1; 2n -1.(2)a1-20%.5.(1)100c +10b +a .(2)23a .6.(1) (2a +2b );(2) (2a -2b );(3)sa +b.7.72-52=4×6; (n +2)2-n 2=4(n +1). 8. (a -b +c ).9.(1)54a ;(2)七年级学生的总人数;(3)S .10.【解】 (1)c =4xx . (2)当x =3.5时,c =4×3.5+0.2×3.5=14.7(元).11.【解】 (1)4+43=4×43(答案不唯一).(2)n +n n -1=n ·nn -1(n >1,且为整数).12.【解】 S 阴影=S 正方形ABCD +S 正方形EFGC -S 三角形BFG -S 三角形ABD -S 三角形DEF =a 2+b 2-12(a +b )b -12a 2-12b (b -a )=a 2+b 2-12ab -12b 2-12a 2-12b 2+12ab=12a 2.答:阴影部分的面积为12a 2.13.【解】 因为a <20,所以这个人乘坐出租车的路程超过3 km , 所以超过3 km 以后的费用为(20-a )元, 所以超过3 km 以后的路程为20-ab(km),所以这个人乘坐出租车的路程为⎝⎛⎭⎪⎫20-a b +3km.14.【解】(1)4,7,10,13,16 (2)第n 个图形需要(3n +1)根火柴棒.(3)由条件知,当n =10时,3n +1=3×10+1=31(根). 所以第10个图形含31根火柴棒. (4)由条件知,3n +1=2008,所以n =669. 因为第n 个图形刚好有n 个正方形, 所以此时正方形的个数为669.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则从正面看得到的平面图形是……………………………………………………………………………………【】
2.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是…【】
A.B.C.D.
3.下列四个数中,其相反数是负分数的是()
A.-7 B.-C.5 D.
4. 下列式子正确的是…………………………………………………………………【】
A. B.
C. D.
5.冥王星围绕太阳公转的轨道半径长度约为5 900 000 000千米,这个数用科学记数法表示是……………………………………………………………………………………【】A. 5.9×109千米 B. 5.9×1010千米 C. 59×108千米 D. 0.59×1010千米
6. 对于实数,我们规定表示不大于的最大整数,例如,,
,若,则的取值可以是……………【】
A.40
B.45
C.51
D.56
7.一个几何体由若干小正方体搭成,它的主视图、左视图和俯视图分别如下,那么搭成这个几何体的小正方体的个数是个.
8.计算:得 .
9.多项式x2y﹣12xy+8是次项式.
10.若a、b互为相反数,c、d互为倒数,则a+b-cd的值是 .
11.如图,把正方体纸盒沿棱剪开,平铺在桌面上,原来与点重合的顶点是________
12. 某种商品的进价为元,商场按进价提高50%后标价,当销售旺季过后,又以7折(即按标价的70%)的价格开展促销活动,这时这种商品的销售单价为.
13.;
14.已知代数式A=2x2+3xy+2y-1,B=x2-xy+x-.
(1)当x=y=-2时,求A-2B的值;
(2)若A-2B的值与x的取值无关,求y的值.
15. (8分)先化简,再求值:。

其中。

相关文档
最新文档