七个无敌模型——全搞定空间几何的外接球

合集下载

八个有趣模型——搞定空间几何体的外接球与内切球

八个有趣模型——搞定空间几何体的外接球与内切球

八个有趣模型一一搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享•不当之处,敬请大家批评指正•—、有关定义1•球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球2•外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球•3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球•二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2 :经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5 :在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心)2.结论:结论1 :长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2 :若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论&圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直•(与直线切圆的结论有一致性)2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等•(类比:与多边形的内切圆)•3.正多面体的内切球和外接球的球心重合4.正棱锥的内切球和外接球球心都在高线上,但不一定重合5.基本方法:(3)在正三棱锥 S ABC 中,M 、N 分别是棱SC 、BC 的中点,且 AMMN ,若侧棱SA 2・3则正三棱锥S ABC 外接球的表面积是解:引理:正三棱锥的对棱互相垂直 .证明如下:如图(3) -1 , 取AB,BC 的中点D,E ,连接AE,CD , AE,CD 交于H ,连接SH , 则H 是底面正三角形ABC 的中心,SH 平面ABC : ,SH AB ,AC BC , ADBD , CD AB ,AB 平面SCD ,AB SC ,同理: BC SA , ACSB , 即正三棱锥的对棱互垂直, 本题图如图(3) -2 ,AM MN ,SB//MN , AM SB , AC SB , SB平面SAC ,SB SA , SB SC , SB SA ,BC SA ,SA 平面SBC , SA SC ,故三棱锥 S ABC 的三棱条侧棱两两互相垂直,(2R )2 !(2、3)2r — r~(2、、3)2(2、、36 2即4R 2 36 ,正三棱锥S ABC 外接球的表面积是36(4)在四面体S ABC 中,SA 平面ABC , BAC 120 ,SA AC 2, AB 1,则该四面体的外接(1) 构造三角形利用相似比和勾股定理;(2) 体积分割是求内切球半径的通用做法( 等体积法) 四、 与台体相关的,此略• 五、 八大模型第一讲柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式 2(2R)..a 2 b 2 c 2,求出 R例1 ( 1)已知各顶点都在同一球面上的正四棱柱的高为 4,体积为16,则这个球的表面积是( A. 16 B . 20C . 24D . 32(2)若三棱锥的三个侧面两两垂直,且侧棱长均为,3,则其外接球的表面积是 _________________PbCB图1-1图1-2图1-3 图1-4C(3)题-1(引理)球的表面积为(求出R .球的表面积为 _________________ ,球的表面积为 ____________ . __________A11 B.7C.- 3(5) 如果三棱锥的三个侧面两两垂直,它们的面积分别为 (6) 已知某几何体的三视图如图所示,三视图是腰长为何体外接球的体积为 ________________D.40 6、4、3,那么它的外接球的表面积是1的等腰直角三角形和边长为 1的正方形,则该几类型二、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等, 第一步:画出一个长方体,标出三组互为异面直线的对棱; 求外接球半径(AB第二步:设出长方体的长宽高分别为a,b,c , AD BC x ,AB CD AC BD z ,列方程组,2a b 2 2cb 22 c2a2 x2 y 2z2(2R) 2 . 2 2abcx 2补充: 2-1 中, V A BCDabc - abc6 -abc . 3第三步:根据墙角模型,2Ra 2b 2c 2R 2CD ,AD BC ,AC BD )2 2y __ j R 8 ,R2 2 2x y z { 8 ,例2( 1)如下图所示三棱锥A BCD ,其中 AB CD 5,ACBD 6, AD BC 7,则该三棱锥外接(2)在三棱锥A BCD 中,AB CD 2,AD BC 3,AC BD 4,则三棱锥A BCD 外接A(1)题图(3)正四面体的各条棱长都为 ______________________________ 2,则该正面体外接球的体积为(4) 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三 角形(正四面体的截面)的面积是类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1 图3-2 图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是 任意三角形) 第一步:确定球心 0的位置,01是 ABC 的外心,则001 平面ABC ; 11第二步:算出小圆 0<!的半径A01r ,001 AA 1h ( AA , h 也是圆柱的高);2 2 第三步:勾股定理: OA 2 01A 20102R 2(-)2 r 2 Rv r2(-)2,解出 R . 2V 2例3( 1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,9且该六棱柱的体积为 -,底面周长为3,则这个球的体积为 __________________________8(2)直三棱柱 ABC A 1B 1C 1的各顶点都在同一球面上,若ABAC AA 2, BAC120,则此球的表面积等于(3)已知 EAB 所在的平面与矩形 ABCD 所在的平面互相垂直,EA EB 3, AD 2,AEB 60,则多面体E ABCD 的外接球的表面积为.(4)在直三棱柱 ABC A 1B 1C 1 中,AB 4, AC 6, A孑AA 14, 则直三棱柱ABC A 1B 1C 1的外接球的表面积为r!,BccooAA2o第二讲锥体背景的模型1.如图4-1,平面PAC 心 三棱锥P ABC 的三条侧棱相等 锥的顶点.解题步骤:BC (即AC 为小圆的直径),且P 的射影是P ABC 的底面 ABC 在圆锥的底上,顶点确定球心 O 的位置,取 ABC 的外心01,则三点共线;图4-4图4-1图4-2 图4-3类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径一一正弦定理求大圆直径是通法) 平面ABC ,且AB三棱 ABC 的外 P 点也是圆第一步: 第二步: 先算出小圆 O i 的半径AO ir ,再算出棱锥的高 PO 1 h (也是圆锥的高);第三步: 勾股定理:OA 2 O 1A 2 O 1O 2R 2 (h R)2 r 2,解出 R ;事实上,2.如图 ACP 的外接圆就是大圆,直接用 正弦定理也可求解出R .4-2,平面PAC 平面ABC , 且AB BC (即AC 为小圆的直径),且PAAC ,则利用勾股定理求三棱锥的外接球半径:① (2R)2PA 2 (2r)2 2R PA 2 (2r)2② R 2 r 2 OO 12 OO 123.如图4-3,平面PAC平面 ABC , 且ABBC (即AC 为小圆的直径) OC 2 O 1C 2 O 1O 2R 2 r 2 O 1O 2AC 2 R 2 O 1O 2平面ABC ,且AB BC (即AC 为小圆的直径) PAC 的外接圆是大圆,先求出小圆的直径第二步:在 PAC中,可根据正弦定理 — b— 2R ,求出R . sin A sin B sin C 4.题设:如图 4-4,平面 第一步:易知球心 O 必是PAC PAC 的外心,即 aAC 2r ;例4 (1)正四棱锥的顶点都在同一球面上, 若该棱锥的高为1,底面边长为2 3 ,则该球的表面积为 (2)正四棱锥S ABCD 的底面边长和各侧棱长都为 2,各顶点都在同一球面上,则此球体积为(3) —个正三棱锥的四个顶点都在半径为三棱锥的体积是( )A .沁B .旦1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正^3 12(4)在三棱锥P ABC 中,PA PB PC . 3 ,侧棱PA 与底面ABC 所成的角为60 ,则该三棱锥外接球的体积为(类型五、垂面模型(一条直线垂直于一个平面) 1. 题设:如图5, PA 平面ABC ,求外接球半径解题步骤:第一步:将 ABC 画在小圆面上, A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心0 ;第二步:01为 ABC 的外心,所以 00^! 平面ABC ,算出小圆01的半径01D r (三角形的外接圆直 径算法:利用正弦定理,得 -^―-^―2r ),0011PA ;sin A sin B sinC2第三步:利用勾股定理求三棱锥的外接球半径:①(2R )2 PA 2 (2r )22R . PA 2 (2r )2 ;② R 2 r 2 0012R ... r 2 00:.2•题设:如图5-1至5-8这七个图形,P 的射影是 ABC 的外心 三棱锥P ABC 的 三条侧棱相等 三棱锥P ABC 的底面 ABC 在圆锥的底上,顶点 P 点也是圆锥的 顶点•33(5)已知三棱锥 S ABC 的所有顶点都在球 0的求面上,ABC 是边长为1的正三角形,SC 为球0的直径,且SC 2,则此棱锥的体积为( )A •二B .C.1!D.迈6 6 3 2A . B.C. 4D.P图5-1OCA Oi BPP图5-4OCA DBO i P图5-6图5-7图5-8解题步骤:第一步:确定球心0的位置,取ABC的外心O i,则P,O,O i三点共线;第二步:先算出小圆O i的半径AO i r,再算出棱锥的高PO i h (也是圆锥的高)第三步:勾股定理:OA2 O i A2 O i O2R2(h R)2 r2,解出R方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径.例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为A. 3B. 2C.i63D.以上都不对第三讲二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)图6第一步:先画出如图6所示的图形,将BCD画在小圆上,找出BCD和ABD的外心H1和H2;第二步:过H i和H2分别作平面BCD和平面ABD的垂线,两垂线的交点即为球心0,连接OE,OC ;第三步:解OEH i,算出OH i,在Rt OCH i中,勾股定理:OH; CH; 0C2注:易知O,H i,E,H2四点共面且四点共圆,证略•例6( 1)三棱锥P ABC中,平面PAC 平面ABC,△ PAC和厶ABC均为边长为2的正三角形,贝U 三棱锥P ABC外接球的半径为____________________________ .(2)在直角梯形ABCD中,AB//CD , A 90 , C 45 , AB AD 1,沿对角线BD折成四面体A BCD,使平面ABD 平面BCD,若四面体A BCD的顶点在同一个球面上,则该项球的表面积为(3)在四面体S ABC中,AB BC , AB BC 匹,二面角S AC B的余弦值为—贝y四3 面体S ABC的外接球表面积为____________________(4)在边长为2..3的菱形ABCD中,BAD 60,沿对角线BD折成二面角A BD C为120的四面体ABCD,则此四面体的外接球表面积为 ____________________(5)在四棱锥ABCD 中,BDA 120 , BDC 150 , AD BD 2, CD . 3,二面角A BD C的平面角的大小为120,则此四面体的外接球的体积为 ________________类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型题设:如图7, APB ACB 90,求三棱锥P ABC 外接球半径(分析:取公共的斜边的中点O ,1连接OP,OC ,则OA OB OC OP -AB , O 为三棱锥P ABC 外接球球心,然后在 OCP 中 2求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都 为定值•例7 (1)在矩形ABCD 中,AB 4, BC则四面体ABCD 的外接球的体积为(3,沿AC 将矩形ABCD 折成一个直二面角 BAC D ,).125D6125 3A125DA . B.121259C(2)在矩形ABCD 中,AB 2, BC 3, 沿BD 将矩形ABCD 折叠,连接AC , 所得三棱锥A BCD的外接球的表面积为 ___________________第四讲多面体的内切球问题模型类型八、锥体的内切球问题第一步:先现出内切球的截面图,E,H 分别是两个三角形的外心;1第二步:求DH -BD , PO PH r , PD 是侧面 ABP 的高;3第三步:由 POE 相似于 PDH ,建立等式: 坐 竺,解出rDH PD2. 题设:如图8-2,四棱锥P ABC 是正四棱锥,求其内切球的半径3. 题设:三棱锥 P ABC 是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等1.题设:如图8-1,三棱锥P ABC 上正三棱锥,求其内切球的半径第一步: 先现出内切球的截面图,P,O, H 三点共线;第二步: 求 1FH 丄 BC2 ,PO PH r , PF 是侧面PCD 的高;第三步:由POG 相似于 PFH OG ,建立等式:HF PO ,解出PFPCACB图8-1PGOHFC图8-2D第一步:先画出四个表面的面积和整个锥体体积;3V P ABCS O ABC S O PAB S O PACS O PBC 例8 ( 1)棱长为a 的正四面体的内切球表面积是 ________________________(2)正四棱锥S ABCD 的底面边长为2,侧棱长为3,则其内切球的半径为 _________________(3)三棱锥P ABC 中,底面 ABC 是边长为2的正三角形,PA 底面ABC ,PA 2, 则该三棱锥的内切球半径为 ___________________习题:1 •若三棱锥S ABC 的三条侧棱两两垂直,且SA 2,SB SC 4,则该三棱锥的外接球半径为 ()A. 3B. 6C. 36D. 9 2.三棱锥S ABC 中,侧棱SA 平面ABC ,底面ABC 是边长为..3的正三角形,SA 2 3,则该三 棱锥的外接球体积等于 . 3•正三棱锥S ABC 中,底面ABC 是边长为 3的正三角形,侧棱长为 2,则该三棱锥的外接球体积等 于4 •三棱锥P ABC 中,平面PAC 平面ABC ,△ PAC 边长为2的正三角形, AB BC ,则三棱锥 P ABC 外接球的半径为5. 三棱锥 P ABC 中,平面 PAC 平面ABC ,AC 2,PA PC 3,AB BC ,则三棱锥P ABC 外接球的半径为6. 三棱锥P ABC 中,平面PAC 平面ABC ,AC 2,PA PC ,AB BC ,则三棱锥P ABC第二步:设内切球的半径为 建立等式:V p ABC ABC V O PAB VO PAC V O PBC 1 V P ABC S ABC 3 11 PAB r S pAC 33 1 PBC 3 1 (S ABC S PAB S PAC S PBC ) r 3 第三步:解出r外接球的半径为_______ .。

10分钟精通外接球秒杀绝世秘籍

10分钟精通外接球秒杀绝世秘籍

10分钟精通外接球秒杀绝世秘籍● 外接球指一个空间几何图形的外接球,对于旋转体和多面体,外接球有不同的定义,广义理解为球将几何体包围,且几何体的顶点和弧面在此球上.正多面体各顶点同在一球面上,这个球叫做正多面体的外接球.● 内切球球心到某几何体各面的距离相等且等于半径的球是几何体的内切球.如果一个球与简单多面体的各面或其延展部分都相切,且此球在多面体的内部,则称这个球为此多面体的内切球.一、外接球七大模型汉堡模型圆柱、直棱柱、一条侧棱垂直底面的棱锥找底面外接圆半径r ,找高h2224h R r =+斗笠模型圆锥、顶点在底面的射影是底面外心的棱锥(正棱锥)找底面外接圆半径r ,找高h 222r h R h+=墙角模型三组线线垂直型三棱锥先补成长方体,再找锥,找长方体的长宽高:a b c ,,22224a b c R ++=麻花模型 对棱长相等的三棱锥先补成长方体,再找锥,找长方体的三类面对角线:x y z ,, 2222=8x y z R ++怀表模型 两全等等腰三角形折叠式棱锥找等腰三角形底边上的高H , 找外接圓半径r ,找二面角α 2222()tan 2R r H r α=+-“L”模型 面面垂直型棱锥找两个面外接圆半径1r ,2r ,找面面交线l2222124l R r r =+- 鳄鱼模型 普通三棱锥找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线l222222cos sin 4m n mn l R αα+-=+二、内切球万能公式(棱锥)3VR S=(注:V 表示棱锥的体积,S 表示棱锥的表面积)①圆柱 ②直棱柱 ③侧棱垂直底面秒杀公式1 外接球之汉堡模型 2224h R r =+适用几何体:圆柱、直棱柱、一条侧棱垂直底面的棱锥.② 和 ③ 可以通过补形转化为 ①,所以我们只需证明 ① 即可 证明:设P 、O '分别为上下底面圆的圆心,O 为线段PO '的中点,O P h O A r ''==,,在Rt OO A '△中有222222h OA O A OO r ⎛⎫''=+=+ ⎪⎝⎭,又因为R OA=,所以2224h R r =+.( 2017•新课标 Ⅲ ) 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4 C .π2D .π4由秒杀公式1得22222212=1442h R r r ⎛⎫+=+== ⎪⎝⎭,解得234r =, 因此圆柱的体积233πππ144V r h =⋅=⋅⋅=,故选B.( 2017•新课标 Ⅱ ) 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则 球O 的表面积为 .由秒杀公式1得22222222317=4242h R r ⎛⎫++=+=⎪ ⎪⎝⎭, 因此球O 的表面积为274π4π14π2S R ==⋅⋅=.本题还可用秒杀公式4可得22222223217442a b c R ++++===,因此球O 的表面积为274π4π14π2S R ==⋅⋅=.由此可知在选用公式的时候是比较灵活的,原因在于模型之间可以相互转化.典例例题1-1例题1-2( 2012•辽宁 ) 已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边 形ABCD 是边长为23正方形.若26PA =,则OAB △的面积为 .由秒杀公式1得()22222262=2312424h R r ⎛⎫+=⋅+= ⎪ ⎪⎝⎭,解得23R =,则OAB △为等边三角形,所以()2323334OAB S =⋅=△.( 2011•四川 ) 如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是 .由秒杀公式1得222=4h R r +,于是2224=2π=4π4π2π22h r h S r h r R +⋅⋅⋅=侧, 当且仅当222h r R ==时不等式取“=”,于是 222=4π2π=2πS S R R R --侧球.( 2010•辽宁 ) 已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于( )A .4πB .3πC .2πD .π由秒杀公式1得2222231=1424h R r ⎛⎫+=+= ⎪ ⎪⎝⎭, 解得1R =,则球O 的表面积为24π4πS R ==.故选A .( 2008•浙江 ) 如图,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB BC ⊥, 3DA AB BC ===,则球O 的体积等于 .由秒杀公式1得()22222369=4244h R r ⎛⎫+=+=⎪ ⎪⎝⎭, 解得32R =,则球O 的体积为 334439πππ3322V R ⎛⎫==⋅⋅= ⎪⎝⎭.①圆锥 ②正棱锥秒杀公式2 外接球之斗笠模型 222r h R h+=适用几何体:圆锥、顶点在底面的射影是底面外心的棱锥(正棱锥).② 可以通过补形转化为 ①,所以我们只需证明 ① 即可 证明:设P 为圆锥的顶点,O '为底面圆的圆心,O P h O A r ''==,,球心O 为PO '上一点,于是OA OP R ==,在Rt OO A '△中有222OO O A OA ''+=⇒()222h R r R -+=,解得222r h R h+=.( 2018•新课标Ⅲ ) 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等 边三角形且面积为93,则三棱锥D ABC -体积的最大值为( ) A .123B .183C .243D .543依题意得,当三棱锥D ABC -为正三棱锥且hR 时,三棱锥D ABC -的体积最大,那么由秒杀公式2得22=42r h R h+=,①又因为ABC △为正三角形且面积为93,则()()1π33sin9323S r r =⋅⋅⋅=, 解得23r =,代入①式解得2h =或6h =,又因为4hR =,所以6h =,于是()max 1=936=1833D ABC V -⋅⋅, 故选B .例题2-1典例( 2014•大纲版 ) 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .81π4B .16πC .9πD .27π4由秒杀公式2得()22222+49==2244r hR h+=⋅, 因此22981π=4π=4π=44S R ⎛⎫⋅ ⎪⎝⎭, 故选A .( 2020•银川模拟 ) 已知圆锥的母线与底面所成的角等于60︒,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( ) A .4:3B .3:4C .16:9D .9:16由秒杀公式2得22=2r h R h+,依题意得3h r =,因此233R r =, 于是2222224164ππ4π1633=ππππ23π9r r S R S r rl r r r r ⋅===++⋅球锥.故选C .例题2-3( 2018秋•太原期末 ) 在三棱锥P ABC -中,顶点P 在底面ABC 的投影G 是ABC △的外心,2PB BC ==,平面PBC 与底面ABC 所成的二面角的大小为60︒,则三棱锥P ABC -的外接球的表面积为 .如图所示,作BC 的中点M ,在Rt PMB △[1]中有223PM PB BM=-=,依题意知60PMG ∠=︒[2],在Rt PGM △中有33sin 60cos6022h PG PM GM PM ==︒==︒=,, 于是在Rt BGM △中有227=+=2r BG GM BM =, 由秒杀公式2可得224=23r h R h +=,因此264π4π9S R ==.[1] 因为顶点P 在底面ABC 的投影G 是ABC △的外心,所以PA PB PC ==. [2] 因为BC PM ⊥且BC GM ⊥,所以PMG ∠为二面角P BC A --的平面角.( 2020•娄底模拟 ) 如图所示是某几何体的三视图,则该几何体的外接球的表面积为( )A .25π8B .25π4C .25π2 D .9π8由秒杀公式2得()()22222+2252==28222r hR h+=⋅, 因此225225π=4π=4π=88S R ⎛⎫⋅ ⎪ ⎪⎝⎭,故选A .(2019秋•东莞市期末) 已知球O是正四面体A BCD-的外接球,2BC=,点E在线段BD 上,且3BD BE=,过点E作球O的截面,则所得截面圆面积的最小值是() A.8π9B.11π18C.5π12D.4π9依题意易知233r=,263h=,由秒杀公式2得22222326+336==222623r hRh⎛⎫⎛⎫⎪ ⎪⎪ ⎪+⎝⎭⎝⎭=⋅,如图所示,在OBD△中,由余弦定理可得2226cos23OB BD ODOBDOB BD+-∠==⋅⋅,那么在OBE△中,由余弦定理可得222112cos18OE OB BE OB BE OBD=+-∠=,当截面圆垂直OE时面积最小,故截面圆的最小半径为22223r R OE'=-=,因此截面圆面积的最小值为()288πππ99S r'==⋅=.故选A.( 学生答疑 ) 在《九章算术》卷商功中称正四棱锥为“方锥”. 现有一“方锥”的体积为83,若该“方锥”的五个顶点都在球O 的球面上,则球O 表面积的最小值为 A .18πB .27πC .36πD .75π由秒杀公式2得22=2r h R h+, 依题意得211=28333V S h r h ⋅⋅=⋅⋅=底,即2123r h=,因此 222322123636333=32244442h r h h h h h h R h h h h ++==++⋅⋅⋅=, 当且仅当“263=4hh ”,即“23h =”时不等式取“=”,因此 2min min 27=4π4π27π4S R =⋅=,故选B.秒杀公式3 外接球之墙角模型 22224a b c R ++=适用几何体:三组线线垂直型三棱锥.证明:在三棱锥P ABC -中,AB AC AP 、、两两垂直,=AB a ,AC b =,AP c =,将三棱锥补成长方体,则长方体的体对角线PQ 即为外接球的直径,于是222222PQ QA AP AB AC AP =+=++,所以()22222R a b c =++,即2222=.4a b c R ++( 2019•新课标 Ⅰ ) 已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为 ( )A .86πB .46πC .26πD .6π依题意得三棱锥P ABC -为正三棱锥,CE EF ⊥,因为//EF PB ,所以PB CE ⊥,由正三棱锥性质可得PB CA ⊥[1],又因为CE ⊂面PAC ,CA ⊂面PAC ,=CE CA C ,因此PB ⊥面PAC ,因此PA PB PC ,,两两垂直[2],由秒杀公式3得()()()22222222+2+23===442a b cR ++, 于是33446=π=π=6π332V R ⎛⎫⋅⋅⋅⋅ ⎪ ⎪⎝⎭, 故选D .[1] 设G 为AC 的中点,P 点在底面ABC 的投影为1O ,因为三棱锥P ABC -为正三棱锥, 所以1O 为ABC △的外心,故1B O G ,,三点共线,因为1AC PO AC BG ⊥⊥,,且 11PO BG O =,所以AC ⊥平面PGB ,又因为PB ⊂平面PGB ,故PB CA ⊥.[2] PAB PAC PBC ≅≅△△△.例题3-1典例( 2012•辽宁 ) 已知正三棱锥P ABC -,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 .由秒杀公式3可得2222222344PA PB PC a b c R ++++===,由正三棱锥性质可得PA PB PC ==,解得2PA PB PC ===,则球心到截面ABC 的距离为()2222223333OH OA HA ⎛⎫=-=-= ⎪ ⎪⎝⎭.( 2008•福建 ) 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积 是 .由秒杀公式3可得22222223339444a b c R ++++===,故294π4π9π4S R ==⋅=. 例题3-3( 2020•山东学业考试 ) 在三棱锥P ABC -中,PA ,PB ,PC 两两垂直,且1PA =,2PB PC ==,则该三棱锥的外接球体的体积为( )A .9π2B .27π2C .9πD .36π由秒杀公式3可得22222221229444a b c R ++++===,于是334439πππ3322V R ⎛⎫==⋅=⎪⎝⎭. 故选A .( 2019春•湖南期末 ) 已知点P 在直径为2的球面上,过点P 作球的两两相互垂直的三条弦PA ,PB ,PC ,若PA PB =,则PA PB PC ++的最大值为( )A .23B .4C .222+D .3由秒杀公式3可得22222222221444PA PB PC PB PC a b c R +++++====,即2224PB PC +=,因此()()2222221223PA PB PC PB PCPBPC ⎡⎤⎡⎤++=+++=⎢⎥⎢⎥⎣⎦⎣⎦,当且仅当212PC PB=时,即233PB PC ==时不等式取“=”,故选A .例题3-5秒杀公式4 外接球之麻花模型22228x y zR++=适用几何体:对棱长相等的三棱锥.证明:在三棱锥P ABC-中,PA BC x==,PB AC y==,PC AB z==,将三棱锥P ABC-补成如图所示长方体,设DA a=,DB b=,DC c=,于是长方体的体对角线PD即为三棱锥P ABC-外接球,因为222222222a b za c yb c x⎧+=⎪+=⎨⎪+=⎩,,,所以()2222222x y z a b c++=++,又因为()222222222R PD DA DB DC a b c==++=++,那么()22222=2x y zR++,即2222=.8x y zR++( 2020•红河州模拟 ) 在三棱锥A BCD -中,5317AB CD AC BD ====,, 410AD BC ==,则此三棱锥外接球的半径为( )A .3172B .210C .132D .13由秒杀公式4得()()()22222225+317410169==884x y zR +++=, 解得13=2R ,故选C .( 2016•蚌埠三模 ) 在四面体ABCD 中,2AB CD ==,2AC BD AD BC ====,则该四 面体的外接球的表面积为 .由秒杀公式4得()()()22222222+22==188x y zR +++=,因此四面体外接球的表面积为24π4πS R ==.典例例题4-1例题4-2(2019秋•路南区校级期中 ) 四面体ABCD 的四个顶点在同一球面上中,4AB BC CD DA ====,22AC BD ==,E 为AC 的中点,过E 作其外接球的截面,则截面面积的最大值与最小值的比为( ) A .5:4B .5:2C .5:2D .5:2由秒杀公式4得()()()22222224+422==588x y z R +++=,在等腰OAE △中,22523OE OA AE =-=-=,当截面圆所在平面垂直OE 时面积最小,截面圆所在平面过球心O 时面积最大,因此()2222min maxπ2ππ5πS R OESR =⋅-==⋅=,,于是max min 52S S =, 故选D .例题4-3秒杀公式5 外接球之怀表模型2222()tan2R r H rα=+-适用几何体:两全等等腰三角形折叠式棱锥.证明:在三棱锥P ABC-中,PAB CAB≅△△,CA CB=,1O,2O分别是ABC△和PBC△的外心,M为线段AB的中点,1OO⊥平面ABC,2OO⊥平面PBC,CM H=,1O C r=,二面角P AB C PMCα--=∠=,在1Rt OMO△中有111cos cos2MO CM O C H rOMOOM OM OMα--∠====,于是cos2H rOMα-=,又在1Rt MBO△中有()2222211=MB O B O M r H r-=--,那么,在Rt MBO△中有()()() 22222222221tan2cos2OB MB OM r H r H r r H rαα=+=--+-=+-,又因为R OB=,所以()2222tan2R r H rα=+-.( 2019•齐齐哈尔一模 ) 在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的外接球的表面积为.由秒杀公式5得2222222121223()tan =322sin 602sin 6022R r H r α⎛⎫⎛⎫⎛⎫=+-⋅+-⋅⋅= ⎪ ⎪ ⎪ ⎪︒︒⎝⎭⎝⎭⎝⎭, 因此三棱锥A BCD -的外接球表面积为234π4π6π2S R ==⋅=.典例例题5-1( 2017•广西一模 ) 在菱形ABCD 中,60A =︒,23AB =,将ABD ∆沿BD 折起到PBD ∆的 位置,若二面角P BD C --的大小为120︒,三棱锥P BCD -的外接球球心为O ,BD 的中 点为E ,则(OE = ) A .1B .2C .7D .27由秒杀公式5得()2222222123123()tan =33722sin 602sin 60R r H r α⎛⎫⎛⎫=+-⋅+-⋅⋅= ⎪ ⎪ ⎪ ⎪︒︒⎝⎭⎝⎭,那么22732OE OB BE =-=-=,故选B .( 原创 ) 已知空间四边形ABCD 中,2AB BD AD BC AC =====,若二面角C AB D --的取值范围为π2π33⎡⎤⎢⎥⎣⎦,,则该几何体的外接球表面积的取值范围为 .由秒杀公式5得22222222()tan 21212=3tan 2sin 602sin 60241tan 332R r H r ααα=+-⎛⎫⎛⎫⋅+-⋅⋅ ⎪ ⎪︒︒⎝⎭⎝⎭=+⋅, 又因为π2π33α⎡⎤∈⎢⎥⎣⎦,,所以ππ263α⎡⎤∈⎢⎥⎣⎦,,那么3tan 323α⎡⎤∈⎢⎥⎣⎦,,因此213793R ⎡⎤∈⎢⎥⎣⎦,,又因为2=4πS R ,故外接球表面积的取值范围为52π28π93⎡⎤⎢⎥⎣⎦,.秒杀公式6 外接球之“L ”模型 2222124lR r r =+-适用几何体:面面垂直型棱锥.证明:在三棱锥P ABC -中,平面ABP ⊥平面ABC ,1O ,2O 分别是ABP △和ABC △的外心,且1OO ⊥平面ABP ,2OO ⊥平面ABC ,1r ,2r 分别是ABP △和ABC △外接圆的半径,l 为线段AB 的长度,在2O BM △中有22222MB MO BO +=,即222222224l MO O B MB r =-=-,同理222114l MO r =-,所以222222222222221212124444l l l l OB OM MB MO MO MB r r r r =+=++=-+-+=+-,又因为R OB =,因此2222124l R r r =+-.( 原创 ) 在三棱锥S ABC -中,ABC △是边长为3的等边三角形,3SA =,23SB =,二面角S AB C --的大小为90︒,则此三棱锥的外接球的半径为 .由秒杀公式5得()()22222221231533444l R r r =+-=+-=, 解得15=2R .典例例题6-1(2019•中卫一模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.16π3B.8π3C.43πD.23π由秒杀公式5得()22222221222414433lR r r⎛⎫=+-=+-=⎪⎝⎭,因此外接球的表面积为2416π=4π=4π=33S R⋅.3111正视图侧视图俯视图( 2019•开福区校级模拟 ) 已知等腰ABC △的面积为4,AD 是底边BC 上的高,沿AD 将ABC △折成一个直二面角,则三棱锥A BCD -的外接球的表面积的最小值为 .设AD x BD y ==,,因为等腰ABC △的面积为4,则=4xy ,又因为22122x y r r +==, 那么由秒杀公式5得222222222222212111122244444242l x y x y x R r r x y x y ++=+-=+-=+⋅=,当且仅当221142x y =时,即222x y ==,时,不等式取“=”,故三棱锥A BCD -的外接球的表面积的最小值为2min min =4π=82πS R .如图,三棱锥P ABC-的底面是边长为2的等边三角形,若2PA PB==,二面角P BA C--的大小为90︒,则三棱锥P ABC-的外接球的表面积等于.由秒杀公式5得()22222221222414433lR r r⎛⎫=+-=+-=⎪⎝⎭,因此外接球的表面积为2416π=4π=4π=33S R⋅.例题6-4秒杀公式7 外接球之鳄鱼模型 222222cos sin 4m n mn l R αα+-=+适用几何体:普通三棱锥.证明:在三棱锥P ABC -中,1O ,2O 分别是ABP △和ABC △的外心,二面角12P AB C O MO α--=∠=,M 为AB 的中点,1O M m =,2O M n =,且1OO ⊥平面ABP ,2OO ⊥平面ABC , l 为线段AB 的长度,在四边形12OO MO 中,因为12π2OO M OO M ∠=∠=, 所以12OO MO 四点共圆,设四边形12OO MO 的外接圆的半径为r ,则2OM r =,由正弦定理可得122sin O O r α=,于是12sin O OOM α=,在12MO O △中,由余弦定理可得222122cos O O m n mn α=+-,因此2222222212222cos sin 4sin 4O O l m n mn l OB OM MB ααα+-=+=+=+, 又因为R OB =,故222222cos sin 4m n mn l R αα+-=+.( 2019秋•迎泽区校级月考 ) 在三棱锥S ABC -中,ABC △是边长为3的等边三角形,3SA =,23SB =,二面角S AB C --的大小为120︒,则此三棱锥的外接球的半径为 .由秒杀公式7得222222222333312222222cos 321sin 44432m n mn l R αα⎛⎫⎛⎫⎛⎫+-⋅⋅⋅- ⎪ ⎪ ⎪⎝⎭+-⎝⎭⎝⎭=+=+=⎛⎫⎪⎝⎭, 解得21=2R .典例例题7-1( 2019春•孝感期末 ) 将边长为2的正三角形ABC 沿中线AD 折成60︒的二面角B AD C --,则三棱锥A BDC -的外接球的表面积为 .由秒杀公式7得()22222222211111232cos 1322222sin 441232m n mn l R αα⎛⎫⎛⎫+-⋅⋅⋅ ⎪ ⎪+-⎝⎭⎝⎭=+=+=⎛⎫⎪⎝⎭, 因此外接球的表面积为21313π=4π=4π=123S R ⋅.(2015秋•绍兴校级期中) 如图,三棱锥P ABC -的底面是边长为2的等边三角形,若 2PA PB ==,二面角P BA C --的大小为60︒,则三棱锥P ABC -的外接球的表面积等于 .由秒杀公式7得()22222222233102033222cos 13sin 44932m n mn l R αα⎛⎫+-⋅⋅⋅ ⎪+-⎝⎭=+=+=⎛⎫⎪⎝⎭, 因此外接球的表面积为21352π=4π=4π=99S R ⋅.( 2017•葫芦岛模拟 ) 已知空间四边形ABCD 中,2AB BD AD ===,1BC =,3CD =,若二面角A BD C --的取值范围为π2π43⎡⎤⎢⎥⎣⎦,,则该几何体的外接球表面积的取值范围为 .由秒杀公式7得()22222222222cos sin 433020cos 332sin 4113sin m n mn l R ααααα+-=+⎛⎫+-⋅⋅⋅ ⎪⎝⎭=+=+, 因为π2π43α⎡⎤∈⎢⎥⎣⎦,,所以21sin 12α⎡⎤∈⎢⎥⎣⎦,,因此24533R ⎡⎤∈⎢⎥⎣⎦,,因此外接球的表面积的取值范围为216π20π=4π=33S R ⎡⎤∈⎢⎥⎣⎦,.秒杀公式8 内接球之万能模型3VRS=适用几何体:所有棱锥.证明:设PAB PAC PBC ABC△、△、△、△的面积分别为1234S S S S、、、,则()12341234=1111333313P ABC O PAB O PAC O PBC O ABCV V V V VS R S R S R S RR S S S S-----+++=⋅⋅+⋅⋅+⋅⋅+⋅⋅=⋅⋅+++那么12343=P ABCVRS S S S-+++,即3VRS=.( 2020•来宾模拟 ) 已知正三棱锥的底面边长为23,侧棱长为25,则该正三棱锥内切球的表面积为 .由秒杀公式8得11323343432==33+51+51+51171V R S ⋅⋅⋅⋅⋅=+, 所以外接球的表面积为2917=4π=π2S R -.典例例题8-1( 2020•浙江模拟 ) 几何体三视图如图所示,则该几何体的内切球表面积是 .由秒杀公式8得11312135132==4551+122V R S ⋅⋅⋅⋅⋅-=++, 所以外接球的表面积为235=4π=π2S R -.(2020•娄底模拟)如图所示是某几何体的三视图,则该几何体的内切球与外接球的半径之比为()A.12B.23C.25D.13由秒杀公式2得()()222222252=24222r hRh++==⋅外,由秒杀公式8得132222323==4+33332VRS⋅⋅⋅⋅=+++内,故该几何体的内切球与外接球的半径之比为222==5524RR内外,故选C.。

八个无敌模型——全搞定空间几何的外接球和内切球问题高考资料高考复习资料中考资料

八个无敌模型——全搞定空间几何的外接球和内切球问题高考资料高考复习资料中考资料

八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式(2R)2a2b2c2,即2R a2b2c2,求出R例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)A.16B.20C.24D.32(2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是9解:(1)V a2h16,a2,4R2a2a2h2441624,S24,选C;(2)4R23339,S4R29(3)在正三棱锥S ABC中,M、N分别是棱SC、BC的中点,且AM MN,若侧棱SA23,则正三棱锥S ABC外接球的表面积是。

36解:引理:正三棱锥的对棱互垂直。

证明如下:如图(3)-1,取AB,BC的中点D,E,连接AE,CD,AE,CD交于H,连接SH,则H是底面正三角形ABC的中心,SH平面ABC,SH AB,AC BC,AD BD,CD AB,AB平面SCD,AB SC,同理:BC SA,AC SB,即正三棱锥的对棱互垂直,本题图如图(3)-2,AM MN,SB//MN,AM SB,AC SB,SB平面SAC,SB SA,SB SC,SB SA,BC SA,SA平面SBC,SA SC,故三棱锥S ABC的三棱条侧棱两两互相垂直,(2R)2(23)2(23)2(23)236,即4R236,正三棱锥S ABC外接球的表面积是361自信是迈向成功的第一步(4)在四面体 S ABC 中, SA 平面ABC , BAC120 ,SA AC 2, AB 1, 则该四面体的外接10 40 球的表面积为( D )A.11B.7C.D.33 (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为 6 、 4 、3,那么它的外接球的表面积是(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为 解析:(4)在ABC 中, BC 2 AC 2 AB 2 2AB BCcos1207 ,BC7 2 7 BC7 , ABC 的外接球直径为 2r,sin BAC3 322 7 40 (2R)2 (2r)2SA 2()24 ,33 40 S ,选D 3(5)三条侧棱两两生直,设三条侧棱长分别为 a,b,c ( a,b,c R ),则ab bcac128 6 ,abc24 , a 3,b 4, c 2 , (2R)2 a 2 b 2 c 2 29, S 4R 229 ,(6)(2R)2 a 2 b 2 c 23 ,3 R 2, 4R3 24 343 3 3VR,33 8 2类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图 5, PA平面 ABC解题步骤:第一步:将 ABC 画在小圆面上, A 为小圆直径的一个端点,作小圆的直径 AD ,连接 PD ,则 PD 必过球心O ;第二步: O 为ABC 的外心,所以OO 平面 ABC ,算出小圆O的半111径O D r1(三角形的外接圆直径算法:利用正弦定理,得a sin Ab c12r),O O1 PA;sin B sinC2第三步:利用勾股定理求三棱锥的外接球半径:①(2R)2PA2(2r)22R PA2(2r)2;2自信是迈向成功的第一步你永远是最棒的② R 2rOO22 1R r 2OO2 12.题设:如图 6,7,8,P 的射影是 ABC 的外心 三棱锥 P ABC 的三条侧棱相等三棱锥 P ABC 的底面 ABC 在圆锥的底上,顶点 P 点也是圆锥的顶点解题步骤:第一步:确定球心 O 的位置,取 ABC 的外心O ,则1P,O,O 三点共线;1第二步:先算出小圆 O 的半径 AOr1,再算出棱锥的高 PO 1h (也是圆锥的高);1第三步:勾股定理:2O A O O 2OA2R 2 (h R)2 r 2 ,解出 R11方法二:小圆直径参与构造大圆。

八个超强模型——彻底解决立体几何的外接球和内切球问题

八个超强模型——彻底解决立体几何的外接球和内切球问题

八个超强模型——彻底解决立体几何的外接球和内切球问题摘要本文介绍了八个超强模型,这些模型可以用来彻底解决立体几何中的外接球和内切球问题。

每个模型都具有独特的特点和优势,能够有效地求解球的外接和内切问题,为立体几何的研究提供了有力的工具和方法。

引言在立体几何中,外接球和内切球问题是非常常见的问题。

求解这些问题通常需要借助一些数学模型和方法。

本文介绍了八个超强模型,这些模型在解决外接球和内切球问题方面表现出色。

模型一:球心法线模型该模型基于球的法线方程,通过求解法线方程的交点来得到球心坐标。

利用该模型可以快速准确地求解外接球和内切球的球心坐标。

模型二:点坐标向量模型该模型利用点的坐标向量来表示球心坐标,通过计算坐标向量的运算得到球心坐标。

该模型适用于各种类型的球体,求解效果良好。

模型三:坐标平移模型该模型基于坐标平移的概念,通过平移球心坐标来求解外接球和内切球的球心坐标。

该模型简单易懂,适用于多种立体几何结构。

模型四:线段接触模型该模型利用线段的接触点来求解外接球和内切球的球心坐标。

通过求解线段接触点的几何关系,可以得到球心坐标。

该模型适用于特定的立体几何结构。

模型五:平面交线模型该模型基于平面交线的概念,通过求解平面交线的方程来得到球心坐标。

该模型对于立体几何结构较复杂的情况下求解效果较好。

模型六:圆心半径模型该模型通过求解球的圆心和半径来得到球心坐标。

该模型适用于已知球的圆心和半径的情况下求解。

模型七:曲线拟合模型该模型通过对曲线进行拟合来得到球心坐标。

该模型适用于曲线较为复杂的情况下求解。

模型八:图像处理模型该模型利用图像处理的方法来得到球心坐标。

通过处理球体的图像,可以得到球心坐标。

该模型适用于图像处理技术较为成熟的情况下求解。

结论本文介绍了八个超强模型,这些模型可以用来彻底解决立体几何中的外接球和内切球问题。

每个模型都有其独特的特点和优势,能够有效地求解球的外接和内切问题。

这些模型为立体几何的研究提供了有力的工具和方法,有助于推动该领域的发展。

八个无敌模型__全搞定空间几何的外接球和内切球问题

八个无敌模型__全搞定空间几何的外接球和内切球问题

八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)图1图2图3方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ; (2)933342=++=R ,ππ942==R S(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =则正三棱锥ABC S -外接球的表面积是 。

π36 解:引理:正三棱锥的对棱互垂直。

证明如下:如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,(3)题-1AA∴正三棱锥ABC S -外接球的表面积是π36(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( D )π11.A π7.B π310.C π340.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为 解析:(4)在ABC ∆中,7120cos 2222=⋅⋅-+=BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r , ∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)三条侧棱两两生直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S , (6)3)2(2222=++=c b a R ,432=R ,23=Rπππ2383334343=⋅==R V ,类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r CcB b A a 2sin sin sin ===),PA OO 211=;图5P第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=2.题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图6图7-1图7-2图8图8-1图8-2图8-3解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆。

高中数学立体几何外接球7大模型

高中数学立体几何外接球7大模型

02
03
04
例题1
已知长方体的长为3,宽为4 ,高为5,求其外接球的半径

解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(3^2+4^2+5^2)=
3/2*sqrt(10)。
例题2
已知长方体的长为6,宽为8 ,高为10,求其外接球的半
径。
解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(6^2+8^2+10^2) =1/2*sqrt(100+64+100)=1 /2*sqrt(264)=sqrt(66)。
长方体的每个面都是 矩形或正方形,相对 的两个面完全相同。
长方体外接球半径计算方法
01
设长方体的长、宽、高分别为a、 b、c,则长方体的体对角线长度 为sqrt(a^2+b^2+c^2)。
02
外接球的半径为体对角线长度的 一半,即 R=1/2*sqrt(a^2+b^2+c^2)。
典型例题解析
01
外接球半径$R = frac{sqrt{3}a}{3}$
典型例题解析
题目
在正四面体$P-ABC$中,点$P,A,B,C$都在同一球面上,若$angle PAB = angle PBA = angle BPC = angle ACP = 90^{circ}$,则该球的表面积为____.
解析
首先根据正四面体的性质,我们可以计算出外接球的半径$R = frac{sqrt{3}a}{3}$。然后 根据球的表面积公式$S = 4pi R^{2}$,我们可以计算出球的表面积为$S = 4pi (frac{sqrt{3}a}{3})^{2} = frac{4pi a^{2}}{3}$。

八个有趣模型_搞定空间几何体的外接球和内切球

八个有趣模型_搞定空间几何体的外接球和内切球

八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)图2图3方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ; (2)933342=++=R ,ππ942==R S(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 。

π36 解:引理:正三棱锥的对棱互垂直。

证明如下:如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,ΘBC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, ΘMN AM ⊥,MN SB //,∴SB AM ⊥,ΘSB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥,ΘSA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36(3)题-1A(3)题-2A(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( D )π11.A π7.B π310.C π340.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为 解析:(4)在ABC ∆中,7120cos 2222=⋅⋅-+=οBC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r , ∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)三条侧棱两两生直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S , (6)3)2(2222=++=c b a R ,432=R ,23=Rπππ2383334343=⋅==R V ,类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;图5ADPO 1OCBAP②2122OO r R +=⇔212OO r R +=2.题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图6PADO 1OCB图7-1PAO 1O CB图7-2PAO 1O CB图8PAO 1OCB图8-1DPOO 2ABC图8-2POO 2ABC图8-3DPOO 2AB解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆。

高考数学多面体的外接球专题模型总结终极版(七大模型)

高考数学多面体的外接球专题模型总结终极版(七大模型)

多面体的外接球专题模型总结终极版题型一、长方体的外接球1.长方体外接球半径R=√a2+b2+c22a2.正方体外接球半径R=√323.长方体外接球的切割体(从长方体八个顶点中任取四个顶点)(1)三条侧棱两两垂直的三棱锥简称墙角型(2)一条侧棱垂直于底面,底面是直角三角形的三棱锥(双垂直)(3)各棱相等的三棱锥(正四面体)(4)对棱相等的三棱锥专题练习例1.在三棱锥BCD A −中,侧棱AB 、AC 、AD 两两垂直,ABC ∆、ACD ∆、ADB ∆的面积分别为22、32、62,则三棱锥BCD A −的外接球的体积为( )A .6πB .26πC .36πD .46π例2. 如图所示,已知球O 的面上有四点A 、B 、C 、D ,2===⊥⊥BC AB DA BC AB ABC DA ,,面,则球O 的体积等于 .例 3.已知三棱锥BCD A −的所有棱长都为2,则该三棱锥外接球的体积为_________例4.四面体BCD A −中,5==CD AB ,34==BD AC ,41==BC AD ,则四面体BCD A −外接球的表面积为( )A .π50B .π100C .π150D .π200变式练习1.在三棱锥ABC P −中,4==BC PA ,5==AC PB ,11==AB PC ,则三棱锥ABC P −的外接球的表面积为( )A .π8B .π12C .π26D .π242.已知三棱锥ABC P −的顶点都在球O 的表面上,若PA ,PB ,PC 两两互相垂直,且2===PC PB PA ,则球O 的体积为( ) A .π312 B .π28 C .π34 D .π43.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥ABC P −为鳖臑,⊥PA 平面ABC ,2==AB PA ,4=AC ,三棱锥ABC P −的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .π8 B .π12 C .π20 D .π244.已知三棱锥ABC S −的各顶点都在一个半径为r 的球面上,且1===SC SB SA ,2===AC BC AB ,则球的表面积为( )A .π12B .π8C .π4D .π35.已知三棱锥ABC P −的各顶点都在同一球面上,且⊥PA 平面ABC ,若该棱锥的体积为332,2=AB ,1=AC ,︒=∠60BAC ,则此球的表面积等于( ) A .π5 B .π8 C .π16 D .π206.三棱锥ABC P −的四个顶点都在球O 的球面上,已知PA ,PB ,PC 两两垂直,1=PA ,4=+PC PB ,当三棱锥的体积最大时,球O 的体积为( ) A .π36 B .π9C .29π D .49π7.如图所示,平面四边形ABCD 中,2===CD AD AB ,22=BD ,CD BD ⊥,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A .π328B .π24C .π34题型二、上下对称几何体外接球(直棱柱)直棱柱外接球半径R=√r 2+h 24,其中r 是底面外接圆半径,h 是直棱柱的高 r =a 2sinA(正弦定理)例1.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.πa 2B.73.πa 2 C. 113πa 2 D. 5πa 2例2.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为 .例3.如图,三棱锥的所有顶点都在一个球面上,在ABC ∆中,3=AB ,︒=∠60ACB ,︒=∠90BCD ,CD AB ⊥,22=CD ,则该球的体积为 .例4. 如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( ) A .320πB .π8C .π9D .319π例5. 如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为( ) A .π27 B .π48 C .π64D .π81变式练习1.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC ∆是正三角形,⊥AD 平面ABC ,62==AB AD ,则该球的体积为( ) A .π332 B .π48 C .π24 D .π162.四面体ABCD 的四个顶点都在球O 的表面上,⊥AB 平面BCD ,三角形BCD 是边长为3的等边三角形,若4=AB ,则球O 的表面积为( ) A .π36B .π28C .π16D .π43.已知一个三棱锥的三视图如下图所示,其中俯视图是顶角为32π的等腰三角形,则该三棱锥外接球的表面积为( ) A .π20B .π17C .π16D .π8题型三、正N 棱锥外接球正N 棱锥外接球半径R=l 22ℎ,其中l 是侧棱长度,h 是正棱锥的高例1. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4B. 16πC. 9πD.27π4题型四、等腰三角形底边与一直角三角形斜边构成二面角的四面体如上图中,ABC △为等腰三角形,且AC AB =,DBC △是以BC 为斜边的△Rt ,D BC A −−二面角为α,令ABC △的外接圆半径为2r ,BC 边上的高为21h AO =,12r BC =,F 为ABC △的外心,则根据剖面图可知,外接球半径R 满足以下恒等式()21222221212sin r r h R E O OO OE +⎪⎭⎫ ⎝⎛−==+=α.例1在四面体ABC S −中,BC AB ⊥,2==BC AB ,SAC △为等边三角形,二面角B AC S −−的余弦值为33−,则四面体ABC S −的外接球表面积为 .CB图3图4图5作二面角剖面⇒例2.在四面体ABCD 中,AB=AD=2,∠BAD =60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七个有趣模型——搞定空间几何体的外接球类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)图2图3方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B.π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =则正三棱锥ABC S -外接球的表面积是 。

(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r CcB b A a 2sin sin sin ===),PA OO 211=;第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;图5②2122OO r R +=⇔212OO r R +=2.题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图6PADO 1OCB图7-1PAO 1O CB图7-2PAO 1O CB图8PAO 1OCB图8-1DPOO 2ABC图8-2POO 2ABC图8-3DPOO 2AB解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆。

例2 一个几何体的三视图如右图所示,则该几何体外接球的表面积为( ) A .π3 B .π2 C .316πD .以上都不对 2020高考一卷文12.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( ) A. 64π B. 48π C. 36π D. 32π类型三、切瓜模型(两个平面互相垂直)图9-1图9-2图9-3图9-41.题设:如图9-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R2.如图9-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=3.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R4.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=例3 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 。

(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一个球面上,则此球的体积为(3)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为60,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π (4)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A.6 B.6 C.3 D .2类型四、汉堡模型(直棱柱的外接球、圆柱的外接球)图10-2图10-3题设:如图10-1,图10-2,图10-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R例4 (1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。

(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 。

(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π则直三棱柱111C B A ABC -的外接球的表面积为 。

类型五、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图11)第一步:先画出如图所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ;图11第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+例5三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 .类型六、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:abc abc abc V BCD A 31461=⨯-=- 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R ,例如,正四面体的外接球半径可用此法。

例6(1)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一 个截面如图,则图中三角形(正四面体的截面)的面积是 .(2)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点 在该球的一个大圆上,则该正三棱锥的体积是( )A .433B .33C .43D .123(3)在三棱锥BCD A -中,,4,3,2======BD AC BC AD CD AB 则三棱锥BCD A -外接球的表面积为 。

(4)如图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .(5)正四面体的各条棱长都为2,则该正面体外接球的体积为图12(1)题(1)题解答图类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型题设:90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值。

例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCDA -的外接球的表面积为 .强化训练习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于 . 3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 . 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC P -外接球的半径为图13。

相关文档
最新文档