重庆一中初三年级数学上学期期中测试卷(含答案解析)-word文档资料

合集下载

【初三数学】重庆市九年级数学上期中考试单元综合练习卷(含答案解析)

【初三数学】重庆市九年级数学上期中考试单元综合练习卷(含答案解析)

新九年级上册数学期中考试试题及答案一、选择题(每小题4分,共48分)1.(4分)﹣6的绝对值是()A.﹣6B.﹣C.D.62.(4分)如图所示的几何体,它的左视图是()A.B.C.D.3.(4分)为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量4.(4分)计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1C.x2D.15.(4分)下列命题是真命题的是()A.对角线相互垂直的四边形是平行四边形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相等且相互平分的四边形是矩形6.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,……,按此规律排列下去,则第⑤个图案中三角形的个数为()A.14个B.15个C.16个D.17个7.(4分)抛物线y=2(x﹣2)2﹣1关于x轴对称的抛物线的解析式为()A.y=2(x﹣2)2+1B.y=﹣2(x﹣2)2+1C.y=﹣2(x﹣2)2﹣1D.y=﹣(x﹣2)2﹣18.(4分)如图,在等腰△ABC中,AB=AC,tan C=2,BD⊥AC于点D,点G是底边BC上一点,过点G向两腰作垂线段,垂足分别为E、F,若BD=4,GE=1.5,则BF的长度为()A.0.75B.0.8C.1.25D.1.359.(4分)如图,MN是垂直于水平面的一棵树,小马(身髙1.70米)从点A出发,先沿水平方向向左走10米到B点,再经过一段坡度i=4:3,坡长为5米的斜坡BC到达C点,然后再沿水平方向向左行走5米到达N点(A、B、C、N在同一平面内),小马在线段AB的黄金分割点P处()测得大树的顶端M的仰角为37°,则大树MN的高度约为()米(参考数据:tan37°≈0.75,sin37°≈0.60,≈2.236,≈1.732).A.7.8米B.8.0米C.8.1米D.8.3米10.(4分)抛物线y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(﹣1,0),则下列结论:①abc>0;②2a﹣b=0;③3a+c>0;④a+b>am2+bm(m为一切实数);⑤b2>4ac;正确的个数有()A.1个B.2个C.3个D.4个11.(4分)如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC 中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣612.(4分)已知关于x的二次函数y=(k﹣1)x2+(2k﹣3)x+k+2的图象在x轴上方,关于m的分式方程有整数解,则同时满足两个条件的整数k值个数()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)13.(4分)计算:﹣10+=.14.(4分)函数y=x2+图象上的点P(x,y)一定在第象限.15.(4分)在二次函数y=ax2+2ax+4(a<0)的图象上有两点(﹣2,y1)、(1,y2),则y1﹣y20(填“>”、“<”或“=”).16.(4分)如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为.17.(4分)周末秋高气爽,阳光明媚,小赵带爷爷到滨江路去散步,祖孙俩在长度为600米的A、B路段上往返行走,他们从A地出发,小赵陪爷爷走了两圈一同回到A地后,就开始匀速跑步,爷爷继续匀速散步,如图反映了他们距离A地的路程s(米)与小赵跑步的时间t(分钟)的部分关系图(他们各自到达A地或B地后立即掉头,调头转身时间忽略不计),则小赵跑步过程中祖孙第四次与第五次相遇地点间距为米.18.(4分)重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.20.(8分)在大课间活动中,同学们积极参加体育锻炼,小段同学就本班同学“我最擅长的体育项目”进行了一次调查统计,下面是她通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;补全条形统计图;在扇形统计图中,“其他”部分所对应的圆心角度数为度;(2)学校将举办冬季运动会,该班已推选5位同学参加乒乓球活动,其中有2位男同学(A,B)和3位女同学(C,D,E),现从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.四、解答题(每小题10分,共50分)21.(10分)计算:(1)因式分解:(x﹣2y)2﹣(2x+5y)2;(2)解方程:(公式法)2x(x﹣3)=x2﹣1.22.(10分)在目前万物互联的时代,人工智能正掀起一场影响深刻的技术革命.谷歌、苹果,BAT,华为……巨头们纷纷布局人工智能,有人猜测,互联网+过后,我们可能会迎来机器人+,教育从幼儿抓起,近年来我国国内幼儿教育机器人发展趋势迅猛,市场上出现了满足各类要求的幼教机器人产品.“双十一“当天,某品牌幼教机器人专卖店抓住机遇,对最畅销的A款幼教机器人进行促销.一台A款幼教机器人的成本价为850元,标价为1300元.(1)一台A款幼教机器人的价格最多降价多少元,才能使利润率不低于30%;(2)该专卖店以前每周共售出A款幼教机器人100个,“双十一“狂购夜中每台A款幼教机器人在标价的基础上降价2m元,结果这天晚上卖出的A款幼教机器人的数量比原来一周卖出的A款幼教机器人的数量增加了m%,同时这天晚上的利润比原来一周的利润增加了m%,求m的值.23.(10分)在▱ABCD中,点E为CD边上一点,点F为BC中点,连接BE,DF交于点G,且GA=GD:(1)如图1,若AB=AE=BG=6,AE⊥CD,求AG2的值;(2)如图2,若EM平分∠BEC,且EM∥DF,过点G作GN⊥BE交AE于点N且GN=GE,求证:AE⊥CD.24.(10分)阅读材料:若关于x的一元二次方程ax2+bx+c=0(a≠0,a、b、c为常数)的根均为整数,称该方程为“快乐方程”,我们发现任何一个“快乐方程”的判别式△=b2﹣4ac一定为完全平方数规定F(a,b,c)=为该“快乐方程”的“快乐数”,若有另一个“快乐方程”px2+qx+r=0(p≠0,(p、q、r为常数)的“快乐数”为F (p,q,r)且满足|rF(a,b,c)﹣cF(p,q,r)|=0,则称F(a,b,c)与F(p,q,r)互为“乐呵数”例如“快乐方程”x2﹣2x﹣3=0的两根均为整数,其判别式△=(﹣2)2﹣4×1×(﹣3)=16=42其“快乐数”F(1,﹣2,﹣3)=(1)“快乐方程”x2﹣4x+3=0的“快乐数”为,若关于x的一元二次方程x2﹣(2m﹣3)x+m2﹣4m﹣5=0(m 为整数,且5<m<22)是“快乐方程”,求其“快乐数”(2)若关于x的一元二次方程x2﹣(m﹣1)x+m+1=0与x2﹣(n+2)x+2n=0(m,n均为整数)都是“快乐方程”,且其“快乐数”互为“乐呵数”,求n的值.五、解答题(共12分)25.(12分)在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.(1)求抛物线与直线的解析式;(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.2018-2019学年重庆一中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:|﹣6|=6.故选:D.2.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:C.3.【解答】解:抽出的500名考生的数学成绩是样本,故选:B.4.【解答】解:原式=(x﹣1)÷•x=(x﹣1)••x=x2,故选:C.5.【解答】解:A、对角线相互垂直的四边形是平行四边形,不是真命题;B、对角线相等且相互垂直的四边形是菱形,也可能是正方形,所以,不是真命题;C、四条边相等的四边形是正方形,也可能是菱形,所以,不是真命题;D、对角线相等且相互平分的四边形是矩形,正确,是真命题,故选:D.6.【解答】解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个,则第⑤个图中三角形的个数是4×(5﹣1)=16个,故选:C.7.【解答】解:抛物线y=2(x﹣2)2﹣1的顶点坐标为(2,﹣1),而(2,﹣1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=﹣2(x﹣2)2+1.故选:B.8.【解答】解:连接AG,∵S△CGA+S△BGA=S△ABC,∴+=×AC×BD,∵AC=AB,∴GE+GF=BD,∵BD=4,GE=1.5,∴GF=2.5,∵tan C=2=,BD=4,∴CD=2,由勾股定理得:BC==新人教版九年级第一学期期中模拟数学试卷(答案) 一、选择题(共30分,每小题3分)1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定4.右面的三视图对应的物体是()A.B.C.D.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y26.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.547.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.208.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.69.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.二、填空题(共12分,每小题3分)11.方程x2=x的根是.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC 于N,则MN=.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ最小值是.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.参考答案一、选择题1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【分析】将(﹣2,3)代入y=即可求出k的值,再根据k=xy解答即可.解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解.解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选:B.【点评】本题主要考查了方程的解的定义,正确理解定义是关键.4.右面的三视图对应的物体是()A.B.C.D.【分析】因为主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.所以可按以上定义逐项分析即可.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点,故选:D.【点评】本题主要考查学生对图形的三视图的了解及学生的空间想象能力.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.6.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【分析】由△ABC∽△DEF,S△ABC:S△DEF=9,根据相似三角形的面积比等于相似比的平方,即可求得△ABC与△DEF 的相似比,又由相似三角形的周长的比等于相似比,即可求得△ABC与△DEF的周长比为:3:1,又由△ABC的周长为18厘米,即可求得△DEF的周长.解:∵△ABC∽△DEF,S△ABC:S△DEF=9,∴△ABC与△DEF的相似比为:3:1,∴△ABC与△DEF的周长比为:3:1,∵△ABC的周长为18厘米,∴,∴△DEF的周长为6厘米.故选:C.【点评】此题考查了相似三角形的性质.解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形的周长的比等于相似比定理的应用.7.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.20【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.解:根据题意得,=,解得,m=20.故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.6【分析】由矩形的性质和已知条件可求出∠AFE=∠AEF,进而推出AE=AF,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,A B=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.【点评】本题考查了矩形性质,勾股定理的运用,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行是解题的关键.9.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE=CE,FC=BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选:C.【点评】此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.【分析】AF交GC于点K.根据△ADK∽△FGK,求出KF的长,再根据△CHK∽△FGK,求出CH的长.解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.【点评】本题考查了勾股定理,利用勾股定理求出三角形的边长,再构造相似三角形是解题的关键.二、填空题(共12分,每小题3分)11.方程x2=x的根是x 1=0,x2=.【分析】方程整理后,利用因式分解法求出解即可.解:方程整理得:x(x﹣)=0,可得x=0或x﹣=0,解得:x1=0,x2=.故答案为:x1=0,x2=【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为 4 .【分析】在Rt△AEB中,由∠AEB=90°,AB=2BE,推出∠EAB=30°,设BE=a,则AB=2a,由题意2a×a=8,推出a2=,可得k=a2=4.解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设BE=a,则AB=2a,OE=a,由题意2a×a=8,∴a2=,∴k=a2=4,故答案为4.【点评】本题考查反比例函数系数的几何意义、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC 于N,则MN= 3 .【分析】首先证明△ACB∽△AMN,可得AC:CB=AM:MN,代入数值求解即可.解:∵∠C=∠AMN=90°,∠A为△ACB和△AMN的公共角,∴△ACB∽△AMN,∴AC:CB=AM:MN,在直角△ABC中,由勾股定理得AB2=AC2+BC2,即AB=10;又∵AC=8,CB=6,AM=AB﹣6=4,∴=,即MN=3.【点评】本题主要考查相似三角形的判定和性质,涉及到勾股定理的运用.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ最小值是3+.【分析】作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.利用勾股定理求出PQ″即可解决问题;解:作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ 的值最小.作Q″H⊥DA于H.在Rt△PHQ″中,PQ″==,∴PM+MN+NQ的最小值=3+.故答案为3+.【点评】本题考查轴对称﹣最短问题,矩形的性质等知识,解题的关键是正确寻找PM+MN+NQ最小时点M的位置,属于中考常考题型.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.【分析】此题可以采用配方法和公式法,解题时要正确理解运用每种方法的步骤.解法一:原式可以变形为,,,∴,∴,.解法二:a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=.【点评】公式法和配方法适用于任何一元二次方程,解题时要细心.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.【分析】直接利用已知路灯的影子得出灯的位置,进而得出EF的影长.解:如图所示:【点评】此题主要考查了中心投影,正确得出灯的位置是解题关键.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.【分析】(1)利用位似图形的性质得出C,D两点坐标在A,B坐标的基础上,同乘以﹣2,进而得出坐标画出图形即可;(2)利用位似图形的性质得出C,D点坐标.解:(1)如图所示:;(2)如图所示:D(﹣4,2),C(﹣6,﹣2).【点评】此题主要考查了位似变换,得出对应点坐标是解题关键.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.【分析】由二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出结论.解:∵关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,∴,解得:k=﹣2.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)如图,作FH⊥BC交BC的延长线于H.在Rt△BFH中,根据勾股定理计算即可.(1)证明:∵AF∥CD,∴∠EAF=∠ECD,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四边形AFCD是平行四边形,∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四边形AFCD是菱形.(2)解:如图,作FH⊥BC交BC的延长线于H.∵四边形AFCD是菱形,∴AC⊥DF,EF=DE=BC=,∴∠H=∠ECH=∠CEF=90°,∴四边形FHCE是矩形,∴FH=EC=2,EF=CH=,BH=CH+BC=,在Rt△BHF中,BF==.【点评】本题考查菱形的判定和性质、三角形的中位线定理、直角三角形斜边中线的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA,可得=,=,因为DC=HG,推出=,列出方程求出CA=106(米),由=,可得=,由此即可解决问题.解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:舍利塔的高度AB为55米.【点评】本题考查解直角三角形的应用、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=14求出即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=14,解得:x1=1,x2=4.因为要且尽可能地减少成本,所以x2=4舍去,x+3=4.答:每盆植4株时,每盆的盈利14元.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数关系式,再根据平行四边形的性质结合点A、O、C的坐标即可求出点B的坐标;(2)延长DP交OA于点E,由点D为线段BC的中点,可求出点D的坐标,再令反比例函数关系式中y=2求出x值即可得出点P的坐标,由此即可得出PD、EP的长度,根据三角形的面积公式即可得出结论.解:(1)∵反比例函数y=(x>0)的图象经过点A(1,4).∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OC=5,点A(1,4),∴点C(5,0),∴点B(6,4).(2)延长DP交OA于点E,如图②所示.∵点D为线段BC的中点,点C(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,∴S△AOP=EP•(y A﹣y O)=××(4﹣0)=3.。

重庆市重点中学九年级上学期期中考试数学试卷及答案解析(共六套)

重庆市重点中学九年级上学期期中考试数学试卷及答案解析(共六套)

重庆市重点中学九年级上学期期中考试数学试卷(一)一、选择题1、下面图形中,是中心对称图形的是()A、 B、 C、 D、2、方程x2=x的解是()A、x=1B、x1=﹣1,x2=1C、x1=0,x2=1D、x=03、用配方法解一元二次方程x2+8x+7=0,则方程可化为()A、(x+4)2=9B、(x﹣4)2=9C、(x+8)2=23D、(x﹣8)2=94、将抛物线y=2x2向上平移1个单位,再向右平移2个单位,则平移后的抛物线为()A、y=2(x+2)2+1B、y=2(x﹣2)2+1C、y=2(x+2)2﹣1D、y=2(x﹣2)2﹣15、下列运动形式属于旋转的是()A、钟表上钟摆的摆动B、投篮过程中球的运动C、“神十”火箭升空的运动D、传动带上物体位置的变化6、抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A、直线x=0B、直线x=1C、直线x=﹣2D、直线x=﹣17、已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为()A、1B、﹣1C、2D、﹣28、有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x个人,列出的方程是()A、x(x+1)=64B、x(x﹣1)=64C、(1+x)2=64D、(1+2x)=649、如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A、150°B、120°C、90°D、60°10、如图,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为()A、(﹣1,﹣)B、(﹣1,﹣)或(﹣2,0)C、(﹣,1)或(0,﹣2)D、(﹣,1)11、在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A、B、C、D、12、如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是()A、①②③B、①③④C、①②③⑤D、①③⑤二、填空题13、抛物线y=﹣(x+1)2+2的顶点坐标为________.14、方程x2﹣6x+9=0的解是________.15、若关于x的方程kx2﹣4x﹣1=0有实数根,则k的取值范围是________16、等边△ABC内有一点P,且PA=3,PB=4,PC=5,则∠APB=________度.17、已知二次函数y=3(x﹣1)2+1的图象上有三点A(4,y1),B(2,y2),C(﹣3,y3),则y1、y2、y3的大小关系为________.18、如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1= ;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2= +1;将位置②的三角形绕点P2顺时针旋转到位置③可得到点P3时,AP3= +2…按此规律继续旋转,直至得到点P2026为止,则AP2016=________.三、解答题19、如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1, A1的坐标是________(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2,试在图上画出△A2B2C2的图形.20、已知二次函数当x=﹣1时,有最小值﹣4,且当x=0时,y=﹣3,求二次函数的解析式.四、解答题21、解方程:(1)x2﹣x=3(2)(x+3)2=(1﹣2x)2.22、先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x﹣3=0的解.23、将一块正方形铁皮的四个角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,盒子的容积是400cm3,求原铁皮的边长.24、某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (单位:个)与销售单价x(单位:元/个)之间的对应关系如图所示:(1)y与x之间的函数关系是________.(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(单位:元)与销售单价x (单位:元/个)之间的函数关系式;(3)在(2)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.五、解答题25、如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.26、在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE 与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC 相交于点F.求证:BE+CF= AB.(3)如图3,若∠EDF的两边分别交AB,AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE,AB,CF之间的数量关系.答案解析部分一、<b >选择题</b>1、【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,可求解.2、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,∴x1=0,x2=1,故选:C.【分析】因式分解法求解可得.3、【答案】A【考点】解一元二次方程-配方法【解析】【解答】解:x2+8x+7=0,移项得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9.故选A【分析】将常数项移动方程右边,方程两边都加上16,左边化为完全平方式,右边合并即可得到结果.4、【答案】B【考点】二次函数图象与几何变换【解析】【解答】解:∵将抛物线y=2x2向上平移1个单位再向右平移2个单位,∴平移后的抛物线的解析式为:y=2(x﹣2)2+1.故选:B.【分析】直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式.5、【答案】A【考点】生活中的旋转现象【解析】【解答】解:A、钟摆的摆动,属于旋转,故此选项正确;B、投篮过程中球的运动,也有平移,故此选项错误;C、“神十”火箭升空的运动,也有平移,故此选项错误;D、传动带上物体位置的变化,也有平移,故此选项错误.故选:A.【分析】根据旋转的定义分别判断得出即可.6、【答案】C【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x= =﹣2,故选C.【分析】由二次函数的对称性可求得抛物线的对称轴7、【答案】A【考点】一元二次方程的解【解析】【解答】解:因为x=3是原方程的根,所以将x=3代入原方程,即32﹣3k﹣6=0成立,解得k=1.故选:A.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.8、【答案】C【考点】一元二次方程的应用【解析】【解答】解:x+1+(x+1)x=64整理得,(1+x)2=64.故选:C.【分析】平均一人传染了x人,根据有一人患了流感,第一轮有(x+1)人患流感,第二轮共有x+1+(x+1)x人,即64人患了流感,由此列方程求解.9、【答案】A【考点】等边三角形的性质,旋转的性质,等腰直角三角形【解析】【解答】解:旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°.故选A.【分析】∠AOC就是旋转角,根据等边三角形的性质,即可求解.10、【答案】B【考点】坐标与图形变化-旋转【解析】【解答】解:∵△ABO中,AB⊥OB,OB= ,AB=1,∴tan∠AOB= = ,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1 O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1 O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣2,0);综上所述,点A1的坐标为(﹣1,﹣)或(﹣2,0).故选:B.【分析】需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.11、【答案】D【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、由一次函数y=kx+k的图象可得:k>0,此时二次函数y=kx2﹣kx的图象应该开口向上,错误;B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误;C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误;D、正确.故选:D.【分析】可先根据一次函数的图象判断k的符号,再判断二次函数图象与实际是否相符,判断正误.12、【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2+b×(﹣)+c=0,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴ b+b+c<0,即3b+2c<0,故④错误;∵x=﹣1时,函数值最大,∴a﹣b+c>m2a﹣mb+c(m≠1),∴a﹣b>m(am﹣b),所以⑤正确;故选D.【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.二、<b >填空题</b>13、【答案】(﹣1,2)【考点】二次函数的性质【解析】【解答】解:∵抛物线y=﹣(x+1)2+2,∴抛物线y=﹣(x+1)2+2的顶点坐标为:(﹣1,2),故答案为:(﹣1,2).【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.14、【答案】x1=x2=3【考点】解一元二次方程-配方法【解析】【解答】解:∵x2﹣6x+9=0 ∴(x﹣3)2=0∴x1=x2=3.【分析】此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.15、【答案】k≥4【考点】根的判别式【解析】【解答】解:当k=0时,原方程为﹣4x+1=0,解得:x= ,∴k=0符合题意;当k≠0时,∵方程kx2﹣4x﹣1=0有实数根,∴△=(﹣4)2+4k≥0,解得:k≥﹣4且k≠0.综上可知:k的取值范围是k≥4.故答案为:k≥4.【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m的一元一次不等式,解不等式即可得出k的取值范围.结合上面两者情况即可得出结论.16、【答案】150【考点】等边三角形的判定与性质,勾股定理的逆定理,旋转的性质【解析】【解答】解:如图,∵△ABC为等边三角形,∴AB=AC,∠BAC=60°;将△ABP绕点A逆时针旋转60°,到△ACQ的位置,连接PQ;则AQ=AP=3,CQ=BP=4;∵∠PAQ=60°,∴△APQ为等边三角形,∴PQ=PA=3,∠AQP=60°;在△PQC中,∵PC2=PQ2+CQ2,∴∠PQC=90°,∠AQC=150°,∴∠APB=∠AQC=150°,故答案为150.【分析】如图,作辅助线;首先证明△APQ为等边三角形,得到PQ=PA=3,∠AQP=60°;由勾股定理的逆定理证明∠PQC=90°,进而得到∠AQC=150°,即可解决问题.17、【答案】y2<y1<y3【考点】二次函数图象上点的坐标特征【解析】【解答】解:在二次函数y=3(x﹣1)2+1,对称轴x=1,在图象上的三点A(4,y1),B(2,y2),C(﹣3,y3),|2﹣1|<|4﹣1|<|﹣3﹣1|,则y1、y2、y3的大小关系为y2<y1<y3.故答案为y2<y1<y3.【分析】对二次函数y=3(x﹣1)2+1,对称轴x=1,则A、B、C的横坐标离对称轴越近,则纵坐标越小,由此判断y1、y2、y3的大小.18、【答案】1344+672【考点】旋转的性质,等腰直角三角形【解析】【解答】解:AP1= ,AP2=1+ ,AP3=2+ ;AP4=2+2 ;AP5=3+2 ;AP6=4+2 ;AP7=4+3 ;AP8=5+3 ;AP9=6+3 ;∵2016=3×672,∴AP2013=(2013﹣671)+671 =1342+671 ,∴AP2014=1342+671 + =1342+672 ,∴AP2015=1342+672 +1=1343+672 ,∴AP2016=1343+672 +1=1344+672 ,故答案为:1344+672 .【分析】由等腰直角三角形的性质和已知条件得出AP1= ,AP2=1+ ,AP3=2+;AP4=2+2 ;AP5=3+2 ;AP6=4+2 ;AP7=4+3 ;AP8=5+3 ;AP9=6+3;每三个一组,由于2013=3×671,得出AP2013,即可得出结果.三、<b >解答题</b>19、【答案】(1)(6,﹣1)(2)解:如图所示,△A2B2C2即为所求作的三角形.【考点】旋转的性质,作图-旋转变换【解析】【解答】解:(1)如图所示,△A1B1C1即为所求三角形,点A1的坐标是A1(6,﹣1);故答案为:(6,﹣1);【分析】(1)连接AO并延长至A1,使A1O=AO,连接BO并延长至B1,使B 1O=BO,连接CO并延长至C1,使C1O=CO,然后顺次连接A1、B1、C1即可得到△A1B1C1;再根据平面直角坐标系的特点写出点A1的坐标即可;(2)根据旋转变换,找出点A、B、C绕点(﹣2,1)顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可.20、【答案】解:设y=a(x+1)2﹣4则﹣3=a(0+1)2﹣4∴a=1,∴抛物线的解析式为y=(x+1)2﹣4即:y=x2+2x﹣3【考点】待定系数法求二次函数解析式【解析】【分析】由于已知抛物线与x轴的交点坐标,则可设顶点式y=a(x+1)2﹣4,然后把(0,3)代入求出a的值即可.四、<b >解答题</b>21、【答案】(1)解:x2﹣x﹣3=0,∵a=1,b=﹣1,c=﹣3,∴△=1+12=13>0,∴x= ,∴ ,(2)解:x+3=±(1﹣2x),即x+3=1﹣2x或x+3=2x﹣1,解得:,x2=4【考点】解一元二次方程-因式分解法【解析】【分析】(1)公式法求解可得;(2)直接开平方法求解即可得.22、【答案】解:原式= ÷= •==∵a是方程x2+x﹣3=0的解,∴a2+a﹣3=0,即a2+a=3,∴原式=【考点】分式的化简求值,一元二次方程的解【解析】【分析】先根据分式混合运算的法则把原式进行化简,再根据a是方程x2+x﹣3=0的解得出a2+a=3,再代入原式进行计算即可.23、【答案】解:设原铁皮的边长为xcm,依题意列方程得(x﹣2×4)2×4=400,即(x﹣8)2=100,所以x﹣8=±10,x=8±10.所以x1=18,x2=﹣2(舍去).答:原铁皮的边长为18cm【考点】一元二次方程的应用【解析】【分析】本题可设原铁皮的边长为xcm,将这块正方形铁皮四个角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子后,盒子的底面积变为(x ﹣2×4)2,其高则为4cm,根据体积公式可列出方程,然后解方程求出答案即可.24、【答案】(1)y=﹣30x+600(2)解:由题意得:w=(x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,∴w与x的函数关系式为w=﹣30x2+780x﹣3600(3)解:由题意得:6(﹣30x+600)≤900,解得:x≥15,在w=﹣30x2+780x﹣3600中,对称轴为:x=﹣=13,∵a=﹣30,∴当x>13时,w随x的增大而减小,∴x=15时,w最大为:(15﹣6)(﹣30×15+600)=1350,∴销售单价定为每个15元时,利润最大为1350元【考点】二次函数的应用【解析】【解答】解:(1)设y=kx+b,根据题意可得:,解得;,故y与x之间的函数关系是:y=﹣30x+600;故答案为:y=﹣30x+600;【分析】(1)直接利用待定系数法求出y与x之间的函数关系式;(2)利用w=销量×每个利润,进而得出函数关系式;(3)利用进货成本不超过900元,得出x的取值范围,进而得出函数最值.五、<b >解答题</b>25、【答案】(1)解:把A(﹣1,0),C(0,2)代入y=﹣x2+bx+c得,解得,c=2,∴抛物线的解析式为y=﹣x2+ x+2(2)解:存在.如图1中,∵C(0,2),D(,0),∴OC=2,OD= ,CD= =①当CP=CD时,可得P1(,4).②当DC=DP时,可得P2(,),P3(,﹣)综上所述,满足条件的P点的坐标为或或(3)解:如图2中,对于抛物线y=﹣x2+ x+2,当y=0时,﹣x2+ x+2=0,解得x1=4,x2=﹣1∴B(4,0),A(﹣1,0),由B(4,0),C(0,2)得直线BC的解析式为y=﹣x+2,设E 则F ,EF= ﹣=∴- <0,∴当m=2时,EF有最大值2,此时E是BC中点,∴当E运动到BC的中点时,△EBC面积最大,∴△EBC最大面积= ×4×EF= ×4×2=4,此时E(2,1)【考点】二次函数的图象,二次函数的性质【解析】【分析】(1)把A(﹣1,0),C(0,2)代入y=﹣x2+bx+c列方程组即可.(2)先求出CD的长,分两种情形①当CP=CD时,②当DC=DP时分别求(3)求出直线BC的解析式,设E 则F ,解即可.构建二次函数,利用二次函数的性质即可解决问题.26、【答案】(1)解:如图1中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4,∵点D是线段BC的中点,∴BD=DC= BC=2,∵DF⊥AC,即∠CFD=90°,∴∠CDF=30°,又∵∠EDF=120°,∴∠EDB=30°,∴∠BED=90°∴BE= BD=1(2)解:如图2中,过点D作DM⊥AB于M,作DN⊥AC于N.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE+CF=BM+EM+NC﹣FN=2BM=BD= AB(3)解:结论不成立.结论:BE﹣CF= AB.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE﹣CF=BM+EM﹣(FN﹣CN)=2BM=BD= AB【考点】全等三角形的判定,含30度角的直角三角形【解析】【分析】(1)如图1中,只要证明∠BED=90°,根据直角三角形30度角性质即可解决问题.(2)如图2中,过点D作DM⊥AB于M,作DN⊥AC于N.只要证明△BDM≌△CDN,△EDM≌△FDN即可解决问题.(3)(2)中的结论不成立.结论:BE﹣CF= AB,证明方法类似(2).重庆市重点中学九年级上学期期中考试数学试卷(二)一、选择题1、下列图形是中心对称图形而不是轴对称图形的是()A、 B、 C、 D、2、关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A、﹣1B、1C、1或﹣1D、0.53、若A(﹣,y1),B(,y2),C(,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1, y2, y3的大小关系是()A、y1<y2<y3B、y2<y1<y3C、y3<y1<y2D、y1<y3<y24、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是()A、<2>和<3>B、<1>和<2>C、<2>和<4>D、<1>和<4>5、抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A、y=(x+1)2+3B、y=(x+1)2﹣3C、y=(x﹣1)2﹣3D、y=(x﹣1)2+36、如图,圆内接四边形ABCD是正方形,点E是上一点,则∠E的大小为()A、90°B、60°C、45°D、30°7、在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A、B、C、D、8、二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A、x<﹣1B、x>3C、﹣1<x<3D、x<﹣1或x>39、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc >0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有()A、1个B、2个C、3个D、4个10、如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是()A、2mB、3mC、4mD、5m二、填空题11、若x2﹣kx+4是一个完全平方式,则k的值是________12、若方程kx2﹣6x+1=0有两个不相等的实数根,则k的取值范围是________13、已知抛物线y=x2﹣2x﹣3,若点P(3,0)与点Q关于该抛物线的对称轴对称,则点Q的坐标是________.14、若抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2﹣4x+3的图象关于y轴对称,则函数y=ax2+bx+c的解析式为________.15、如图,正方形ABCD边长为2,E为CD的中点,以点A为中心,把△ADE顺时针旋转90°得△ABF,连接EF,则EF的长等于________.16、如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为________.三、解答题17、解方程:(1)x(x﹣3)+x﹣3=0(2)x2+3x﹣4=0.18、抛物线y=x2+bx+c过点(2,﹣2)和(﹣1,10),与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式.(2)求△ABC的面积.19、如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?20、如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、C(﹣1,0).(1)请直接写出与点B关于坐标原点O的对称点B的坐标;1(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.21、我校九年级组织一次班际篮球赛,若赛制为单循环形式(每两班之间都赛一场),则需安排45场比赛.问共有多少个班级球队参加比赛?22、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?23、如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.24、如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.答案解析部分一、<b ></b><b >选择题</b>1、【答案】A【考点】轴对称图形【解析】【解答】解:A、是中心对称图形,不是轴对称图形;故A正确;B、是中心对称图形,也是轴对称图形;故B错误;C、是中心对称图形,也是轴对称图形;故C错误;D、不是中心对称图形,是轴对称图形;故D错误;故选A.【分析】根据轴对称图形与中心对称图形的概念求解.2、【答案】A【考点】一元二次方程的定义,一元二次方程的解【解析】【解答】解:把x=0代入方程得a2﹣1=0,解得a=1或﹣1,由于a﹣1≠0,所以a的值为﹣1.故选A.【分析】先把x=0代入方法求出a的值,然后根据一元二次方程的定义确定满足条件的a的值.3、【答案】B【考点】二次函数图象上点的坐标特征【解析】【解答】解:∵y=x2+4x﹣5=(x+2)2﹣9,∴对称轴是x=﹣2,开口向上,距离对称轴越近,函数值越小,比较可知,B(,y2)离对称轴最近,C(,y3)离对称轴最远,即y2<y1<y3.故选:B.【分析】先确定抛物线的对称轴及开口方向,再根据点与对称轴的远近,判断函数值的大小.4、【答案】B【考点】认识平面图形【解析】【解答】解:把图形中每一个方格的面积看作1,则图形(1)的面积是1.5×4=6,图形(2)的面积是1.5×4=6,图形(3)的面积是2×4=8,图形(4)中一个图案的面积比1.5大且比2小,所以(1)和(2)的面积相等.故选B.【分析】把图形中每一个方格的面积看作1,因为四个图形都是对称的平面图形即只需求出图形的面积即可.5、【答案】D【考点】二次函数图象与几何变换【解析】【解答】解:由“左加右减”的原则可知,抛物线y=x2向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2;由“上加下减”的原则可知,抛物线y=(x﹣1)2向上平移3个单位所得抛物线的解析式为:y=(x﹣1)2+3.故选D.【分析】根据“上加下减,左加右减”的原则进行解答即可.6、【答案】C【考点】正方形的性质,圆周角定理【解析】【解答】解:连接AC、BD交于点O,∵圆内接四边形ABCD是正方形,∴AO=BO=CO=DO,∠AOD=90°,∴点O为圆心,则∠E= ∠AOD= ×90°=45°.故选C.【分析】连接AC、BD交于点O,根据正方形ABCD为内接四边形以及正方形的性质可得∠AOD=90°,然后根据圆周角定理可求得∠E的度数.7、【答案】D【考点】一次函数的图象,二次函数的图象【解析】【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x= <0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x= ,与y轴的交点坐标为(0,c).8、【答案】C【考点】二次函数的图象【解析】【解答】解:由图象可知,当﹣1<x<3时,函数图象在x轴的下方,y<0.故选C.【分析】根据y<0,则函数图象在x轴的下方,所以找出函数图象在x轴下方的x的取值范围即可.9、【答案】B【考点】二次函数图象与系数的关系【解析】【解答】解:①∵抛物线开口向下,∴a<0.∵抛物线的对称轴为x=﹣=1,∴b=﹣2a>0.当x=0时,y=c>0,∴abc<0,①错误;②当x=﹣1时,y<0,∴a﹣b+c<0,∴b>a+c,②错误;③∵抛物线的对称轴为x=1,∴当x=2时与x=0时,y值相等,∵当x=0时,y=c>0,∴4a+2b+c=c>0,③正确;④∵抛物线与x轴有两个不相同的交点,∴一元二次方程ax2+bx+c=0,∴△=b2﹣4ac>0,④正确.综上可知:成立的结论有2个.故选B.【分析】由抛物线的开口方程、抛物线的对称轴以及当x=0时的y值,即可得出a、b、c的正负,进而即可得出①错误;由x=﹣1时,y<0,即可得出a﹣b+c <0,进而即可得出②错误;由抛物线的对称轴为x=1结合x=0时y>0,即可得出当x=2时y>0,进而得出4a+2b+c=c>0,③成立;由二次函数图象与x轴交于不同的两点,结合根的判别式即可得出△=b2﹣4ac>0,④成立.综上即可得出结论.10、【答案】B【考点】二次函数的应用【解析】【解答】解:设抛物线的解析式为y=a(x﹣1)2+ ,由题意,得10=a+ ,a=﹣.∴抛物线的解析式为:y=﹣(x﹣1)2+ .当y=0时,0=﹣(x﹣1)2+ ,解得:x1=﹣1(舍去),x2=3.OB=3m.故选:B.【分析】由题意可以知道M(1,),A(0,10)用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.二、<b ></b><b >填空题</b>11、【答案】4或﹣4【考点】完全平方公式【解析】【解答】解:∵x2﹣kx+4是一个完全平方式,∴x2﹣kx+4=x2±2•x•2+22,﹣k=±4,∴k=±4,故答案为:4或﹣4.【分析】完全平方式有:a2+2ab+b2和a2﹣2ab+b2,根据完全平方公式得出﹣kx=±2•x•2,求出即可.12、【答案】k<9且k≠0【考点】一元二次方程的定义,根的判别式【解析】【解答】解:根据题意得k≠0且△=(﹣6)2﹣4k>0,解得k<9且k≠0.故答案为k<9且k≠0.【分析】根据一元二次方程的定义和判别式的意义得到k≠0且△=(﹣6)2﹣4k >0,然后求出两个不等式的公共部分即可.13、【答案】(﹣1,0)【考点】二次函数图象上点的坐标特征【解析】【解答】解:∵x=﹣=﹣=1.∴P(3,0)关于对称轴的对称点Q的坐标是(﹣1,0).故点Q的坐标是(﹣1,0).故答案为(﹣1,0).【分析】根据抛物线解析式求出抛物线对称轴为x=1,再根据图象得出点p(﹣2,5)关于对称轴对称点Q的纵坐标不变,两点横坐标到对称轴的距离相等,都为3,得到Q点坐标为(4,5).14、【答案】y=x2+4x+3【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2﹣4x+3的图象关于y轴对称,∴函数y=ax2+bx+c的解析式为:y=(﹣x)2﹣4(﹣x)+3=x2+4x+3.故答案为:y=x2+4x+3.【分析】本可直接利用关于y轴对称的点的坐标特点,横坐标变为相反数,纵坐标不变解答.15、【答案】【考点】正方形的性质,旋转的性质【解析】【解答】解:根据旋转的性质得到:BF=DE=1,在直角△EFC中:EC=DC ﹣DE=1,CF=BC+BF=3.根据勾股定理得到:EF= = .故答案为:.【分析】在直角△EFC中,利用三角函数即可求解.16、【答案】(36,0)【考点】坐标与图形性质,勾股定理,旋转的性质【解析】【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).三、<b >解答题</b>17、【答案】(1)解:分解因式得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x=3或x=﹣1(2)解:分解因式得:(x﹣1)(x+4)=0,可得x﹣1=0或x+4=0,解得:x=1或x=﹣4【考点】解一元二次方程-因式分解法【解析】【分析】各方程整理后,利用因式分解法求出解即可.18、【答案】(1)解:将点(2,﹣2)和(﹣1,10),代入y=x2+bx+c得:,解得:,∴抛物线的解析式为:y=x2﹣5x+4(2)解:当y=0,则x2﹣5x+4=0,解得:x1=1,x2=4,∴AB=4﹣1=3,当x=0,则y=4,∴CO=4,∴△ABC的面积为:×3×4=6【考点】待定系数法求二次函数解析式,抛物线与x轴的交点【解析】【分析】(1)利用待定系数法求二次函数解析式即可;(2)首先求出图象与x轴以及y轴交点坐标,即可得出AB以及CO的长,即可得出△ABC的面积.19、【答案】(1)解:设所围矩形ABCD的长AB为x米,则宽AD为(80﹣x)米依题意,得x• (80﹣x)=750即,x2﹣80x+1500=0,解此方程,得x1=30,x2=50∵墙的长度不超过45m,∴x2=50不合题意,应舍去当x=30时,(80﹣x)= ×(80﹣30)=25,所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2(2)解:不能.因为由x• (80﹣x)=810得x2﹣80x+1620=0又∵b2﹣4ac=(﹣80)2﹣4×1×1620=﹣80<0,∴上述方程没有实数根因此,不能使所围矩形场地的面积为810m2说明:如果未知数的设法不同,或用二次函数的知识解答,只要过程及结果正确,请参照给分.【考点】一元二次方程的应用【解析】【分析】(1)设所围矩形ABCD的长AB为x米,则宽AD为(80﹣x)米,根据矩形面积的计算方法列出方程求解.(2)假使矩形面积为810,则x 无实数根,所以不能围成矩形场地.20、【答案】(1)解:B1(2,﹣3)。

重庆一中初2019级九年级上期中考试数学试题含答案

重庆一中初2019级九年级上期中考试数学试题含答案

重庆一中初2019级16—17学年度上期半期考试数 学 试 卷(考生注意:本试题共26小题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴为a bx 2-=.一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡内. 1.下列实数中的无理数是( ▲ )A .7.0B .21C .πD .8-2.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ▲ )A .B .C .D .3.下列等式一定成立的是( ▲ )A .1052a a a =⨯ B .b a b a +=+ C .1243)(a a =-D .a a =24.不等式组⎩⎨⎧>->+0301x x 的解集是( ▲ )A .1->xB .3>xC .31<<-xD .3<x5.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .“02<x (x 是实数)”是随机事件C .掷一枚质地均匀的硬币10次,可能有5次正面向上D .为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查 6.如图,AB ∥CD ,CE 平分∠BCD ,∠B=36°,则∠DCE 等于( ▲ ) 第6题图A.18°B.36°C.45°D.54°7.函数21-=xy的自变量x的取值范围为(▲)A.2>x B.2<x C.2≤x D.2≠x8.如果α∠是锐角,且31sin=α,那么αcos的值是(▲)A.35B.332C.322D.5329.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为(▲)A.51 B.70 C.76 D.8110.已知二次函数)0(2≠++=acbxaxy的图象如图所示,对称轴为1=x,下列结论中正确的是(▲)A.0>ab B.ab2=C.024<++cba D.bca<+第10题图11.如图,小黄站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小黄的眼睛与地面的距离DG是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡AB的坡度为i=3:4,坡长AB=10.5米,则此时小船C到岸边的距离CA的长为(▲)米.(7.13≈,结果保留两位有效数字)A.11 B.8.5C.7.2 D.1012.若关于x的分式方程24341-=-+--xxax有正整数解,关于x的不等式组⎪⎩⎪⎨⎧->+<--2322)2(3xxaxx有解,则a的值可以是(▲)A.2-B.0C.1D.2第11题图BACG二.填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卡内.13.神舟十一号飞行任务是我国第6次载人飞行任务,也是中国持续时间最长的一次载人飞行任务.2019年10月19日,神舟十一号飞船与天宫二号自动交会对接成功.神舟十一号和天宫二号对接时的轨道高度是393000米,将数393000用科学计数法表示为▲. 14.计算:9+(-2)0 =▲.15.二次函数y =12(x +1)(x -3)的对称轴是▲. 16.有一个进、出水管的容器,某时刻起4分钟只开进水管,此后进水管,出水管同时开放,经过8分钟注满容器,随后只开出水管,得到时间x (分钟)与水量y (升)之间的函数关系如图,那么容器的容积为 ▲升.HGFEADC第16题图 第18题图17.有六张正面分别标有数字3,2,1,0,2,3--的不透明卡片,它们除数字不同外其他全部相同,现将它们背面朝上,洗匀后从中任取两张,将卡片上的数字分别做为点P 的横、纵坐标,则P 点落在抛物线322-+=x x y 上的概率为 ▲.18.正方形ABCD 中,BD 为正方形对角线,E 点是AB 边中点,连结DE ,过C 点作CG ⊥DE 交DE 于G 点,交BD 于H 点,过B 点作BF ⊥DE 交DE 延长线于F 点,连结AF.若AF=2,则△BHG 的面积 为 ▲.三.解答题:(本大题2个小题,第19题6分,20题8分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.如图,点C ,D 在线段BF 上,AB ∥DE , AB=DF ,BC=DE ,求证:AC=FE.20.计算(1))(4)2)(2(y x y y x y x ++-+(2)1961812++-÷⎪⎪⎭⎫ ⎝⎛+--y y y y y四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤. 21.百日长跑为我校的传统项目,为了解九年级学生的体能状况,从我校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A 、B 、C 、D 四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B 等级的学生数,并补全条形统计图;(3)我校九年级共有2100名学生,请你估计九年级学生中体能测试结果为D 等级的学生有多少人?22.如图,直线y =12x +2与双曲线相交于点A (m ,3),与x 轴交于点C . (1)求双曲线解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.23.某绿色种植基地种植的农产品喜获丰收,此基地将该农产品以每千克5元出售,这样每天可售出1500千克,但由于同类农产品的大量上市,该基地准备降价促销,经调查发现,在本地该农产品若每降价0.2元,每天可多售出100千克.当本地销售单价为x )3(≥x 元时,销售量为y 千克. (1)请直接写出y 和x 的函数关系式;(2)求在本地当销售单价为多少时可以获得最大销售收入?最大销售收入是多少?(3)若该农产品不能在一周内出售,将会因变质而不能出售.依此情况,基地将10000千克该农产品运往外地销售.已知这10000千克农产品运到了外地,并在当天全部售完.外地销售这种农产品的价格比在本地取得最大销售收入时的单价还高%a ()(20≥a ),而在运输过程中有%6.0a 损耗,这样这一天的销售收入为42000元.请计算出a 的值.xy24.对于钝角β,定义它的三角函数值如下:)180sin(sin ββ-= ,)180cos(cos ββ--= ,)180tan(tan ββ--=(1)求、、的值.(2)若一个三角形的三个内角的比是1︰1︰4,A 、B 是这个三角形的两个顶点,sin A 、cos B 是方程ax 2-bx -1=0的两个不相等的实数根,求a 、b 的值及∠A 和∠B 的大小.CG B AEGBAEG B AE五.解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤. 25.平行四边形ABCD 中,∠ABD=90°,G 点为BC 边上一点,连结DG ,E 点在BC 边所在直线上,过E 点作EF ∥CD 交GD 于F 点.(1)如图1,若G 为BC 边中点,EF 交GD 延长线于F 点,tanA=21,CE=CG ,DG=5,求EF ; (2)如图2,若E 点在BC 边上,G 为BE 中点,且GD 平分∠BDC ,求证:DF FG DB +=22; (3)如图3,若E 点在BC 延长线上,G 为BE 中点,且∠GDC=30°,问(2)中结论还成立吗?若不成立,那么线段DB 、FG 、DF 满足怎样的数量关系,请直接写出结论.图1图326.抛物线c x x y +--=241与直线l 1:kx y =相交于A 、B 两点,其中点A 的坐标为)3,3(-,点B 的坐标为),3(b .(1)求抛物线顶点M 的坐标和b 的值.(2)如图1,若P 是抛物线上位于M 、B 两点之间的一个动点,连结AM 、MP 、PB ,求四边形PMAB 的面积的最大值及此时P 点的坐标.(3)如图2,将直线l 1绕B 点逆时针方向旋转一定角度后沿y 轴向下平移5个单位得到l 2,l 2与y 轴交于点)423,0(-C ,P 为抛物线上一动点,过P 点作x 轴的垂线交l 2于点D ,若点D ′是点D 关于直线PC 的对称点,是否存在点P ,使点D ′恰好落在y 轴上?若存在,请直接写出相应的点P 的坐标,若不存在,请说明理由.命题人:邱秦飞 陈缨 审题人:余志渊 王敏xyl 1图1xyl 1l 2图2M。

重庆一中2019-2020学年九年级(上)期中数学试卷 含解析

重庆一中2019-2020学年九年级(上)期中数学试卷  含解析

2019-2020学年九年级(上)期中数学试卷一.选择题(共12小题)1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.12.如图是由5个大小相同的小正方体摆成的立体图形,它的左视图是()A.B.C.D.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为6,则△DEF的周长为()A.54 B.18 C.2 D.4.下列命题正确的是()A.菱形的对角线相等B.矩形的对角线互相垂直C.平行四边形的对角线相等且互相平分D.正方形的对角线相等且互相垂直平分5.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,则可建立方程为()A.B.C.D.7.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2 8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,下列结论正确的是()A.a>0 B.b=2a C.b2<4ac D.8a+c<09.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.B.3 C.4 D.10.如图,小明在水平面E处,测得某建筑物AB的顶端A的仰角为42°,向正前方向走37米到达点D处,再往斜坡CD上走30米到达点C处,测得建筑物AB的顶端A的仰角为63.5°,已知斜坡CD的坡度为i=1:0.75,建筑物AB垂直于平台BC,平台BC与水平面DE平行,点A、B、C、D、E均在同一平面内,则建筑物AB的高度约为()(精确到0.1米,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.0)A.42.4米B.46.4米C.48.5米D.50.8米11.若关于x的不等式组的解集为x≤1,且使关于y的分式方程的解为非正数,则符合条件的所有整数a的和为()A.﹣3 B.﹣6 C.﹣7 D.﹣1012.如图,在等腰△ABC中,AB=AC,点D和点E分别在AB和BC上,连接DE,将△BDE 沿DE翻折,点B的对应点B′刚好落在AC上,若AB'=2B'C,AB=3,BC=6,则BE 的长为()A.3 B.C.D.二.填空题(共6小题)13.计算:=.14.2019年9月,华为推出Mate30Pro,定义“重构想象”,凭借其革命性的麒麟9905G旗舰Soc芯片和创新摄像头组合成为当之无愧的焦点.外观方面的黑科技当属侧屏弯曲高达88°的环幕屏,极具视觉张力.也因为环幕屏的出现,它在交互设计方面,带来了隔空操作的全新体验.9月销量达到108000台,请把数108000用科学记数法表示为.15.重庆市某校初二(3)班同学,在学校组织的语文作文选拔考试中,有三名同学满分,其中有一名男生和两名女生,现在从三名满分同学中随机抽取两名同学参加重庆市优秀作文比赛,则选出来的两名同学刚好是一男一女的概率是.16.若点A(2,y1)和点B(4,y2)在二次函数y=﹣x2+2x+3的图象上,则y1y2.(填“>”,“<”或“=”)17.在一条笔直的公路上有A、B两地,甲、乙两车均从A地匀速驶向B地,甲车比乙车早出发2小时,出发后,甲车出现了故障停下来维修,半小时后继续以原速向B地行驶.当乙车到达B地后立刻提速50%返回,在返回途中第二次与甲车相遇.下图表示甲乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系.则当乙车第二次与甲车相遇时,甲车距离B地千米.18.近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为元.三.解答题(共8小题)19.计算:(1)(x+1)2﹣x(1+x)(2)(1﹣)÷20.如图所示,在△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC 上一点,AG=AF,连接GF并延长交BC于E.(1)若∠B=55°,求∠AFG的度数;(2)求证:GE⊥BC.21.10月下旬,我校初三年级组织了体育期中测试.为了更好的了解孩子们的体育水平,全力备战中考,我校体育组从全年级体考成绩中随机抽查了20名男生和20名女生的体考成绩进行整理、描述和分析(成绩得分用x表示,共分成四组:A:47<x≤50,B:44<x≤47,C:41<x≤44,D:x≤41),下面给出了部分信息:20名男生的体考成绩(单位:分):50,46,50,50,47,49,39,46,49,46,46,43,49,47,40,48,44,42,45,44;20名女生的体考成绩为B等级的数据是:45,46,46,47,47,46,46.所抽取的学生体考成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值;(2)根据以上数据,你认为我校男生的体育成绩好还是女生的体育成绩好?请说明理由(一条即可);(3)我校初三年级共有2400名学生参与此次体考测试,估计参加测试的学生等级为A 的有多少人?22.在学习函数的过程中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程,根据你所经历的学习过程,现在来解决下面的问题:在函数y=ax3﹣bx+2中,当x=﹣1时,y=4;当x=﹣2时y=0.(1)根据已知条件可知这个函数的表达式.(2)根据已描出的部分点,画出该函数图象.(3)观察所画图象,回答下列问题:①该图象关于点成中心对称;②当x取何值时,y随着x的增大而减小;③若直线y=c与该图象有3个交点,直接写出c的取值范围.23.阅读材料:材料一:对于任意一个正整数n,若n能够被5整除,则n的个位数字是0或5;若n能被3整除,则n的各位数字之和是3的倍数.材料二:对于任意一个三位正整数m,我们都可以表示为m=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a,b,c为整数).若m的百位数字与个位数字之和减去十位数字的差为7,则我们称这个三位数m是“梦想数”.(1)请直接写出200以内的所有“梦想数”;(2)若m既能被3整除,又能被5整除,求符合条件的“梦想数”m.24.今年9月8日,重庆首家海底捞在来福士广场正式开始试营业,由于重庆人偏好麻辣口味,海底捞来福士店在原有番茄、红汤牛油、菌菇等多种常规锅底的基础上,专门为重庆人私人订制了一种“双椒锅底”.开业当天,人气爆满,番茄锅和双椒锅成为最受欢迎的两种锅底,总计销售300份,销售总额为9800元.其中双椒锅的销售单价是42元,番茄锅的销售单价为28元.(1)求开业当天番茄锅销售数量;(2)试营业一段时间后,商家发现番茄锅和双椒锅的日均销量之比为3:2.为了庆祝国庆,回馈广大顾客,海底捞在国庆期间推出了优惠活动,在原有售价的基础上将番茄锅降价a%,双椒锅降价a%进行销售.10月1日当天,番茄锅的销量比日均销量增加了a%,而双椒锅的销量比日均销量增加了2a%,结果当天这两种锅底的销售总额比日均销售总额多了a%,求a的值.25.如图,在平行四边形ABCD中,连接AC,∠BAC=90°,AB=AC,点E是边BC上一点,连接DE,交AC于点F,∠ADE=30°.(1)如图1,若AF=2,求BC的长;(2)如图2,过点A作AG⊥DE于点H,交BC于点G,点O是AC中点,连接GO并延长交AD于点M.求证:AG+CG=DM.26.在平面直角坐标系中,抛物线y=﹣x+6与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)如图1,点P为直线BC上方抛物线上一动点,过点P作PH∥y轴,交直线BC于点H,过点P作PQ⊥BC于点Q,当PQ﹣PH最大时,点C关于x轴的对称点为点D,点M 为直线BC上一动点,点N为y轴上一动点,连接PM、MN,求PM+MN+ND的最小值;(2)如图2,连接AC,将△OAC绕着点O顺时针旋转,记旋转过程中的△OAC为△OA'C',点A的对应点为点A',点C的对应点为点C'.当点A'刚好落在线段AC上时,将△OA'C'沿着直线BC平移,在平移过程中,直线OC'与抛物线对称轴交于点E,与x轴交于点F,设点R是平面内任意一点,是否存在点R,使得以B、E、F、R为顶点的四边形是菱形?若存在,请直接写出点R的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.【解答】解:比﹣2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有A符合.故选:A.2.如图是由5个大小相同的小正方体摆成的立体图形,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:此几何体的左视图有3列,左边一列有2个正方形,中间有1个正方形,右边一列有1个正方形,故选:C.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为6,则△DEF的周长为()A.54 B.18 C.2 D.【分析】设△DEF的周长为x,根据相似三角形的周长比等于相似比列式计算即可.【解答】解:设△DEF的周长为x,∵△ABC∽△DEF,相似比为3:1,∴=3,即=3,解得,x=2,故选:C.4.下列命题正确的是()A.菱形的对角线相等B.矩形的对角线互相垂直C.平行四边形的对角线相等且互相平分D.正方形的对角线相等且互相垂直平分【分析】根据菱形、矩形、平行四边形、正方形的性质判断.【解答】解:A、菱形的对角线不一定相等,本选项说法错误;B、矩形的对角线不等于互相垂直,本选项说法错误;C、平行四边形的对角线互相平分但不一定相等,本选项说法错误;D、正方形的对角线相等且互相垂直平分,本选项说法正确;故选:D.5.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】根据二次根式的运算性质化简后,再对根式进行估算,即可得出答案.【解答】解:==2+,∵,∴,∴的值应在5和6之间.故选:C.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,则可建立方程为()A.B.C.D.【分析】设每枚黄金重x两,每枚白银重y两,根据“黄金9枚和白银11枚的重量相等,黄金8枚和白银1枚的重量比黄金1枚白银10枚轻13两”,即可得出关于x,y的二元一次方程,此题得解.【解答】解:设每枚黄金重x两,每枚白银重y两,依题意,得:.故选:C.7.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2 【分析】根据题意一一计算即可判断.【解答】解:A、当a=3,b=2时,y===1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y===,不符合题意.故选:A.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,下列结论正确的是()A.a>0 B.b=2a C.b2<4ac D.8a+c<0【分析】利用抛物线开口方向得到a<0;利用抛物线的对称轴方程得到b=﹣2a;利用抛物线与x轴有2个交点得到△=b2﹣4ac>0;利用x=﹣2时4a﹣2b+c<0,把b=﹣2a代入得8a+c<0,然后对各选项进行判断.【解答】解:∵抛物线开口向下,∴a<0,所以A选项错误;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,所以B选项错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以C选项错误;∵x=﹣2时,y<0,∴4a﹣2b+c<0,把b=﹣2a代入得8a+c<0,所以D选项正确.故选:D.9.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.B.3 C.4 D.【分析】设C(0,m),则A(0,2m),根据菱形的面积公式求得BD的长,然后根据菱形的性质得出B(,m),进一步根据k=xy即可求得.【解答】解:连接BD,设C(0,m),则A(0,2m),∴AC=m,∵菱形ABCD的面积=AC•BD=3,∴BD=,∵菱形ABCD的对角线AC、BD互相垂直且互相平分,∴B(,m),∵反比例函数y=(k≠0)经过顶点B,∴k=•=,故选:D.10.如图,小明在水平面E处,测得某建筑物AB的顶端A的仰角为42°,向正前方向走37米到达点D处,再往斜坡CD上走30米到达点C处,测得建筑物AB的顶端A的仰角为63.5°,已知斜坡CD的坡度为i=1:0.75,建筑物AB垂直于平台BC,平台BC与水平面DE平行,点A、B、C、D、E均在同一平面内,则建筑物AB的高度约为()(精确到0.1米,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.0)A.42.4米B.46.4米C.48.5米D.50.8米【分析】作CG⊥DE交ED的延长线于G,延长AB交ED的延长线于H,根据坡度的概念分别求出CG、DG,根据正切的定义用AB表示出BC,根据正切的定义列式计算,得到答案.【解答】解:作CG⊥DE交ED的延长线于G,延长AB交ED的延长线于H,则四边形BHGC为矩形,∴BH=CG,BC=HG,设CG=x米,∵斜坡CD的坡度为i=1:0.75,∴DG=3x,由勾股定理得,CD2=CG2+DG2,即302=(4x)2+(3x)2,解得,x=6,∴CG=24,DG=18,在Rt△ABC中,tan∠ACB=,∴BC=≈AB,在Rt△AHE中,tan∠AEH=,∴≈0.9,解得,AB≈46.4,故选:B.11.若关于x的不等式组的解集为x≤1,且使关于y的分式方程的解为非正数,则符合条件的所有整数a的和为()A.﹣3 B.﹣6 C.﹣7 D.﹣10【分析】先分别解不等式组里的两个不等式,根据解集求出a的取值范围,再由分式方程的解求出a的范围,得到两个a的范围必须同时满足,即求得可得到的整数a的值.【解答】解:解不等式,得x≤1,解不等式x﹣6≤a﹣x,得,∵不等式组的解集为x≤1,∴,解得a≥﹣4,解关于y的分式方程,,∵分式方程的解为非正数,∴,解得a≤﹣1且a≠﹣3,∴所有满足条件的整数a的值有:﹣4,﹣2,﹣1,∴符合条件的所有整数a的和为﹣7.故选:C.12.如图,在等腰△ABC中,AB=AC,点D和点E分别在AB和BC上,连接DE,将△BDE沿DE翻折,点B的对应点B′刚好落在AC上,若AB'=2B'C,AB=3,BC=6,则BE 的长为()A.3 B.C.D.【分析】如图,过点A作AF⊥BC,B'H⊥BC,则B'H∥AF,由等腰三角形的可求BF=CF =3,由勾股定理可求AF=6,由平行线分线段成比例可求B'H=2,CH=1,由勾股定理可求BE的长.【解答】解:如图,过点A作AF⊥BC,B'H⊥BC,则B'H∥AF,∵AB=AC,AF⊥BC,∴BF=CF=3,∴AF===6,∵AB'=2B'C,∴AC=3B'C,∵AF∥B'H,∴==,∴CH=1,B'H=2,∴BH=5,∵将△BDE沿DE翻折,∴BE=B'E,∵B'E2=B'H2+EH2,∴BE2=4+(5﹣BE)2,∴BE=故选:D.二.填空题(共6小题)13.计算:= 3 .【分析】原式利用零指数幂、负整数指数幂法则计算即可求出值.【解答】解:原式=4﹣1=3,故答案为:314.2019年9月,华为推出Mate30Pro,定义“重构想象”,凭借其革命性的麒麟9905G旗舰Soc芯片和创新摄像头组合成为当之无愧的焦点.外观方面的黑科技当属侧屏弯曲高达88°的环幕屏,极具视觉张力.也因为环幕屏的出现,它在交互设计方面,带来了隔空操作的全新体验.9月销量达到108000台,请把数108000用科学记数法表示为 1.08×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将108000用科学记数法表示为:1.08×105.故答案为:1.08×105.15.重庆市某校初二(3)班同学,在学校组织的语文作文选拔考试中,有三名同学满分,其中有一名男生和两名女生,现在从三名满分同学中随机抽取两名同学参加重庆市优秀作文比赛,则选出来的两名同学刚好是一男一女的概率是.【分析】利用列表法或树状图法列举出所有可能出现的结果数,进而求出该事件发生的概率.【解答】解:利用列表法可以得出所有可能的结果:P(两名同学是一男一女)==,16.若点A(2,y1)和点B(4,y2)在二次函数y=﹣x2+2x+3的图象上,则y1>y2.(填“>”,“<”或“=”)【分析】可先求二次函数y=﹣x2+2x+3的对称轴为x=﹣=1,根据点A关于x=1的对称点即可判断.【解答】解:二次函数y=﹣x2+2x+3的对称轴为x=1∵a=﹣1<0∴二次函数的值,在x=1左侧为增加,在x=1右侧减小,∵1<2<4,∴点A、点B均在对称轴的右侧,∴y1>y2故答案为:>.17.在一条笔直的公路上有A、B两地,甲、乙两车均从A地匀速驶向B地,甲车比乙车早出发2小时,出发后,甲车出现了故障停下来维修,半小时后继续以原速向B地行驶.当乙车到达B地后立刻提速50%返回,在返回途中第二次与甲车相遇.下图表示甲乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系.则当乙车第二次与甲车相遇时,甲车距离B地90 千米.【分析】设甲的速度a千米/时,乙的速度b千米/时,由图象可列方程组,求出甲,乙速度,即可求解.【解答】解:设甲的速度a千米/时,乙的速度b千米/时,由图象可知,甲,乙第一次相遇是甲出发3.5小时时,乙到达B地是甲出发6.5小时时,∴解得:∴甲的速度40千米/时,乙的速度80千米/时,∴A、B两地距离=80×4.5=360千米,∴从B地返回到相遇时间==小时,∴当乙车第二次与甲车相遇时,甲车距离B地=120﹣40×=90千米,故答案为:90.18.近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为5820 元.【分析】根据题意可得A礼盒的成本价格,进而可求出1个福字饼和1个禄字饼的成本和为40元,再设一个福字饼成本x元,一个禄字饼成本(40﹣x)元,A种礼盒m袋,B 种礼盒n袋,列出方程得到xn=20n+250,最后求出每日卖出礼盒的实际总成本即可.【解答】解:设A礼盒成本价格a元,根据题意,得96﹣a=20%a,解得a=80,∵A礼盒装有2个福字饼,2个禄字饼,∴2个福字饼和2个禄字饼的成本价格为80元,∴1个福字饼和1个禄字饼的成本价格为40元,设个福字饼成本价x元,1个禄字饼成本价(40﹣x)元,则1个寿字饼成本价为(40﹣x)元,A种礼盒m袋,B种礼盒n袋,根据题意,得m+n=7880m+n[x+2(40﹣x)+3×(40﹣x)]+500=80m+n[(40﹣x+2x+3×(40﹣x)] ∴xn=20n+250设A、B两种礼盒实际成本为w元,则有w=80m+xn+2n(40﹣x)+n×(40﹣x)=80(m+n)﹣420=80×78﹣420=5820.故答案为5820.三.解答题(共8小题)19.计算:(1)(x+1)2﹣x(1+x)(2)(1﹣)÷【分析】(1)根据提公因式法可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】解:(1)(x+1)2﹣x(1+x)=(x+1)[(x+1)﹣x]=(x+1)(x+1﹣x)=(x+1)×1=x+1;(2)(1﹣)÷===.20.如图所示,在△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC 上一点,AG=AF,连接GF并延长交BC于E.(1)若∠B=55°,求∠AFG的度数;(2)求证:GE⊥BC.【分析】(1)利用三角形的外角的性质求出∠FAG即可解决问题.(2)想办法证明AD∥FG即可解决问题.【解答】(1)解:∵AB=AC,∴∠B=∠C=55°,∴∠GAF=∠B+∠C=110°,∵AG=AF,∴∠AFG=(180°﹣110°)=35°.(2)证明:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°∴∠BAD=∠CAD=90°﹣55°=35°,∴∠DAC=∠AFG,∴AD∥FG,∴GE⊥BC.21.10月下旬,我校初三年级组织了体育期中测试.为了更好的了解孩子们的体育水平,全力备战中考,我校体育组从全年级体考成绩中随机抽查了20名男生和20名女生的体考成绩进行整理、描述和分析(成绩得分用x表示,共分成四组:A:47<x≤50,B:44<x≤47,C:41<x≤44,D:x≤41),下面给出了部分信息:20名男生的体考成绩(单位:分):50,46,50,50,47,49,39,46,49,46,46,43,49,47,40,48,44,42,45,44;20名女生的体考成绩为B等级的数据是:45,46,46,47,47,46,46.所抽取的学生体考成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值;(2)根据以上数据,你认为我校男生的体育成绩好还是女生的体育成绩好?请说明理由(一条即可);(3)我校初三年级共有2400名学生参与此次体考测试,估计参加测试的学生等级为A 的有多少人?【分析】(1)计算出女生B类所占的百分比,进而求出C类所占的百分比,确定a的值;找出男生成绩出现次数最多的数即为众数,计算出女生体考成绩从小到大排列后处在第10、11位两个数的平均数,即为女生的成绩的中位数,(2)从平均数、众数上的分析得出结论.(3)男生20人A等有7人,女生20人A等有20×45%=9人,因此A等占总人数的(7+9)÷(20+20)=40%,估计总体中,有40%的人为A等.【解答】解:(1)7÷20=35%,1﹣35%﹣45%﹣10%=10%,因此a=10,男生体考成绩出现次数最多的是46分,因此众数为46分,故b=46,女生A组有9人,处在第10、11位的两个数的平均数为(45+46)÷2=45.5,因此c=45.5,答:a、b、c的值分别为:10,46,45.5.(2)女生的成绩较好,理由:女生的平均数、众数都比男生好.(3)2400×=960人,答:该校初三年级2400名学生的成绩中,等级为A的有960人.22.在学习函数的过程中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程,根据你所经历的学习过程,现在来解决下面的问题:在函数y=ax3﹣bx+2中,当x=﹣1时,y=4;当x=﹣2时y=0.(1)根据已知条件可知这个函数的表达式y=x3﹣x+2 .(2)根据已描出的部分点,画出该函数图象.(3)观察所画图象,回答下列问题:①该图象关于点(0,﹣2)成中心对称;②当x取何值时,y随着x的增大而减小;③若直线y=c与该图象有3个交点,直接写出c的取值范围.【分析】(1)利用待定系数法解决问题即可.(2)利用描点法画出函数图象即可.(3)利用数形结合的思想解决问题即可.【解答】解:(1)由题意:,解得,∴函数解析式为y=x3﹣x+2.故答案为y=x3﹣x+2.(2)函数图象如图所示:(3)①观察图象可知:函数图象关于(0,2)成中心对称.故答案为(0,﹣2).②观察图象可知:当﹣1<x<1时,y随着x的增大而减小.③观察图象可知:若直线y=c与该图象有3个交点,c的取值范围为0<c<4.23.阅读材料:材料一:对于任意一个正整数n,若n能够被5整除,则n的个位数字是0或5;若n 能被3整除,则n的各位数字之和是3的倍数.材料二:对于任意一个三位正整数m,我们都可以表示为m=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a,b,c为整数).若m的百位数字与个位数字之和减去十位数字的差为7,则我们称这个三位数m是“梦想数”.(1)请直接写出200以内的所有“梦想数”;(2)若m既能被3整除,又能被5整除,求符合条件的“梦想数”m.【分析】(1)由于是200以内的所有“梦想数”,则a=1;(2)m既能被3整除,又能被5整除,可得c=0时,a﹣b=7,a+b=3或a+b=6或a+b =9或a+b=12或a+b=15或a+b=18;当c=5时,a﹣b=2,a+b=1或a+b=4或a+b =7或a+b=10或a+b=13或a+b=16;分别求出a与b即可.【解答】解:(1)∵200以内的所有“梦想数”,∴a=1,∴符合条件的“梦想数”有106,117,128,139;(2)∵m能被5整除,∴c=0或c=5,当c=0时,a﹣b=7,当c=5时,a﹣b=2,∵m能被3整除,∴a+b+c是3的倍数,当c=0时,a+b是3的倍数,∴a+b=3或a+b=6或a+b=9或a+b=12或a+b=15或a+b=18;当c=5时,a+b+5是3的倍数,∴a+b=1或a+b=4或a+b=7或a+b=10或a+b=13或a+b=16;①当c=0时,a=7+b,则a+b=7+2b,∴a=8,b=1;②当c=5时,a=b+2,则a+b=2+2b,∴a=3,b=1或a=6,b=4或a=9,b=7;∴符合条件的“梦想数”m有810,315,645,975.24.今年9月8日,重庆首家海底捞在来福士广场正式开始试营业,由于重庆人偏好麻辣口味,海底捞来福士店在原有番茄、红汤牛油、菌菇等多种常规锅底的基础上,专门为重庆人私人订制了一种“双椒锅底”.开业当天,人气爆满,番茄锅和双椒锅成为最受欢迎的两种锅底,总计销售300份,销售总额为9800元.其中双椒锅的销售单价是42元,番茄锅的销售单价为28元.(1)求开业当天番茄锅销售数量;(2)试营业一段时间后,商家发现番茄锅和双椒锅的日均销量之比为3:2.为了庆祝国庆,回馈广大顾客,海底捞在国庆期间推出了优惠活动,在原有售价的基础上将番茄锅降价a%,双椒锅降价a%进行销售.10月1日当天,番茄锅的销量比日均销量增加了a%,而双椒锅的销量比日均销量增加了2a%,结果当天这两种锅底的销售总额比日均销售总额多了a%,求a的值.【分析】(1)设开业当天番茄锅销售数量为x份,则双椒锅的销售数量为(300﹣x)份,由题意得关于x的一元一次方程,求解即可;(2)由番茄锅和双椒锅的日均销量之比为3:2,设番茄锅和双椒锅的日均销量分别为3m和2m,根据实行优惠后的销售总额等于原来销售总额的(1+),列方程,再设a%=t,解关于t的方程,解出t,则可得a的值.【解答】解:(1)设开业当天番茄锅销售数量为x份,则双椒锅的销售数量为(300﹣x)份,由题意得:28x+42(300﹣x)=9800解得x=200答:开业当天番茄锅销售数量为200份.(2)∵番茄锅和双椒锅的日均销量之比为3:2∴设番茄锅和双椒锅的日均销量分别为3m和2m根据题意得:28(1﹣a%)×3m(1+a%)+42(1﹣a%)×2m×(1+2a%)=(28×3m+42×2m)×(1+a%)化简得:(1﹣a%)(1+a%)+(1﹣a%)(1+2a%)=2(1+a%)设a%=t,则有:(1﹣t)(1+t)+(1﹣t)(1+2t)=2(1+t)∴1+t﹣﹣+1+2t﹣t﹣2t2=2+∴t﹣=0∴t=0(舍)或t=40%∴a=40.25.如图,在平行四边形ABCD中,连接AC,∠BAC=90°,AB=AC,点E是边BC上一点,连接DE,交AC于点F,∠ADE=30°.(1)如图1,若AF=2,求BC的长;(2)如图2,过点A作AG⊥DE于点H,交BC于点G,点O是AC中点,连接GO并延长交AD于点M.求证:AG+CG=DM.【分析】(1)如图1中,作FH⊥AD于H.解直角三角形求出AH,HD即可解决问题.(2)如图2中,在BC上取一点N,使得∠BAN=∠CAG.利用全等三角形的性质证明DM =BG,再证明△ANG是等边三角形即可解决问题.【解答】(1)解:如图1中,作FH⊥AD于H.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB=45°,∵AF=2,∴AH=HF=,∵∠FDH=30°,∴DH=FH=,∴BC=AD=+.(2)证明:如图2中,在BC上取一点N,使得∠BAN=∠CAG.。

2019-2020学年重庆一中九年级(上)期中数学试卷解析版

2019-2020学年重庆一中九年级(上)期中数学试卷解析版

2019-2020学年重庆一中九年级(上)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.12.(4分)如图是由5个大小相同的小正方体摆成的立体图形,它的左视图是()A.B.C.D.3.(4分)已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为6,则△DEF的周长为()A.54B.18C.2D.4.(4分)下列命题正确的是()A.菱形的对角线相等B.矩形的对角线互相垂直C.平行四边形的对角线相等且互相平分D.正方形的对角线相等且互相垂直平分5.(4分)估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(4分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,则可建立方程为()A.B.C.D.7.(4分)按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2B.a=﹣3,b=﹣1C.a=1,b=3D.a=4,b=28.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,下列结论正确的是()A.a>0B.b=2a C.b2<4ac D.8a+c<09.(4分)如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=(k≠0)经过顶点B,若点C 为AO中点,菱形ABCD的面积3,则k的值为()A.B.3C.4D.10.(4分)如图,小明在水平面E处,测得某建筑物AB的顶端A的仰角为42°,向正前方向走37米到达点D处,再往斜坡CD上走30米到达点C处,测得建筑物AB的顶端A的仰角为63.5°,已知斜坡CD的坡度为i=1:0.75,建筑物AB垂直于平台BC,平台BC与水平面DE平行,点A、B、C、D、E均在同一平面内,则建筑物AB的高度约为()(精确到0.1米,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.0)A.42.4米B.46.4米C.48.5米D.50.8米11.(4分)若关于x的不等式组的解集为x≤1,且使关于y的分式方程的解为非正数,则符合条件的所有整数a的和为()A.﹣3B.﹣6C.﹣7D.﹣1012.(4分)如图,在等腰△ABC中,AB=AC,点D和点E分别在AB和BC上,连接DE,将△BDE沿DE翻折,点B的对应点B′刚好落在AC上,若AB'=2B'C,AB=3,BC=6,则BE的长为()A.3B.C.D.二.填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案直接填在答题卡中对应的横线上. 13.(4分)计算:=.14.(4分)2019年9月,华为推出Mate30Pro,定义“重构想象”,凭借其革命性的麒麟9905G旗舰Soc芯片和创新摄像头组合成为当之无愧的焦点.外观方面的黑科技当属侧屏弯曲高达88°的环幕屏,极具视觉张力.也因为环幕屏的出现,它在交互设计方面,带来了隔空操作的全新体验.9月销量达到108000台,请把数108000用科学记数法表示为.15.(4分)重庆市某校初二(3)班同学,在学校组织的语文作文选拔考试中,有三名同学满分,其中有一名男生和两名女生,现在从三名满分同学中随机抽取两名同学参加重庆市优秀作文比赛,则选出来的两名同学刚好是一男一女的概率是.16.(4分)若点A(2,y1)和点B(4,y2)在二次函数y=﹣x2+2x+3的图象上,则y1y2.(填“>”,“<”或“=”)17.(4分)在一条笔直的公路上有A、B两地,甲、乙两车均从A地匀速驶向B地,甲车比乙车早出发2小时,出发后,甲车出现了故障停下来维修,半小时后继续以原速向B地行驶.当乙车到达B地后立刻提速50%返回,在返回途中第二次与甲车相遇.下图表示甲乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系.则当乙车第二次与甲车相遇时,甲车距离B地千米.18.(4分)近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B 礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为元.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+1)2﹣x(1+x)(2)(1﹣)÷20.(10分)如图所示,在△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC上一点,AG=AF,连接GF并延长交BC于E.(1)若∠B=55°,求∠AFG的度数;(2)求证:GE⊥BC.21.(10分)10月下旬,我校初三年级组织了体育期中测试.为了更好的了解孩子们的体育水平,全力备战中考,我校体育组从全年级体考成绩中随机抽查了20名男生和20名女生的体考成绩进行整理、描述和分析(成绩得分用x表示,共分成四组:A:47<x≤50,B:44<x≤47,C:41<x≤44,D:x≤41),下面给出了部分信息:20名男生的体考成绩(单位:分):50,46,50,50,47,49,39,46,49,46,46,43,49,47,40,48,44,42,45,44;20名女生的体考成绩为B等级的数据是:45,46,46,47,47,46,46.所抽取的学生体考成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值;(2)根据以上数据,你认为我校男生的体育成绩好还是女生的体育成绩好?请说明理由(一条即可);(3)我校初三年级共有2400名学生参与此次体考测试,估计参加测试的学生等级为A的有多少人?22.(10分)在学习函数的过程中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程,根据你所经历的学习过程,现在来解决下面的问题:在函数y=ax3﹣bx+2中,当x=﹣1时,y=4;当x=﹣2时y=0.(1)根据已知条件可知这个函数的表达式.(2)根据已描出的部分点,画出该函数图象.(3)观察所画图象,回答下列问题:①该图象关于点成中心对称;②当x取何值时,y随着x的增大而减小;③若直线y=c与该图象有3个交点,直接写出c的取值范围.23.(10分)阅读材料:材料一:对于任意一个正整数n,若n能够被5整除,则n的个位数字是0或5;若n能被3整除,则n的各位数字之和是3的倍数.材料二:对于任意一个三位正整数m,我们都可以表示为m=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a,b,c为整数).若m的百位数字与个位数字之和减去十位数字的差为7,则我们称这个三位数m是“梦想数”.(1)请直接写出200以内的所有“梦想数”;(2)若m既能被3整除,又能被5整除,求符合条件的“梦想数”m.24.(10分)今年9月8日,重庆首家海底捞在来福士广场正式开始试营业,由于重庆人偏好麻辣口味,海底捞来福士店在原有番茄、红汤牛油、菌菇等多种常规锅底的基础上,专门为重庆人私人订制了一种“双椒锅底”.开业当天,人气爆满,番茄锅和双椒锅成为最受欢迎的两种锅底,总计销售300份,销售总额为9800元.其中双椒锅的销售单价是42元,番茄锅的销售单价为28元.(1)求开业当天番茄锅销售数量;(2)试营业一段时间后,商家发现番茄锅和双椒锅的日均销量之比为3:2.为了庆祝国庆,回馈广大顾客,海底捞在国庆期间推出了优惠活动,在原有售价的基础上将番茄锅降价a%,双椒锅降价a%进行销售.10月1日当天,番茄锅的销量比日均销量增加了a%,而双椒锅的销量比日均销量增加了2a%,结果当天这两种锅底的销售总额比日均销售总额多了a%,求a的值.25.(10分)如图,在平行四边形ABCD中,连接AC,∠BAC=90°,AB=AC,点E是边BC上一点,连接DE,交AC于点F,∠ADE=30°.(1)如图1,若AF=2,求BC的长;(2)如图2,过点A作AG⊥DE于点H,交BC于点G,点O是AC中点,连接GO并延长交AD于点M.求证:AG+CG=DM.四.解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)在平面直角坐标系中,抛物线y=﹣x+6与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)如图1,点P为直线BC上方抛物线上一动点,过点P作PH∥y轴,交直线BC于点H,过点P作PQ⊥BC于点Q,当PQ﹣PH最大时,点C关于x轴的对称点为点D,点M为直线BC上一动点,点N为y轴上一动点,连接PM、MN,求PM+MN+ND的最小值;(2)如图2,连接AC,将△OAC绕着点O顺时针旋转,记旋转过程中的△OAC为△OA'C',点A的对应点为点A',点C的对应点为点C'.当点A'刚好落在线段AC上时,将△OA'C'沿着直线BC平移,在平移过程中,直线OC'与抛物线对称轴交于点E,与x轴交于点F,设点R是平面内任意一点,是否存在点R,使得以B、E、F、R 为顶点的四边形是菱形?若存在,请直接写出点R的坐标;若不存在,请说明理由.2019-2020学年重庆一中九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【解答】解:比﹣2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有A符合.故选:A.2.【解答】解:此几何体的左视图有3列,左边一列有2个正方形,中间有1个正方形,右边一列有1个正方形,故选:C.3.【解答】解:设△DEF的周长为x,∵△ABC∽△DEF,相似比为3:1,∴=3,即=3,解得,x=2,故选:C.4.【解答】解:A、菱形的对角线不一定相等,本选项说法错误;B、矩形的对角线不等于互相垂直,本选项说法错误;C、平行四边形的对角线互相平分但不一定相等,本选项说法错误;D、正方形的对角线相等且互相垂直平分,本选项说法正确;故选:D.5.【解答】解:==2+,∵,∴,∴的值应在5和6之间.故选:C.6.【解答】解:设每枚黄金重x两,每枚白银重y两,依题意,得:.故选:C.7.【解答】解:A、当a=3,b=2时,y===1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y===,不符合题意.故选:A.8.【解答】解:∵抛物线开口向下,∴a<0,所以A选项错误;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,所以B选项错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以C选项错误;∵x=﹣2时,y<0,∴4a﹣2b+c<0,把b=﹣2a代入得8a+c<0,所以D选项正确.故选:D.9.【解答】解:连接BD,设C(0,m),则A(0,2m),∴AC=m,∵菱形ABCD的面积=AC•BD=3,∴BD=,∵菱形ABCD的对角线AC、BD互相垂直且互相平分,∴B(,m),∵反比例函数y=(k≠0)经过顶点B,∴k=•=,故选:D.10.【解答】解:作CG⊥DE交ED的延长线于G,延长AB交ED的延长线于H,则四边形BHGC为矩形,∴BH=CG,BC=HG,设CG=x米,∵斜坡CD的坡度为i=1:0.75,∴DG=3x,由勾股定理得,CD2=CG2+DG2,即302=(4x)2+(3x)2,解得,x=6,∴CG=24,DG=18,在Rt△ABC中,tan∠ACB=,∴BC=≈AB,在Rt△AHE中,tan∠AEH=,∴≈0.9,解得,AB≈46.4,故选:B.11.【解答】解:解不等式,得x≤1,解不等式x﹣6≤a﹣x,得,∵不等式组的解集为x≤1,∴,解得a≥﹣4,解关于y的分式方程,,∵分式方程的解为非正数,∴,解得a≤﹣1且a≠﹣3,∴所有满足条件的整数a的值有:﹣4,﹣2,﹣1,∴符合条件的所有整数a的和为﹣7.故选:C.12.【解答】解:如图,过点A作AF⊥BC,B'H⊥BC,则B'H∥AF,∵AB=AC,AF⊥BC,∴BF=CF=3,∴AF===6,∵AB'=2B'C,∴AC=3B'C,∵AF∥B'H,∴==,∴CH=1,B'H=2,∴BH=5,∵将△BDE沿DE翻折,∴BE=B'E,∵B'E2=B'H2+EH2,∴BE2=4+(5﹣BE)2,∴BE=故选:D.二.填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案直接填在答题卡中对应的横线上. 13.【解答】解:原式=4﹣1=3,故答案为:314.【解答】解:将108000用科学记数法表示为:1.08×105.故答案为:1.08×105.15.【解答】解:利用列表法可以得出所有可能的结果:P(两名同学是一男一女)==,16.【解答】解:二次函数y=﹣x2+2x+3的对称轴为x=1∵a=﹣1<0∴二次函数的值,在x=1左侧为增加,在x=1右侧减小,∵1<2<4,∴点A、点B均在对称轴的右侧,∴y1>y2故答案为:>.17.【解答】解:设甲的速度a千米/时,乙的速度b千米/时,由图象可知,甲,乙第一次相遇是甲出发3.5小时时,乙到达B地是甲出发6.5小时时,∴解得:∴甲的速度40千米/时,乙的速度80千米/时,∴A、B两地距离=80×4.5=360千米,∴从B地返回到相遇时间==小时,∴当乙车第二次与甲车相遇时,甲车距离B地=120﹣40×=90千米,故答案为:90.18.【解答】解:设A礼盒成本价格a元,根据题意,得96﹣a=20%a,解得a=80,∵A礼盒装有2个福字饼,2个禄字饼,∴2个福字饼和2个禄字饼的成本价格为80元,∴1个福字饼和1个禄字饼的成本价格为40元,设个福字饼成本价x元,1个禄字饼成本价(40﹣x)元,则1个寿字饼成本价为(40﹣x)元,A种礼盒m袋,B种礼盒n袋,根据题意,得m+n=7880m+n[x+2(40﹣x)+3×(40﹣x)]+500=80m+n[(40﹣x+2x+3×(40﹣x)]∴xn=20n+250设A、B两种礼盒实际成本为w元,则有w=80m+xn+2n(40﹣x)+n×(40﹣x)=80(m+n)﹣420=80×78﹣420=5820.故答案为5820.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.【解答】解:(1)(x+1)2﹣x(1+x)=(x+1)[(x+1)﹣x]=(x+1)(x+1﹣x)=(x+1)×1=x+1;(2)(1﹣)÷===.20.【解答】(1)解:∵AB=AC,∴∠B=∠C=55°,∴∠GAF=∠B+∠C=110°,∵AG=AF,∴∠AFG=(180°﹣110°)=35°.(2)证明:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°∴∠BAD=∠CAD=90°﹣55°=35°,∴∠DAC=∠AFG,∴AD∥FG,∴GE⊥BC.21.【解答】解:(1)7÷20=35%,1﹣35%﹣45%﹣10%=10%,因此a=10,男生体考成绩出现次数最多的是46分,因此众数为46分,故b=46,女生A组有9人,处在第10、11位的两个数的平均数为(45+46)÷2=45.5,因此c=45.5,答:a、b、c的值分别为:10,46,45.5.(2)女生的成绩较好,理由:女生的平均数、众数都比男生好.(3)2400×=960人,答:该校初三年级2400名学生的成绩中,等级为A的有960人.22.【解答】解:(1)由题意:,解得,∴函数解析式为y=x3﹣x+2.故答案为y=x3﹣x+2.(2)函数图象如图所示:(3)①观察图象可知:函数图象关于(0,2)成中心对称.故答案为(0,﹣2).②观察图象可知:当﹣1<x<1时,y随着x的增大而减小.③观察图象可知:若直线y=c与该图象有3个交点,c的取值范围为0<c<4.23.【解答】解:(1)∵200以内的所有“梦想数”,∴a=1,∴符合条件的“梦想数”有106,117,128,139;(2)∵m能被5整除,∴c=0或c=5,当c=0时,a﹣b=7,当c=5时,a﹣b=2,∵m能被3整除,∴a+b+c是3的倍数,当c=0时,a+b是3的倍数,∴a+b=3或a+b=6或a+b=9或a+b=12或a+b=15或a+b=18;当c=5时,a+b+5是3的倍数,∴a+b=1或a+b=4或a+b=7或a+b=10或a+b=13或a+b=16;①当c=0时,a=7+b,则a+b=7+2b,∴a=8,b=1;②当c=5时,a=b+2,则a+b=2+2b,∴a=3,b=1或a=6,b=4或a=9,b=7;∴符合条件的“梦想数”m有810,315,645,975.24.【解答】解:(1)设开业当天番茄锅销售数量为x份,则双椒锅的销售数量为(300﹣x)份,由题意得:28x+42(300﹣x)=9800解得x=200答:开业当天番茄锅销售数量为200份.(2)∵番茄锅和双椒锅的日均销量之比为3:2∴设番茄锅和双椒锅的日均销量分别为3m和2m根据题意得:28(1﹣a%)×3m(1+a%)+42(1﹣a%)×2m×(1+2a%)=(28×3m+42×2m)×(1+a%)化简得:(1﹣a%)(1+a%)+(1﹣a%)(1+2a%)=2(1+a%)设a%=t,则有:(1﹣t)(1+t)+(1﹣t)(1+2t)=2(1+t)∴1+t﹣﹣+1+2t﹣t﹣2t2=2+∴t﹣=0∴t=0(舍)或t=40%∴a=40.25.【解答】(1)解:如图1中,作FH⊥AD于H.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB=45°,∵AF=2,∴AH=HF=,∵∠FDH=30°,∴DH=FH=,∴BC=AD=+.(2)证明:如图2中,在BC上取一点N,使得∠BAN=∠CAG.∵AM∥CG,∴∠MAO=∠GCO,∵AO=OC,∠AOM,∠COG,∴△AOM≌△COG(ASA),∴AM=CG,∵AD=BC,∴DM=BG,∵AG⊥DE,∴∠AHD=90°,∵∠ADE=30°,∴∠DAH=60°,∵∠DAC=45°,∴∠CAG=∠BAN=15°,∴∠NAG=60°,∵AB=AC,∠BAN=∠CAG,∠B=∠ACG=45°,∴△ABN≌△ACG(ASA),∴AN=AG,CG=BN,∴△ANG是等边三角形,∴AG=GN,∴AG+CG=GN+BN=BG=DM.四.解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.【解答】解:(1)抛物线y=﹣x+6与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,则点A、B、C的坐标分别为:(﹣2,0)、(8,0)、(0,6),由点B、C的坐标得直线BC的表达式为:y=﹣x+6,∠HPQ=∠OBC,则tan∠HPQ=tan∠OBC==tanα,则sinα=,cos,PQ﹣PH=PH sinα﹣PH=PH,而PH=y=﹣x+6+x﹣6=﹣x2+3x,当x=4时,PH最大,即PQ﹣PH最大,此时点P(4,3);过点D作直线DH∥BC,则∠NDH=∠OBC,sin∠OCB=cos∠OBC=cosα=,过点P作PH⊥DH于点H,则此时,PM+MN+ND的最小,则HD=DN sin∠NDH=DN cosα=,则PM+MN+ND=PM+MN+HN=PH,即此时PM+MN+ND的最小,直线PH⊥HD,则直线PH表达式中的k值为:,由k值和点P的坐标得:直线PH的表达式为:y=x,故点N(0,0),HN=ND cosα=6×=,PN=PO=5,PH=5+=,即PM+MN+ND的最小值为:;(2)OA=OA′=2,过点A′作A′H⊥x轴于点H,tan∠AAO==3=tanβ,设AH=x,则A′H=3x,OH=2﹣x,由勾股定理得:22=(3x)2+(2﹣x)2,解得:x=,故点A′(﹣,),则直线OA′的表达式为:y=﹣x,OA′⊥C′O,则直线OC′的表达式为:y=x,设直线OC′向右平移了m个单位,则直线OC′的表达式为:y=(x﹣m),抛物线的对称轴为:x=3,则点F(m,0),点E(3,4﹣m),而点B(8,0);①当BF是边时,则BF=ER=8﹣m,则点R(3+8﹣m,4﹣m),由BR=FR得:(8﹣m)2=(3﹣m)2+(4﹣m)2,解得:m=﹣或,故点R(,10)或(,﹣);②当BF为对角线时,则点R(3,m﹣4),由FR=BR得:(m﹣3)2+(m﹣4)2=52+(m﹣4)2,解得:m=8(舍去)或﹣2,故点R(3,﹣);综上,点R的坐标为:(,10)或(,﹣)或(3,﹣).。

重庆市重庆一中初2021级九年级数学上学期期中试题(1)

重庆市重庆一中初2021级九年级数学上学期期中试题(1)

重庆市重庆一中初2021级九年级数学上学期期中试题参考公式:抛物线()02≠++=a c bx ax y 的极点坐标为)44,2(2a b ac a b --,对称轴为ab x 2-=. 一、选择题:(本大题共12个小题,每题4分,共48分) 题号 12 3 4 5 6 7 8 9 10 11 12 答案1.45tan 的值为( ) A .21 B .22 C .1 D .232.以下立体图形中,主视图是三角形的立体图形是( )A .B .C .D .3.计算32x x ⋅的结果是( )A .5xB .6xC .7xD .8x 4.以下四种调查中,适合普查的是( )A .登飞机前,对旅客进行平安检查B .估量某水库中每条鱼的平均质量C .了解重庆市九年级学生的视力状况D .了解中小学生的要紧娱乐方式 5.假设1-a 成心义,那么a 的取值范围是( ) A .1-≥a B .1>a C .1≥a D .1≠a6.如图,在△ABC 中,点D 在边AB 上,BD =2AD ,DE ∥BC 交AC 于点E ,假设1=∆ADE S ,那么ABC S ∆为( ) A .3 B .4 C .8 D .9 7.已知反比例函数图象通过点(2,-2),(-1,n ),那么n 等于( ) A .3 B .4 C .-3 D .-48.已知点(-2,1y ),(-1,2y ),(3,3y )在函数12+=x y 的图象上,那么1y ,2y ,3y 的大小关系是( ) A .321y y y >> B .213y y y >> C .123y y y >> D .312y y y >>6题图12题图14题图16题图9.抛物线()02≠++=a c bx ax y 上部份点的横坐标x ,纵坐标y 的对应值如下表: 从上表可知,以下说法错误的选项是( ) A .抛物线开口向上B .抛物线与x 轴有两个交点C .抛物线的对称轴是直线1=xD .函数()02≠++=a c bx ax y 的最小值为47-10.以下图是某同窗在沙滩上用石子摆成的小屋子,观看图形的转变规律,第10个小屋子需要 的石子数量为( )A .130B .140C .150D .16011.已知一次函数k kx y +-=的图象如下左图所示,那么二次函数k x kx y +--=22的图象大致是( ).A .B .C .D . 12.如图,A ,B 是反比例函数xky =图象上两点,AC ⊥y 轴于C ,BD ⊥x 轴 于D ,AC =BD =51OC ,9=ABDC S 四边形,那么k 值为( ) A .8 B .10 C .12 D .16. 二、填空题:(本大题共6个小题,每题4分,共24分) 题号 13 14 15 16 17 18 答案13.方程组⎩⎨⎧=-=+20y x y x 的解是 .14.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,AC =6,那么OD = .15.为了测量旗杆的高度,咱们取一竹竿放在阳光下,已知1米长的竹竿影长为2米,同一时刻旗杆的影长为20米,那么旗杆高 米.16.二次函数()02≠++=a c bx ax y 的图象如下图,那么以下结论:①0<c ②042>-ac b ③02=+b a ④当3>x 时,0>y .x … -1 0 2 … y…-147- 47- …35%22题图18题图正确的选项是 .17.从-1,0,1,2,3这五个数中,随机掏出一个数,记为a ,那么使关于x 的反比例函数xa y 3-=的图象在二,四象限,且使不等式组⎩⎨⎧>+≤+122x a ax 无解的概率为 .18.如图,等腰Rt △ABC 中,O 为斜边AC 的中点,∠CAB 的平分线 别离交BO ,BC 于点E ,F ,BP ⊥AF 于H ,PC ⊥BC ,AE =1, PG = .三、解答题:(本大题共2个小题,每题7分,共14分) 19.如图,在△ABC 中,∠ABC =90°,21tan =A ,D 是边AB 上一点,∠BDC =45°,AD =4, 求BC 的长.20.已知抛物线极点坐标为(1,3),且过点A (2,1). (1)求抛物线解析式;(2)假设抛物线与x 轴两交点别离为B ,C ,求线段BC 的长度. 四、解答题:(本大题共4个小题,每题10分,共40分)21.先化简,再求值:1211222+--÷⎪⎭⎫ ⎝⎛---x x x x x x x x,其中x 知足分式方程0122=--x x .22.为了解我校初三学生体育达标情形,现对初三部份同窗进行了跳绳,立定跳远,实心球, 三项体育测试,按A (合格),B (良好),C (优秀),D (总分值)进行统计,并依照测试的结果绘制了如下两幅不完整的统计图,请你结合所给信息解答以下问题:(1)本次共调查了 名学生,请补全折线统计图;(2)我校初三年级有2200名学生,依照这次统计数据,估量全年级有多少同窗取得总分值;(3)在同意测试的学生中,“优秀”中有1名是女生,现从取得“优秀”的学生当选出两名学生交流体会,请用画树状图或列表的方式求出恰好选中两名男生的概率.23.某商场要经营一种新上市的文具,进价为20元,试营销时期发觉:当销售单价是25元时,天天的销售量为250件,销售单价每上涨1元,天天的销售量就减少10件.19题图20题图(1)求销售单价x (元)为多少时,该文具天天的销售利润W (元)最大;(2)通过试营销后,商场就按(1)中单价销售.为了回馈广大顾客,同时提高该文具知名度,商场营销部决定在11月11日(双十一)当天开展降价促销活动,假设每件文具降价m %,那么可多售出m 2%件文具,结果当天销售额为5250元,求m 的值.24.如图,在△ABC 中,AB =AC ,EF 为△ABC 的中位线,点G 为EF 的中点,连接BG ,CG . (1)求证:BG=CG ;(2)当∠BGC =90°时,过点B 作BD ⊥AC ,交GC 于H ,连接HF , 求证:BH=FH+CF .五、解答题:(本大题2个小题,每题12分,共24分)25.如图,已知抛物线()032≠-+=a bx ax y 与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,-3).(1)求抛物线解析式;(2)点M 是(1)中抛物线上一个动点,且位于直线AC 的上方,试求△ACM 的最大面积和现在点M 的坐标;(3)抛物线上是不是存在点P ,使得△PAC 是以AC 为直角边的直角三角形?若是存在,求出P 点的坐标;若是不存在,请说明理由.26.如图,Rt △EFG 中,∠E =90°,EG =415,53sin =F ,□ABCD 中,AB =7,AC =10,H 为AB 边上一点,AH =5,AC ∥EF ,斜边FG 与边AB 在同一直线上,Rt △EFG 从图①(点G 与点A 重合)的位置动身,以每秒1个单位的速度沿射线AB 方向匀速移动,当F 与H 重合时,停止运动.(1)求BC 的长;(2) 设△EFG 在运动中与△ACH 重叠的部份面积为S ,请直接写出S 与运动时刻t (秒) 之间的函数关系式,并写出t 的取值范围;(3)如图②,当E 在AC 上时,将△FGE 绕点E 顺时针旋转α(1800<<α),记旋转中的△FGE 为△E G F '',在旋转进程中,设直线''G F 与直线AC 交于M ,与直线AB 交于点N ,是不是存在如此的M 、N 两点,25题图24题图使△AMN 为等腰三角形?假设存在,求出现在EM 的值;假设不存在,请说明理由.重庆一中初2021级14—15学年度上期半期考试 数学答案2021.11一、选择题:(本大题共12个小题,每题4分,共48分)二、填空题:(本大题共6个小题,每题4分,共24分)三、解答题:(本大题共2个小题,每题7分,共14分) 19.解:∵∠ABC =90° ∠BDC =45° ∴BD =BC又∵在Rt △ABC 中 21tan ==AB BC A ∴214=+BC BC ∴BC =4 ……7分20.解:(1)设抛物线解析式为()312+-=x a y (0≠a ) ∵(2,1)在抛物线上∴()31212+-=a ∴2-=a∴()3122+--=x y ……3分(2)()03122=+--x∴ 621=-=x x BC ……7分四、解答题:(本大题共4个小题,每题10分,共40分)21.解:原式=()()()()()111112--⋅-+-+x x x x x x x x =()()()()111122--⋅-+x x x x x x=1+x x……5分 0122=--xx 2-=x ……7分经查验,2-=x 为原分式方程的根 ……8分 ∴原式=2122=+-- ……10分22.解:(1)20 右图 ……2分 (2)440人 ……4分 (3)总共有6种等可能的结果,知足条件的有2分种,∴()31=选中两名男生P ……1023.解:(1销售量=()x x 105002510250-=--∴当35=x 时,元最大2250=W ……5分 (2)原先销售量15035050010500=-=-=x 35(1-m %)150(1+2m %)=5250 设m %=a ∴()()1211=+-a a022=-a a ∴01=a 212=a ∵要降价销售 ∴21=a ∴50=m ……10分 24.证明:(1)∵AB =AC ∴∠ABC =∠ACB 又∵EF 为中位线 ∴BE =21AB =CF EF ∥BC ∴∠1+∠ABC =∠EFC +∠ACB =180° ∴∠1=∠EFC 又∵G 为EF 的中点 ∴EG =GF ∴在△BEG 和△CFG 中∴△BEG ≌△CFG ∴BG =CG ……4分一 二 女 男1男2女(女,男1) (女,男2) 男1 (男1,女)(男1,男2) 男2(男2,女) (男2,男1)(2)延长BG 交AC 于M∵∠BGC =90° BD ⊥AC ∴∠2=90°-∠GHB =90°-∠DHC =∠3 在△BGH 和CGM 中∴△BGH ≌CGM ∴BH =CM GH =GM又∵EF ∥BC ∴∠4=∠GCB =45° ∴∠5=90°-∠4=45°=∠4 在△GMF 和△GHF 中 ∴△GMF ≌△GHF ∴MF =HF∴BH=CM=MF+FC =FH+FC ……10分25.解:(1)∵抛物线32-+=bx ax y 过点(1,0),(4,-3)∴⎩⎨⎧-+=--+=3416330b a b a 解得:⎩⎨⎧=-=41b a∴342-+-=x x y ……4分(2)过M 作MN ⊥x 轴交AC 于点N设直线AC 为()0≠+=k b kx y ∵A (1,0) C (4,-3)在直线上∴⎩⎨⎧+=-+=bk bk 430 ∴⎩⎨⎧=-=11b k 1+-=x y AC∵M 在抛物线342-+-=x x y 上 N 在直线AC 上∴设M (m ,342-+-m m ), N (m ,1+-m )又∵M 在直线AC 的上方∴MN =N M y y -=()1342+---+-m m m =452-+-m m∴MNC MNA MAC S S S ∆∆∆+==()A C x x MN -⋅⋅21=()453212-+-⨯m m =82725232+⎪⎭⎫ ⎝⎛--m∴当25=m 时,827=最大S 现在M (25,43) ……8分(3)1+-=x y AC 中,当0=x 时,1=y ∴OD =OA =1 ∴∠ADO =45°当∠PAC =90°时:过1P 作F P 1⊥x 轴 ∠AF P 1=45° ∴设1P (1+n ,n )∴()()31412-+++-=n n n解得01=n (舍)12=n ∴1P (2,1)当∠PCA =90°时:()82=-=C D y y DE ∴E (0,-7)设()0222≠+=k b x k y CE ∴⎩⎨⎧=-+=-222743b b k 解得⎩⎨⎧-==7122b k ∴7-=x y CE∴⎩⎨⎧-+-=-=3472x x y x y ∴41=x (舍) 12-=x ∴2P (-1,-8) ∴1P (2,1),2P (-1,-8) ……12分 26.解:(1)过C 作CI ⊥直线AB ∵AC ∥EF ∴∠CAB =∠F 在Rt △ACI 中 CAB ∠sin =F sin =AC CI =53 ∴61053=⨯=CI 在Rt △ACI 中 822=-=IC AC AI ∴BI =AI -7=1在Rt △BCI 中 3722=+=BI CI BC ……3分(2)()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎭⎫ ⎝⎛≤<+-⎪⎭⎫ ⎝⎛≤<-+-⎪⎭⎫⎝⎛≤<-+-≤≤=44543516121522753435425854524255104254502562222t t t t t t t t t t t S ……8分(3)过E 作EK ⊥AB如图1:当MA =MN 时 ∠1=∠2 又∵∠'F =∠1∴∠3=∠1=∠'F ∴ME MF ='在Rt △M EK '中,()2'224EK EM EM +-= ∴825=EM ……9分 如图2:当AM =AN 时 ∵∠EFK =∠'F∴∠1=∠2=∠3=∠EM F '∴E F M F ''==5∴Rt △M EK '中,2'2'2M K EK EM += ∴10=EM ……10分如图3:当AM =AN 时 ∠1=∠2 ∵∠EFK =∠1+∠2=∠E F K ''=∠3+∠2 ∴∠3=∠2 5''==M F E F∴Rt △M EK '中103=EM ……11分如图4:当NM =NA 时 ∠1=∠2=∠EFK =∠3 ∴ME E F ='∴M 与F 重合 ……12分∴825=EM ,10,103。

重庆市重点中学九年级上学期期中考试数学试卷及答案(共三套)

重庆市重点中学九年级上学期期中考试数学试卷及答案(共三套)

重庆市重点中学九年级上学期期中考试数学试卷(一)时间:120分钟总分:150分一.选择题(每题4分,共48分)1.实数﹣5,0,﹣,3中最大的数是A.﹣5 B.0 C.﹣ D.32.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠23.如图图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为A.20° B.40° C.60° D.80°5.计算(﹣2x2y)2的结果是()A.﹣2x4y2 B.4x4y2 C.﹣4x2y D.4x4y6.估计+1的值应在()(第4题图)A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间7.将抛物线y=x2向上平移3个单位后所得的解析式为()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)28.下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑥个图形中正方形的个数为()A.50 B.48 C.43 D.409.在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A. B. C. D.10.已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y 1),N(﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y211.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度(第11题图) 约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.8.1米 B.17.2米C.19.7米 D.25.5米12.若整数a使关于x的不等式组无解,且使关于x的分式方程=﹣2有整数解,那么所有满足条件的a值的和是()A.﹣20 B.﹣19 C.﹣15 D.﹣13二.填空题(每题4分,共16分)13.我国参加今年北京田径世锦赛的志愿者超过3500000人,把3500000用科学记数法表示为.14.已知二次函数y=(m﹣2)x2的图象开口向下,则m的取值范围是.15.如图是某市1月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择1月1日至1月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量是重度污染的概率是.(第15题)(第16题)16.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)17.甲、乙两车在依次连通A、B、C三地的公路上行驶,甲车从B地出发匀速向C地行驶,同时乙车人B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头按原速向C地行驶.在两车行驶的过程中,甲、乙两车与B地的距离y (千米)与行驶时间x(小时)之间的函数图象如图所示,当甲、乙两车相遇时,所用时间为小时.(第17题)(第18题)18.如图,正方形ABCD的边长为3,延长CB到点M,使BM=1,连接AM,过点B 作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为.三.解答题(每题8分,共16分)19.如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.(第19题)20.有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议“每人少开一天车,共建绿色家园”,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,扇形统计图中“骑自行车”所在扇形的圆心角度数是度,请补全条形统计图;(2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.(第20题)四、解答题(每题10分,共40分)21.化简:(1)(x+2y)2﹣(x+2y)(x﹣2y);(2)÷(+﹣1)22.如图,已知一次函数y1=k1x+6与反比例函数y2=相交于A、B,与x轴交于点C,过点B作BD⊥x轴于点D,已知sin∠DBC=,OC:CD=3:1.(1)求y1和y2的解析式;(2)连接OA,OB,求△AOB的面积.23.服装厂准备生产某种样式的服装40000套,分黑色和彩色两种.(1)若生产黑色服装的套数不多于彩色服装套数的,问最多生产多少套黑色服装?(2)目前工厂有100名工人,平均每人生产400套,由于展品会上此种样式服装大受欢迎,工厂计划增加产量;由于条件发生变化,人均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则工人需增加2.4a%,求a的值.24.如图,在正方形ABCD的对角线AC上取点E,使得∠CDE=15°,连接BE.延长BE到F,连接CF,使得CF=BC.(1)求证:DE=BE;(2)求证:EF=CE+DE.五、解答题(25题10分,26题12分,共22分)25.任意写一个个位数字不为零的四位正整数A,将该正整数A的各位数字顺序颠倒过来,得到四位正整数B,则称A和B为一对四位回文数.例如A=2016,B=6102,则A和B就是一对四位回文数,现将A的回文数B从左往右,依次顺取三个数字组成一个新数,最后不足三个数字时,将开头的一个数字或两个数字顺次接到末尾,在组成三位新数时,如遇最高位数字为零,则去掉最高位数字,由剩下的两个或一个数字组成新数,将得到的所有新数求和,把这个和称为A的回文数B作三位数的和.例如将6102依次顺取三个数字组成的新数分别为:610,102,26,261,它们的和为:610+102+26+261=999,把999称为2016的回文数作三位数的和.(1)请直接写出一对四位回文数:猜想一个四位正整数的回文数作三位数的和能否被111整除?并说明理由;(2)已知一个四位正整数(千位数字为1,百位数字为x且0≤x≤9,十位数字为1,个位数字为y且0≤y≤9)的回文数作三位数的和能被27整除,请求出x与y的数量关系.26.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A (﹣1,0),且tan∠ABC=(1)求抛物线的解折式.(2)在直线BC下方抛物线上一点P,当四边形OCPB的面积取得最大值时,求此时点P的坐标.(3)在y轴的左侧抛物线上有一点M,满足∠MBA=∠ABC,若点N是直线BC上一点,当△MNB为等腰三角形时,求点N的坐标.数学试题答案一.选择题(共12小题)1.D.2.D.3.D.4.D.5.B.6.B.7.A.8.C.9.C.10.B.11.A.12.D 二.填空题(共6小题)13. 3.5×106. 14.m<2 . 15..16.π+2.. 17.10 小时. 18..17解:由题意可得,甲车的速度为:600÷12=50千米/时,乙车的速度为:(200×2+600)÷(11﹣1)=100千米/时,乙车从B地到A地然后回到B地用的时间为:200×2÷100+1=5(小时),设甲乙两车相遇用的时间为x小时,50x=100(x﹣5),解得,x=10,18题详解解:∵AB=3,BM=1,∴AM=,∵∠ABM=90°,BN⊥AM,∴△ABN∽△BNM∽△AMB,∴AB2=AN×AM,BM2=MN×AM,∴AN=,MN=,∵AB=3,CD=3,∴AC=,∴A O=,∵,,∴,且∠CAM=∠NAO∴△AON∽△AMC,∴,∴ON=.三.解答题(共8小题)19.解:∵AB∥CD,∠1=50°,∴∠CFE=∠1=50°. --------------2分∵∠CFE+∠EFD=180°,∴∠EFD=180°﹣∠CEF=130°.---------4分∵FG平分∠EFD,∴∠DFG=∠EFD=65°.--------------6分∵AB∥CD,∴∠BGF+∠DFG=180°,∴∠BGF=180°﹣∠DFG=180°﹣65°=115°.-----------8分20.解:(1)本次接受调查的总人数为160÷40%=400(人),扇形统计图中“骑自行车”所在扇形的圆心角度数为×360°=54°,--2分乘私家车的人数=400﹣60﹣160﹣80=100(人),补全条形统计图为:----------------4分(2)画树状图为:共有20种等可能的结果数,其中选出1名男生和1名女生的结果数为12种,---------6分所以恰好选出1名男生和1名女生的概率==. --------8分21.化简:(1)(x+2y)2﹣(x+2y)(x﹣2y);(2)÷(+﹣1)解:(1)原式=x2+4xy+4y2﹣(x2﹣4y2)-----------2分=x2+4xy+4y2﹣x2+4y2 ----- ---------------------3分=4xy+8y2; ----------------5分(2)原式=÷--------------7分=•--------------------------9分=.-----------------------------10分22.解:(1)y1=k1x+6与y轴的交点E的坐标为(0,6),∴OE=6,-----------------------------1分∵BD⊥x轴,∴OE∥BD,∴==,∴BD=2,------------------------2分∵sin∠DBC=,∴设CD=x,则BC=5x,由勾股定理得,(5x)2=(x)2+4,解得,x=,则CD=x=1,则BC=5x=,∴点B的坐标为(4,﹣2),----------------4分﹣2=k1×4+6,解得,k1=﹣2,则y1=﹣2x+6,y2=﹣;------------------6分(2),解得,,,-----------------8分则△AOB的面积=×3×8+3×2=15.-------------------10分23.解:(1)设生产黑色服装x套,则彩色服装为(40000﹣x)套-------1分由题意得:x≤(40000﹣x),---------------------------3分解得x≤8000.--------------------------------------4分故最多生产黑色服装8000套.--------------------------------5分(2)40000(1+10%)=400(1﹣1.25a%)100(1+2.4a%),--------8分设t=a% 化简得:60t2﹣23t+2=0…(8分)解得t1=(舍去),t2=.a%=, a=25.------------------------9分答:a的值是25.-----------------------10分24.证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=45°.∵在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),---------3分∴BE=DE.-------------------------4分(2)在EF上取一点G,使EG=EC,连结CG,-----------5分∵△ABE≌△ADE,∴∠ABE=∠ADE.∴∠CBE=∠CDE,∵BC=CF,∴∠CBE=∠F,∵∠CDE=15°,∴∠CBE=15°,∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.-----------7分∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=GCF.∵在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.------------------------------------9分∵EF=EG+GF,∴EF=CE+ED.-------------------------------------10分25.解:(1)一个四位正整数的回文数作三位数的和能否被111整除.例如A=1234和B=4321是一对四位回文数,------------------2分设一个4位数为(A,B,C,D为整数),则这个数的回文数为,则由题知这个回文数作三位数的和为+++=111(A+B+C+D),∵A,B,C,D为整数,∴A+B+C+D为整数,∴一个四位正整数的回文数作三位数的和能被111整除;---------4分(2)正整数的回文数是y1x1,则回文数作三位数的和为:100y+10+x+100+10x+1+100x+10+y+100+10y+1=100x+100y+222=111(x+y+2),----------7分由题意得,x+y+2=9或x+y+2=18,则x+y=7或x+y=16.------------10分26.解:(1)由抛物线y=ax2+bx﹣2可知C的坐标为(0,﹣2),∴OC=2,∵tan∠ABC==∴OB=3,∴B(3,0),------2分∵A(﹣1,0),把A、B的坐标代入y=ax2+bx﹣2得:解得,∴抛物线的解折式为y=x2﹣x﹣2;-----------4分(2)过点P作y轴的平行线与BC交于点Q,与OB交于点E,设P(x,x2﹣x﹣2),-------------------------5分由B(3,0),C(0,﹣2)可求得直线BC的解析式为y=x﹣2.∴Q点的坐标为(x,x﹣2),------------------6分∴S四边形OBPC =S△OBC+S△BPQ+S△CPQ=OB•OC+QP•OE+QP•EB=×3×2+(2x﹣x2)×3=﹣x2+3x+3=﹣(x﹣)2+,∴当x=时,四边形ABPC的面积最大. 此时P点的坐标为(,﹣).-----------8分(3)设直线AM交y轴于D,∵∠MBA=∠ABC,∴OD=OC=2,∴D(0,2),设直线AM的解析式为y=mx+2,代入B(3,0)得0=3m+2,解得m=﹣,∴直线AM的解析式为y=﹣x+2,解得或,∴M(﹣2,),设N(x,x﹣2),∵BM2=(3+2)2+()2,MN2=(x+2)2+(x﹣2﹣)2,BN2=(x﹣3)2+(x﹣2)2,当MB=BN时,N(﹣2,﹣)或(8,);当MB=MN时,则(3+2)2+()2=(x+2)2+(x﹣2﹣)2,整理得13x2﹣28x﹣33=0,解得x1=3,x2=﹣,∴N(﹣,﹣);当BN=MN时,(x+2)2+(x﹣2﹣)2=(x﹣3)2+(x﹣2)2,整理得10x=﹣35,解得x=﹣∴N(﹣,﹣);综上,点N的坐标为(﹣2,﹣)或(8,)或(﹣,﹣)或(﹣,﹣).-------------12分重庆市重点中学九年级上学期期中考试数学试卷(二)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D.的四个答案,其中只有一个是正确的,请将正确答案填写在答题卡上.1.4的倒数是()A.﹣4 B.4 C.﹣D.2.下列交通指示标识中,不是轴对称图形的是()A.B. C.D.3.下列方程中,是关于x的一元二次方程为()A.x2﹣4x+5=0 B.x2+x+1=y C.+8x﹣5=0 D.(x﹣1)2+y2=34.抛物线y=﹣(x+1)2﹣2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)5.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥16.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对7.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1488.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠39.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A.43 B.45 C.51 D.5312.如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.计算:|﹣3|+(﹣1)2﹣= .15.若函数y=x2﹣6x+m的图象与x轴只有一个公共点,则m= .16.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是.17.甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发分钟时,乙追上了甲.18.如图,正方形ABCD的边长为4+2,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.(8分)解方程(1)x2﹣2x=5(2)2(x﹣3)=3x(x﹣3)20.(8分)如图,AB∥CD,BD=CD,∠D=36°,求∠ABC的度数.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.(10分)2016年9月,某手机公司发布了新款智能手机,为了调查某小区业主对该款手机的购买意向,该公司在某小区随机对部分业主进行了问卷调查,规定每人只能从A类(立刻去抢购)、B类(降价后再去买)、C类(犹豫中)、D类(肯定不买)这四类中选一类,并制成了以下两幅不完整的统计图,由图中所给出的信息解答下列问题:(1)扇形统计图中B类对应的百分比为%,请补全条形统计图;(2)若该小区共有4000人,请你估计该小区大约有多少人立刻去抢购该款手机.22.(10分)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD 沿CE折叠后,点B落在AD边的点F上,求DF的长为多少?23.(10分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m 的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.24.(10分)设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2=﹣5,(x2+1)⊕(x﹣1)=(因为x2+1>0)参照上面材料,解答下列问题:(1)2⊕4= ,(﹣2)⊕4= ;(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.五、解答题:(本题共2小题,25题10分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(10分)某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克.若销售价每涨1元,则月销售量减少10千克.(1)要使月销售利润达到最大,销售单价应定为多少元?(2)要使月销售利润不低于8000元,请画出草图结合图象说明销售单价应如何定?26.(12分)如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的解析式;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.2017-2018学年重庆市江北区联盟校九年级(上)期中数学试卷参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D.的四个答案,其中只有一个是正确的,请将正确答案填写在答题卡上.1.D;2.C;3.A;4.D;5.C;6.B;7.B;8.A;9.C;10.A;11.C;12.C;二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.1.1×104; 14.6; 15.9; 16.15; 17.; 18.2;三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.20.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.22.23.24.五、解答题:(本题共2小题,25题10分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.26.;重庆市重点中学九年级上学期期中考试数学试卷(三) 考试时间120分钟 总分 150分一、选择题(4x12分)1、一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D 2、有下列判断:(1)直径是圆的对称轴。

重庆市第一中学校2022-2023学年九年级上学期期中数学试题

重庆市第一中学校2022-2023学年九年级上学期期中数学试题

重庆市第一中学校2022-2023学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....如图,AC BD ∥平分BAC ∠交于点E ,若166∠==().123︒.128︒132︒142︒.一辆汽车行驶的速度(km/h )与时间()之间的变化关系如图所示,下列说法正确的是()A .时间是因变量,速度是自变量C .汽车在38min ~时匀速行驶5.如图,在直角坐标系中,△OAB 的顶点为O 为位似中心,在第三象限内作与△OAB 标()A .(﹣1,﹣1)B .(﹣6.如果m =101-,那么A .0<m <1B .7.端午节又称端阳节,是中华民族重要的传统节日,我国各地都有吃粽子的习俗,某超市以10元每袋的价格购进一批粽子,根据市场调查,售价定为每袋出200袋;若售价每降低1市每天售出此种粽子的利润可达到为()A .(1610)(20080)x x --+B .(16)(20080)1440x x -+=C .(1610)(20080)x x ---=D .(16)(20080)1440x x --=A .955B .49.如图所示,一圆弧形拱门,其中路面拱门的半径为()A .5310.若数a 使关于x 21321353632y y y a y a -≥-⎧⎪⎨-≤-⎪⎩A .1511.如图,在平面直角坐标系中,矩形A .12B .812.有5个正整数1a ,2a ,3a ,4a 探索,找出同时满足以下3个条件的数.①1a ,2a ,3a 是三个连续偶数1(a <丁:5个正整数1a ,2a ,3a ,4a ,5a ,满足上述3个条件,则534a k =+(k 为正整数);戊:5个正整数满足上述3个条件,则1a ,2a ,3a 的平均数与4a ,5a 的平均数之和是10p (p 为正整数);以上结论正确的个数有()个.A .2B .3C .4D .5二、填空题三、解答题2(1)求抛物线顶点B 的坐标和反比例函数的表达式,图象;(2)点()1,C m -在反比例函数ky x=(3)根据函数图象,直接写出不等式21.某风景区准备修一条长6400米步道,(1)求妈妈步行的速度;(2)求明明从C 处到D 处的距离.sin 370.8,cos 370.8,tan 37︒≈︒≈︒23.材料一:如果一个自然数右边的数字总比左边的数字大,我们称它为果一个三位“上升数”满足百位数字与十位数字之和等于个位数字,那么称这个致为全上升数”.例如:A =123,满足=346,满足3<4<6.且3+4≠6材料二:对于一个“完全上升数交换其百位和个位数字得到新数例如:m =123为“完全上升数”(1)判断“上升数168,235是否为(2)若m 是“完全上升数”,且24.如图1,抛物线23y x =-+于点C ,连接,AC BC .(1)如图1,若点D 是AB 中点,过点D 作DE BC ⊥于点E ,4AB AC ==,连接AE ,求线段AE 的长度.(2)如图2,R ,T 是斜边BC 上的三等分点,在ABC 外部取一点H ,使得t R BRH 为等腰直角三角形,其中90BHR ∠=︒,HB HR =,连接HT ,求证:AT HT =.(3)如图3,在ABC 内部有一动点M ,满足45MBC MCB ∠+∠=︒,将ABC 沿AB 翻折至ABF △,取AF 的中点N ,P 为线段FM 上的一动点,连接NP ,将△NPF 沿直线NP 翻折至NPG ,在P 、M 运动的过程中,当MF 取得最小值时,且60FPG ∠=︒,求PMBC的值.(直接写出答案即可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆一中2019初三年级数学上学期期中测试卷
(含答案解析)
重庆一中2019初三年级数学上学期期中测试卷(含答案解析)
1.在,,,这四个数中,最小的数是()
A. B. C. D.
2.计算的结果是()
A. B. C. D.
3.如图,直线AB//CD,直线EF分别交直线AB、CD于
点E、F,EG平分∠AEF交CD于点G,若∠1=36°,
则∠2的大小是()
A.72°
B.67°
C.70°
D.68°
4.在函数中,自变量的取值范围是()
A. B. C. D.
5.若点A( , )在正比例函数的图像上,则的值是()
A. B. C.1 D.
6.如图,AB与⊙O相切于点A,AC为⊙O的直径,点D在圆上,且满足∠BAD=40°,则
∠ACD的大小是()
A.50°
B.45°
C.40°
D.42°
7.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,
点E为AB中点,连
接OE,则OE的长是()
A.5
B.
C.4
D.
8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是()
成绩(分) 39 42 44 45 48 50
人数 1 2 1 2 1 3
A.这10名同学的平均成绩为45.5
B.这10名同学成绩的中位数是45
C.这10名同学成绩的众数为50
D.这10名同学成绩的极差为2
9.分式方程的解是()
A. B. C. D.
10.上周周末,小江进行了一次“惊心动魄”的自行车之旅,小江匀速行驶一段路程后,发
现了一处“世外桃源”,便停车享受美景,当小江准备拿手机拍照留影时,发现手机掉
了,于是小江沿原路原速返回,在路途中幸运地找到了手机(停车捡手机的时间忽略不
计),再掉头沿原计划路线以比原速大的速度行驶,则小江离出发点的距离与时间的
函数关系的大致图象是()
11.如图,下列一束束“鲜花”都是由一定数量形状相同且边长为1的菱形按照一定规律组
成,其中第①个图形含边长为1的菱形3个,第②个图形含边长为1的菱形6个,第③
个图形含边长为1的菱形10个,... ...,按此规律,则第⑦个图形中含边长为1的菱形的
个数为()
A.36
B.38
C.34
D.28
12.如图, ABC是等腰直角三角形,∠ACB=90°,点A在
反比例函数的图像上,点B、C都在反比例函数
的图像上,AB// 轴,则点A的坐标为()
A.( )
B.( )
C.( )
D.( )
二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答
案填在答题卡相应位置的横线上.
13.实数的相反数是 .
14.新年第一天,我市大约有13000名市民涌上仙女山、金佛山、巫溪红池坝的滑雪场玩雪.
将13000这个数字用科学记数法表示是 .
15.如图,在□ABCD中,点E是AD的中点,连接CE、BD相交于点F,则 DEF的周长
与 BCF的周长之比 .
16.如图,矩形ABCD的对角线AC、BD相交于点O,AO=AD=2,以A为圆心,AO为半径
作弧,则图中阴影部分的面积为 .
17.从-1,0,1,2,3这五个数中,随机抽取一个数记为,则使关于的不等式组
有解,并且使函数与轴有交点的概率为 .
18.如图,在中,2AB=3AC,AD为 BAC的角平分线,点H在线段AC上,且CH=2AH,E为BC延长线上的一点,连接EH
并延长交AD于点G,使EG=ED,过点E作 EF AD于点F,则= .
三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算
过程或推理步骤,请将解答书写在答题卡中对应的位置上.
19.计算:
20.今年四月份将举行体考,重庆一中为了解初三学生目前体育训练成果,于1月16日举行
了体育模拟考试,现从参加了考试的同学中随机抽取了50
名了解他们的跳绳成绩,并根
据成绩等级(优:20分;良:18-19分;中:小于18分)绘制出如下两幅不完整的统计
图.
(1)请补全条形统计图;
(2)在此次考试中,被抽取的获优秀成绩的有3人来自同一班级,这3人中有2男1女,该班班主任为让班上其他同学在练习跳绳的过程中效果更好,现打算从这3人中随机抽取2人到前排示范,请用画树状图或列表的方法求出所选同学是一男一女的概率.
四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算
过程或推理步骤,请将解答书写在答题卡中对应的位置上.
21.先化简,再求值:,其中是方程的解.
22.如图,在笔直的公路上有一检查站A,在观测点B的南偏西53° 方向,且与观测点B的
距离为7.5千米.一辆自行车从位于点B南偏西76°方向的点C处,沿公路自西向东行驶,
2小时后到达检查站A.
(1)求观测点B与公路的距离;
(2)求自行车行驶的平均速度.
(参考数据:,,,,,)
23.重庆一中后勤部门每年都要更新一定数量的书桌和椅子.已知2019年采购的书桌价格为
120元/张,椅子价格为40元/张,总支出费用34000元;2019年采购的书桌价格上涨为
130 元/张,椅子价格保持不变,且采购的书桌和椅子的数量与2019年分别相同,总支出
费用比2019年多2019元.
(1)求2019年采购的书桌和椅子分别是多少张?
(2)与2019年相比,2019年书桌的价格上涨了(其中),椅子的价格上
涨了,但采购的书桌的数量减少了,椅子的数量减少了50张,且2019
年学校桌子和椅子的总支出费用为34720 元,求的值. 24. 如图,在□ABCD中,CE AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,
连接BF交CE于点G.
(1)若,CF= ,求CG的长;
(2)求证:AB=ED+CG
五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.
25.如图,抛物线与轴交于A、B两点(点A在点B的左边),与轴交于C点,点D是抛物线的顶点.
(1)求B、C、D三点的坐标;
(2)连接BC,BD,CD,若点P为抛物线上一动点,设点P的横坐标为m,当
时,求m的值(点P不与点D重合);
(3) 连接AC,将 AOC沿轴正方向平移,设移动距离为,当点 A和点B重合时,停止运动,设运动过程中 AOC与 OBC 重叠部分的面积为S,请直接写出S与之间的函数关系式,并写出相应自变量的取值范围.
26.如图(1),抛物线与轴交于A、B两点,与轴交于点C,直线AC的解析式为,抛物线的对称轴与轴交于点E,点D (,)在
对称轴上.
(1)求此抛物线的解析式;
(2)如图(1),若点M是线段OE上一点(点M不与点O、E 重合),过点M作MN
轴,交抛物线于点N,记点N关于抛物线对称轴的对称点为点F,点P是线段MN
上一点,且满足MN=4MP,连接FN、FP,作QP PF交轴于点Q,且满足PF=PQ,
求点Q的坐标;
(3)如图(2),过点B作BK 轴交直线AC于点K,连接DK、AD,点H是DK的
中点,点G是线段AK上任意一点,将 DGH沿GH边翻折得,求当KG
为何值时,与重叠部分的面积是 DGK面积的 .
重庆一中2019初三年级数学上学期期中测试卷(含答案解析)参考答案
一、选择题:
二.填空题
题号 13 14 15
答案 2019
1:2
题号 16 17 18
答案
三.解答题
20.解:(1)…………………………………………………… 2分
(2)将男生分别标记为,女生标记为

……………………………………………………………………………… 5分
…………………………… ……………………… 7分
22.解:(1)过点作交于
点………………………………1分

………………4分
(2)在,
………………………6分

…………………8分
………………………10分
答:观测点与公路的距离是4.5 ,自行车行驶的平均速度是6 .
23.解:(1)设2019年采购的书桌为张,椅子为张.
解得………… …………4分
(2)…7分
令,则原方程可化简为:
解得 0.2 , 0.8 (舍) ………………………9分
答:2019年采购书桌和椅子分别是200张和250
张. ………………10分
24.解:(1)四边形ABCD是平行四边形
AD//BC
CE AD
BC=CF
在Rt BCG中,
tan
GC=2 ……………4分
(2)延长到点,使得,连接BH ...............5分 (1)
0分
(2)设

,过点作轴,交于点
……………4分
过点作轴,交直线于点
①当是下方抛物线上一点时,………… ………………………………………… ……………6分
……………8分
综上:
(3)
……………12分
25.解:
(2)
又,………4分
设(),则
,解得:
…………7分
(3)
①若翻折后,点在直线上方,记与交于点,连接
,即
,又
都是等腰直角三角形,
,由勾股定理得:
……………9分
第 11 页。

相关文档
最新文档