九年级第一学期期末数学试题
山西省太原市2022-2023学年九年级上学期期末数学试题

2022~2023学年第一学期九年级期末考试数学试卷(考试时间:上午8:00-9:30)说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟.一、选择题(本大题共10个小题)在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.已知反比例函数ky x=的图象经过点()2,6A −,则下列各点中也在该函数图象上的是( )A.()2,6B.()1,12−C.()3,4−−D.()4,32.若23a b =,则a b b +等于( )A.23B.49 C.53 D.543.如图是一个空心圆柱,关于它的主视图和俯视图正确的是( )A. B.C. D.4.将2(21)105x x −=−转化为两个一元一次方程,这两个方程是( ) A.210,215x x −=+=− B.215,210x x +=−= C.210,215x x −=−= D.210,215x x +=−=−5.如图1是一盏亮度可调节的台灯,通过调节总电阻R 来控制电流I 实现灯光亮度的变化.电流()A I 与电阻()ΩR 之间的函数关系如图2所示.下列结论正确的是( )A.200I R=B.当10I >时22R >C.当5I =时40R =D.当2I >时0110R <<6.含60角的直角三角板()60ABC A ∠=与含45角的直角三角板BCD 如图放置,它们的斜边AC 与斜边BD 相交于点E .下列结论正确的是( )A.ABE CDE ∽B.ABE BCE ∽C.BCE DCE ∽D.ABC DCB ∽7.截至去年11月23日,除卫健、公安等全员参与疫情防控的单位外,全市已有3.7万余名党员干部主动向社区(村)报到,共创“无疫社区”,小王、小李和小张3名党员都报名参加所在社区的防控工作,但社区根据实际情况只需要他们中的2人.有人建议他们采用随机抽签的方式确定参加人,则小王和小李同时参加的概率为( )A.19 B.16 C.29 D.138.如图,为了确定路灯灯泡的位置,小明与小亮选取了长1米的标杆AB ,小明测得标杆在路灯下的影长1.5BC =米,从点B 出发沿着BC 所在直线行走7.5米时恰好在路灯的正下方.据此可得,路灯灯泡离地面的距离为( )A.5.6米B.6米C.6.4米D.7.5米9.如图1是古希腊时期的巴台农神庙(Parthenom Temple ),把图1中用虚线表示的矩形画成图2矩形ABCD ,当以矩形ABCD 的宽AB 为边作正方形ABEF 时,惊奇地发现矩形CDFE 与矩形ABCD 相似,则BE EC等于( )51− B.32 31+ 51+10.如图,在ABCD 中,10,7AB AD ==,四个角的角平分线分别相交于点,,,E F G H ,则四边形EFGH 对角线EG 的长为( )A.3B.52 51 D.32 二、填空题(本大题共5个小题)把答案写在题中横线上.11,农科所通过大量重复实验,发现某农作物种子发芽的频率在0.85附近波动,则2000kg 该种子发芽的大约有__________kg .12.如图,直线a b c ∥∥,分别交直线,m n 于点,,,,,A B C D E F ,若32AB BC =,则DEEF等于__________.13.如图,在平面直角坐标系中,ABC 与DEF 是位似图形,它们顶点的横坐标、纵坐标都是整数,则位似中心的坐标为__________.14.如图,在正方形ABCD 中,6AB =,点,E F 分别在边,AB BC 上,2AE BF ==,点M 在对角线AC 上运动,连接EM 和MF ,则EM MF +的最小值等于__________.15.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,过点O 作1OE AB ⊥于点1E ,连接1DE ,交AC 于点1;F 过点1F 作12F E AB ⊥于点2E ,连接2DE ,交AC 于点2;;F 按此方法继续作图.从,A B 两题中任选一题作答.A.2AE 与AB 的数量关系是__________.B.n AE 与AB 的数量关系是__________.三、解答题(本大题共8个小题)解答应写出必要的文字说明、演算步骤或推理过程.16.已知2271,23,A x x B x A =+−=−的值与B 的值互为相反数,求x .17.如图,在ABC 中,90,10,8,C AB AC E ∠===是AC 上一点,5AE =,过点E 作ED AB ⊥于点D ,求AD 的长.18.数学爱思小组的同学们,类比二元一次方程组的图像解法,研究方程2330x x −−=根的情况.因为0x ≠,所以在方程两边同时除以x ,得330x x −−=.移项,得33x x −=.设33,y x y x=−=.请解答下列问题:(1)如图,在直角坐标系中画出反比例函数3y x=的图象; (2)观察两个函数的图象,直接写出方程2330x x −−=根的情况.19.如图,在ABC 中,点M 和N 分别在边AB 和AC 上,MB NC =,连接,,MN BN CM ,点,,,D E F G 分别是,,,MN BN BC CM 的中点.求证:四边形DEFG 是菱形.20.小明和小丽家所在小区的物业管理部门,为了规范住户停放机动车,在小区内部分道路的一侧按照标准划出一些停车位.(1)小明家楼下有六个停车位,标号分别为1,2,3,4,5,6、如果一辆机动车要随机停放在其中一个车位上,请直接写出该车停放在标号为偶数停车位的概率;(2)小丽家楼下有三个停车位,标号分别为1,2,3,如果两辆机动车要随机停放在其中两个车位上,请用列表或画树状图的方法求它们恰好都停放在标号为奇数停车位的概率.21.山西地处黄河中游,是世界上最早最大的农业起源中心之一,是中国面食文化的发祥地,其中的面条文化至今已有两千多年的历史(面条在东汉称之为“煮饼”).厨师将一定质量的面团做成拉面时,面条的总长度()m y 是面条横截面面积()2mm S 的反比例函数,其图象经过()()4,32,,80A B a 两点(如图).(1)求y 与S 之间的函数关系式; (2)求a 的值,并解释它的实际意义;(3)某厨师拉出的面条最细时的横截面面积不超过20.8mm ,求这根面条的总长度至少有多长.22.某电器商店销售某品牌冰箱,该冰箱每台的进货价为2500元,已知该商店去年10月份售出50台,第四季度累计售出182台.(1)求该商店11,12两个月的月均增长率;(2)调查发现,当该冰箱售价为2900元时,平均每天能售出8台;售价每降低50元,平均每天能多售出4台.该商店要想使该冰箱的销售利润平均每天达到5000元,求每台冰箱的售价. 23.从A,B 两题中任选一题作答.A.在ABC 中,90,3,4ACB BC AC ∠===,在ABC 的外部作正方形ABDE ,正方形BCFG 和正方形,ACIH GB 的延长线交AE 于点,M HA 的延长线分别交BM 于点K ,交DE 于点Q . (1)如图1,求:HA AK ;(2)如图2,连接IQ 分别交CA 于点P ,交BM 于点N ,求::IP PN NQ .B.(1)如图3,在ABC 中,90,30ACB BAC ∠∠==,在ABC 的外部作,,BDA AEC CFB ,已知123,90D E F ∠∠∠∠∠∠=====,求,,CFB AEC BDA 周长之比;(2)如图4,在五边形DEFGH 中,90,105,2 3.DEF D F H HG M ∠∠∠∠=====是DH 上一点,32,6MD MH ==,;,EG EM EG EM 三等分DEF ∠,求DEM 与GEF 周长之比.2022-2023学年第一学期九年级期末考试数学试题参考答案及等级评定建议一、选择题(本大题共10个小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCBCDADBDA二、填空题(本大题共5个小题,每小题3分,共15分)11.1700 12.32 13.()3,1 14.6 15.A.213AE AB = B.11n AE AB n =+三、解答题(本大题共8个小题,共55分)16.(本题5分)解::A 的值与B 的值互为相反数,2271230x x x ∴+−+−=.化简,得22410x x ++=. 这里2,4,1a b c ===,224442180b ac −=−⨯⨯=>,24484222242b b ac x −±−−±−±−∴====. 即122222,22x x −+==−. A ∴的值与B 的值互为相反数时,x 的值为222−或222+−17.(本题6分) 解:90,C ED AB ∠=⊥于点D ,90C ADE ∠∠∴==.,A A ADE ACB ∠∠=∴∽.AD AEAC AB∴=. 510,8,5,810AD AB AC AE ===∴=. 4AD ∴=.即AD 的长是4. 18.(本题5分) 解:(1)列表如下:x-4 -3 -2 -1 1 2 3 4y-0.75-1-1.5-331.510.75所以,上图为所画函数的图象.(2)方程2330x x −−=有两个不相等的实数根. 19.(本题7分) 证明:点,,,D E F G 分别是,,,MN BN BC CM 的中点,DE ∴是BMN 的中位线,FG 是BCM 的中位线.11,,,22DE BM DE BM GF BM GF BM ∴==∥∥.,DE GF DE GF ∴=∥.∴四边形DEFG 是平行四边形.同理可得12DG NC =.,BM CN DE DG =∴=.∴四边形DEFG 是菱形.20.(本题8分) 解:(1)12(2)方法一:根据题意,列表如下: 二 一1231()1,2()1,3 2()2,1()2,33()3,1()3,2由表格可知,共有6种等可能的结果,其中,它们恰好都停放在标号为奇数的停车位的结果有2种,分别为()1,3和()3,1.(P ∴它们恰好都停放在标号为奇数的停车位21)63==. 方法二:根据题意,列表如下:出现的所有结果()()()()()()1,21,32,12,33,13,2由树状图可知,共有6种等可能的结果,其中,它们恰好都停放在标号为奇数的停车位的结果有2种,分别为()1,3和()3,1.(P ∴它们恰好都停放在标号为奇数的停车位21)63==. 21.(本题8分)解:(1)设y 与S 的函数关系式是k y S=. 图象经过()4,32,324k A ∴=. 解,得128k =.y ∴与S 的函数关系式是128y S =.(2)反比例函数128y S=图象经过点(),80B a ,12880a∴=.1.6a ∴=.a ∴的值是1.6,其实际意义是面条的横截面面积是21.6mm .(3)当0.8S =时,1281281600.8y S ===. 1280,y >∴随S 的增大而减小.0.8,160S y ∴剠.∴这根面条的总长度至少有160m 长.22.(本题9分)解:(1)设该电器商店11,12两个月的月均增长率是x .根据题意,得()25050150(1)182x x ++++=. 解,得1220%, 3.2x x ==−(不合题意,舍去).答:该电器商店11,12两个月的月均增长率是20%.(2)设每台冰箱的售价为y 元.根据题意,得()2900250084500050y y −⎛⎫−+⨯= ⎪⎝⎭. 解,得122750y y ==.答:每台冰箱的售价为2750元.23.(本题7分)A.(1)证明:四边形BCFG 和四边形ACIH 是正方形,90,4ACB AC ∠==, ,,4GK FA FA IH CI AC ∴==∥∥.GK FA IH ∴∥∥.3,::4:3BC HA AK IC CB =∴==.(2)解:在Rt ABC 中,90,3,4ACB BC CA ∠===, 由勾股定理,得2222345AB BC CA =+=+=.四边形BCFG ,四边形ABDE 和四边形ACIH 是正方形,90ACB ∠=, ,,90,FA GM IB HK BAE ACB E AB AE ∠∠∠∴====∥∥..BAC ABM ACB BAM ∠∠∴=∴∽.4525..54AC AB BM AB BM BM ∴=∴=∴=. ,,FA GM IB HK ∴∥∥四边形BCAK 是平行四边形.90,ACB ∠=∴四边形BCAK 是矩形.3,90AK BC AKB ∠∴===.90ABM BAK BAK QAE ABM QAE ∠∠∠∠∠∠∴+=+=∴=. ,90BA AE BAM E ABM EAQ ∠∠===∴≅.254BM AQ ∴==. 2513344QK QA KA ∴=−=−=. 13,::::4:3:16:12:134GK FA IH IP PN NQ HA AK KQ ∴===∥∥. ::16:12:13IP PN NQ ∴=.B.解:(1)在Rt ABC 中,90,30ACB BAC ∠∠==, 12BC AB ∴=.即2AB BC =. 由勾股定理,得2222(2)3AC AB BC BC BC BC =−=−=. ::32BC AC AB ∴=.123,90D E F ∠∠∠∠∠∠=====,BCF ACE ABD ∴∽∽.,BCF ACE ∴和ABD 的周长之比是::32BC AC AB =. (2)如图,连接GM ,过点D 作DN ME ⊥于点N .90DNM DNE ∠∠∴==.,EG EM 三等分,90DEF DEF ∠∠=,1303DEM MEG GEF DEF ∠∠∠∠∴====. 在DEM 中,105EDM ∠=,18045DME EDM DEM ∠∠∠∴=−−=.在MND 中,9045MDN DME ∠∠=−=.45MDN DME MN DN ∠∠∴==∴=.在Rt DMN 中,32DM =222MN DN DM +=. 222(32)3DN DN ∴=∴=.在Rt DEN 中,30,26DEM DE DN ∠=∴==.63233,36332MH GH MH GH DM DE DM DE∴====∴=. 105,EDM H GHM EDM ∠∠==∴~.4518090HMG DME GME HMG DME ∠∠∠∠∠∴==∴=−−=. 30,GEM ∠=∴在Rt GME 中,2GE GM =.在Rt GME 中,由勾股定理,得2222(2)3.ME GE GM GM GM GM =−=−=30,105,DEM GEF MDE F DEM FEG ∠∠∠∠====∴~.3322DEM ME MG FEG GE MG ∴===的周长的周长. DEM ∴和EFG 32.。
河北省石家庄市第二十八中学2023-2024学年九年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末学业质量检测九年级数学试卷(ZX )注意事项:1.答卷前,考生务必将自己的姓名、班级等信息填写在答题卡相应位置上.2.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.答非选择题时,用黑色碳素笔在答题卡上各题的答题区域内作答,在试卷上作答无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(1-6每题3分,7-16每题2分,共16小题,满分38分)1.一元二次方程3x 2+1=6x 的一次项系数为6,二次项系数和常数项分别为( )A .3,1B .-3,-1C .3,-1D .-3x 2,-12.下列函数中不是二次函数的有( )A .y =(x -1)2B .yx 2-1C .y =3x 2+2x -1D .y =(x +1)2-x 23.在平面直角坐标系中,点P (3,2)关于原点的对称点的坐标是( )A .(2,-3)B .(3,-2)C .(-2,3)D .(-3,-2)4.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,∠BAC =38°,则∠BCD 的度数是( )A .38°B .76°C .52°D .60°5.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有40次摸到白球.请你估计这个口袋中有( )个红球.A .2B .3C .6D .86.反比例函数在同一坐标系中的图象如图所示,则的大小关系为( )P '312123,,k k k y y y x x x===123,,k k kA .B .C .D .7.如图,△AOB 和△COD 是位似图形,点O 是位似中心,CD =2AB .若点A 的坐标为(2,1),则点C 的坐标为( )A .(-6,-3)B .(-5,-3)C .(-4,-2)D .(-4,-3)8.如图,点A ,B ,C 都是正方形网格的格点,连接BA ,CA ,则∠BAC 的正弦值为( )A.BCD .29.课堂上丁老师带来一个立体图形的模型,嘉嘉同学从某一角度看到的形状为三角形,则这一立体图形一定不是( )A .圆柱B .圆锥C .棱柱D .棱锥10.一元二次方程2x (x +1)=3(x +1)的解是( )A .x =-1B .x =C .D .无实数解11.若点A (0,y 1),B (1,y 2),C (-2,y 3)是抛物线y =x 2-2x +1上的三点,则( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 212.如图,⊙C 过原点O ,且与两坐标轴分别交于点A 、B ,点A 的坐标为(0,5),点M 是第三象限内上312k k k >>132k k k >>321k k k >>213k k k >>12321231,2x x =-=)OB一点,∠BMO =120°,则⊙C 的半径为( )A .4B .5C .6D .13.如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB 和∠D 都是直角,点C 在AE 上,△ABC 绕着A 点经过逆时针旋转后能够与△ADE 重合,再将图(1)作为“基本图形”绕着A 点经过逆时针旋转得到图(2).两次旋转的角度分别为( )(1)(2)A .45°90°B .90°45°C .60°30°D .30°60°14.如图,一次函数y =ax +b 与反比例函数y=(k >0)的图象交于点A (1,2),B (-2,-1).则关于x 的不等式ax +b >的解集是( )A .x <-2或0<x <1B .x <-1或0<x <2C .-2<x <0或x >1D .-1<x <0或x >215.如图,在正六边形ABCDEF 中,M ,N 是对角线BE 上的两点.添加下列条件中的一个:①BM =EN ;②∠FAN =∠CDM ;③AM =DN ;④∠AMB =∠DNE .能使四边形AMDN 是平行四边形的是( )k x k xA .①②④B .①③④C .①②③④D .①④16.二次函数y =(a -1)x 2-(2a -3)x +a -4的图象与x 轴有两个公共点,a 取满足条件的最小整数,将图象在x 轴上方的部分沿x 轴翻折,其余部分保持不变,得到一个新图象,当直线y =kx -2与新图象恰有三个公共点时,则k 的值不可能是( )A .-1B .-2C .1D .2二、填空题(共3小题,满分10分)17.(2分)如图,抛物线y =ax 2+bx +3(a <0)交x 轴于点A ,B (4,0),交y 轴于点C ,以OC 为边的正方形OCDE 的顶点D 在抛物线上,则点A 的坐标是.18.(4分)如图,A 是⊙O 外一点,AB ,AC 分别与⊙O 相切于点B ,C ,P 是弧BC 上任意一点,过点P 作⊙O 的切线,交AB 于点M ,交AC 于点N .AO =8,BO =6,则△AMN 的周长是,若∠BAC =40°,则∠BPC =.19.(4分)如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 、C 恰好落在双曲线y 上,且点O 在AC 上,AD 交x 轴于点E.①当A点坐标为(1,m)时,D点的坐标为;②当CE平分∠ACD时,正方形ABCD的面积为.三、解答题(共7小题,满分72分)20.(9分)已知m是方程2x2-7x+1=0的一个根,求代数式m(2m-7)+5的值.21.(9分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:∠CDB=∠A;(2)若∠DBC=120°,⊙O的直径AB=8,求BC、CD的长.22.(10分)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高BC=80m,点C、A与河岸E、F在同一水平线上,从山顶B处测得河岸E和对岸F的俯角分别为∠DBE=45°,∠DBF=31°.若在此处建桥,求河宽EF的长(结果精确到1m)[参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60]Y23.(10分)如图,ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H.①求证:AH·CH=DH·GH;②若AG=2,FG=6,求GH的长.24.(本小题满分10分)某学校为丰富课后服务内容,计划开设经典诵读、花样跳绳、电脑编程、国画赏析、民族舞蹈五门兴趣课程.为了解学生对这五门兴趣课程的喜爱情况,随机抽取了部分学生进行问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制成如下两幅不完整的统计图.学生对五门兴趣课程喜爱情况条形统计图学生对五门兴趣课程喜爱情况扇形统计图根据图中信息,完成下列问题:(1)本次调查共抽取了名学生;(2)补全条形统计图;(3)计算扇形统计图中“电脑编程”所对应扇形的圆心角度数;(4)若全校共有1200名学生,请估计选择“民族舞蹈”课程的学生人数;(5)在经典诵读课前展示中,甲同学从标有A《出师表》、B《观沧海》、C《行路难》的三个签中随机抽取一个后放回,乙同学再随机抽取一个,请用列表或画树状图的方法,求甲乙两人至少有一人抽到A《出师表》的概率.25.(本小题满分12分)某学校要修建一个占地面积为64平方米的矩形体育活动场地,四周要建上高为1米的围挡,学校准备了可以修建45米长的围挡材料(可以不用完).设距形地面的边长AB=x米,BC=y米.(1)求y关于x的函数关系式(不写自变量的取值范围);(2)能否建造AB=20米的活动场地?请说明理由;(3)若矩形地面的造价为1千元/平方米,侧面围挡的造价为0.5千元/平方米,建好距形场地的总费用为80.4千元,求出x的值.(总费用=地面费用+围挡费用)26.(12分)如图,抛物线y=ax2+bx-8与x轴交于A(2,0),B(4,0),D为抛物线的顶点.图1图2(1)求抛物线的解析式;(2)如图1,若H为射线DA与y轴的交点,N为射线AB上一点,设N点的横坐标为t,△DHN的面积为S,求S与t的函数关系式;(3)如图2,在(2)的条件下,若N与B重合,G为线段DH上一点,过G作y轴的平行线交抛物线于F,连接AF,且∠AGN=∠FAG,求F点的坐标.2023-2024学年度第一学期期末学业质量检测九年级数学试卷参考答案及评分标准(zx )一.选择题(共16小题,满分38分)1-5BDDCC 6-10CCBAC 11-16DBACAD二.填空题(共3小题,满分10分)17.(-1,0),110°19.(,-1),12三.解答题(共7小题,满分72分)20.解:根据题意得:2m 2-7m +1=0,………………2分∴2m 2-7m=-1, (6)分∴m (2m -7)+5=2m 2-7m +5=-1+5=4……………………9分21.(1)证明:∵AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,∴,∴∠BCD =∠CDB ,∵,∴∠A =∠BCD ,∴∠CDB =∠A ;……………4分(2)解:∵∠DBC =120°,∴∠BCD =∠CDB =(180°-∠DBC )=30°,∠A =∠CDB =30°,∵AB 是⊙O 的直径,且AB =8,∴∠ADB =90°,∴在Rt △ADB 中,BD =AB =4,又∵,∴.BC =BD =4;……………………6分∵AB ⊥CD ,∠BCD =∠CDB =30°,∴在Rt △BCE 中,BE =BC =2,∴CE 又∵AB 是⊙O 的直径,AB ⊥CD ,∴.CD =2CE =……………………9分22.解:在Rt △BCE 中,BC =80m ,∠BEC =∠DBE =45°,∴∠CBE =45°,……………2分∴∠BEC =∠CBE =45°,∴CE =BC =80m .………………4分在Rt △BCF 中,BC =80m ,∠BFC =∠DBF =31°,tan ∠BFC =,……………………6分∴≈0.60,∴CF =133.3∴EF =CF -CE =133.3-80=53.3≈53(m ).……………………9分»»BCBD =»»BDBD =1212»»BCBD =12==BC CF 80CF答:河宽EF 的长约为53m .……………………10分23.(1)证明:∵四边形ABCD 是平行四边形,∴AD //BC ,CD //AB .∴∠D =∠FAD ,∠DCE =∠F ,∵E 是AD 的中点,∴ DE =AE ,∴△CDE ≌△FME (AAS ).∴CE =EF ,∵AE ∥BC,∴,∴AF =AB ;……………………3分(2)①证明:∵AG =2,FG =6,∴AF =FG +AG =6+2=8,∴AB =AF =8,∵四边形ABCD 是平行四边形,∴CD =AB =8,∵∠DCE =∠F ,∠FCG =∠FCD .∴∠F =∠FCG ,∴CG =FG =6,∵CD //AF ,∴△DCH ∽△AGH .∴,∴AH ∙CH =DH ∙GH ;………………7分②解:由①得△DCH ∽△AGH ,∴,即,∴GH =1.2………………10分24.解:(1)300……………………2分(2)……………………4分(3)×360°=120°…………………………6分答:“电脑编程”的圆心角度数为120°.(4)×1200=200(名)……………………8分答:选择“民族舞蹈”课程学生约有200名.(5)列表法如下:AB C AAA BA CA BAB BB CB C AC BC CC1FA FE AB CE==AH GH DH CH=CD CH AG GH =862GH GH-=10030050300由表格可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,其中甲乙两人至少有一人抽到A 的情况有5种.∴P (甲乙两人至有一人抽到A )=…………………………10分25.解:(1)∵xy =64∴y =…………………2分(2)根据题意得x =20时,y ==3.2(20+3.2)×2=46.4(米)∵46.4>45∴不能建造AB =20的活动场地.………………6分(3)64×1+(x +)×2×1×0.5=80.4……………………8分解得x =10或6.4………………………10分当x =10时y =6.4(10+6.4)×2<45;当x =6.4时y =10(6.4+10)×2<45当x =10或6.4时总费用为80.4元………………12分26.解:(1)∵抛物线y =ax 2+bx -8与x 轴交于A (2,0),B (4,0),∴解得∵抛物线解析式为y =-x 2+6x -8;………………4分(2)如图1,连接OD .图1∵抛物线解析式为y =-x 2+6x -8=-(x -3)2+1,∴抛物线顶点D 坐标(3,1),∵A (2,0),设直线AD 的解析式为:y =kx +t ,∴,解得,5964x642064x428016480a b a b +-=⎧⎨+-=⎩16a b =-⎧⎨=⎩2031k t k t +=⎧⎨+=⎩12k t =⎧⎨=-⎩∴直线AD 的解析式为:y =x -2,∴H (0,-2)……………………6分∵,∴S 与t 的函数关系式为;……………………8分(3)如图2中,延长FG 交OB 于M .图2∵A (2,0),H (0,-2),∴OH =OA ,∴∠OAH =∠OHA =45°,∵FM //OH ,∴∠MGA =∠OHA =∠MAG =45°,∴MG =MA ,∵∠FAG =∠NGA ,∴∠MAF =∠MGN ,在△MAF 和△MGN 中,,∴△MAF ≌△MGB (ASA ),∴FM =BM .……………………10分设M (m ,0),则F (m ,-m 2+6m -8),∴-(-m 2+6m -8)=4-m ,解得m =1或4(舍去),∴F (1,-3). (12)分1113122332222OND ONH OHD S S S S t t t =+-=⨯⨯+⨯⨯-⨯⨯=-V V V 33(2)2S t t =->AMF GMB AM MGMAF MGB =⎧⎪=⎨⎪=⎩∠∠∠∠。
九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
2023-2024学年湖北省武汉市东湖高新区九年级上学期期末数学试卷

武汉市东湖高新区2023—2024学年度第一学期期末考试九年级数学试题说明:本卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,全卷共6页,三大题,满分120分,考试用时120分钟.第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上涂选.1.下列环保标志,既是轴对称图形,也是中心对称图形的是( ).A .B .C .D .2.事件①任意画一个多边形,其外角和为360°;事件②经过一个有交通信号灯的十字路口,遇到红灯.下列说法正确的是( ). A .事件①和②都是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是必然事件D .事件①是必然事件,事件②是随机事件3.若关于x 的一元二次方程230x x a -+=的一个根为2x =,则a 的值为( ) A .2B .-2C .4D .-44.在平面直角坐标系中,以点()4,3为圆心,4为半径的圆与坐标轴的位置关系为( ). A .与x 轴相切B .与x 轴相离C .与y 轴相切D .与y 轴相交5.我国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,试问:阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步.如果设宽为x 步,则可列出方程( ). A .()6864x x -= B .()12864x x -= C .()6864x x +=D .()12864x x +=6.已知△ABC 在正方形网格中的位置如图所示,A ,B ,C ,P 四点均在格点上,则点P 叫做△ABC 的( )A .垂心(三边高线的交点)B .重心(三边中线的交点)C .外心(三边垂直平分线的交点)D .内心(三内角平分线的交点)7.已知抛物线22y x x c =-+经过点()11,P y -和点()2,Q m y .若12y y <,则m 的取值范围( ) A .13m -<<B .13m <<C .1m <-或3m >D .1m <-或2m >8.从不透明的袋子中进行摸球游戏,这些球除颜色外其它都相同,小红根据游戏规则,作出如图所示的树状图,则此次摸球的游戏规则是( )A .随机摸出一个球后放回,再随机摸出1个球B .随机摸出一个球后不放回,再随机摸出1个球C .随机摸出一个球后放回,再随机摸出3个球D .随机摸出一个球后不放回,再随机摸出3个球 9.如图,点P 在O 的直径AB 上,作正方形PCDE 和正方形PFGH ,其中D ,G 两点在AB 所在直线上,C ,E ,F ,H 四点都在O 上,若两个正方形的面积之和为16,OP =,则DG 的长是( ).A .B .C .7D .10.已知抛物线2y x ax b =++与x 轴两个交点间的距离为2,将此抛物线向右平移2个单位,再向下平移3个单位,得到一条新抛物线,则新抛物线与x 轴两个交点问的距离是( ).A .4B .5C .8D .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6小题,每小题3分,共18分,请在答题卡上填写)11.在平面直角坐标系中,点()3,4P -关于原点对称的点的坐标是______.12.若1x m =,2x n =是一元二次方程2250x x --=的两个实数根,则mn m n --=______. 13.如图是可以自由转动的三个转盘,请根据下列情形回答问题(不考虑指针落在分界线上)。
2021-2022学年辽宁省本溪市九年级上学期期末数学试题(解析版)

B、 ,此项错误;
C、 ,此项错误;
D、 ,此项正确;
故选:D.
【点睛】本题考查了合并同类项、积的乘方与幂的乘方、完全平方公式、二次根式的除法,熟练掌握各运算法则和公式是解题关键.
4.下列图形中,既是中心对称图形又是抽对称图形的是()
A. B. C. D.
【详解】解:2510000000= ;
故答案为: .
【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.
12.分解因式: __________.
【答案】
【分析】利用提公因式及平方差公式进行因式分解即可.
【详解】解: ;
【详解】证明:① 四边形 是正方形,
, , .
在 和 中,
,
,
,故①正确;
②在 上取一点 ,使 ,连接 ,
,
.
,
,
,
.
,
,
.
,
是等边三角形.
, ,
,
.
在 和 中,
,
,
.
,
,故②正确;
③过 作 交于 ,
根据勾股定理求出 ,
由面积公式得: ,
,
, ,
, ,
,故③正确;
④在 中, ,
是等边三角形,
,
,
,
,
本溪市2021~2022学年(上)期末教学质量检测
九年级数学试卷
一、选择题
1.在﹣3,﹣1,0,2这四个数中,最小的数是( )
A.﹣3B.﹣1C. 0D. 2
【答案】A
人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:a某2+b某+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中a某2叫二次项,b某叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2某(某﹣3)﹣5(某﹣3)=0,再把方程左边进行因式分解得(某﹣3)(2某﹣5)=0,方程就可化为两个一元一次方程某﹣3=0或2某﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2某(某﹣3)﹣5(某﹣3)=0,∴(某﹣3)(2某﹣5)=0,∴某﹣3=0或2某﹣5=0,∴某1=3,某2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是=πlr=13某5某π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的某的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时某的取值范围是0<某<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是某,则存入一年后的本息和是5000(1+某)元,取3000元后余[5000(1+某)﹣3000]元,再存一年则有方程[5000(1+某)﹣3000](1+某)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是某,根据题意得:一年时:5000(1+某),取出3000后剩:5000(1+某)﹣3000,同理两年后是[5000(1+某)﹣3000](1+某),即方程为[5000(1+某)﹣3000](1+某)=2750,解得:某1=10%,某2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金某(1+利率某期数),难度一般.10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,∴某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程某2﹣m某+m﹣2=0即为某2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果某1,某2是方程某2+p某+q=0的两根时,那么某1+某2=﹣p,某1某2=q.11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得某=,∵某≤2,某=不合题意舍去,故某=﹣;再代入下边的方程某=4,∵某>2,故某=4,综上,某的值为4或﹣.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴某=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为某==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当某=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与某轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当某=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2某a某tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2某8=AB某AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣某2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=某2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于某轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=某2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于某轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣某2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=某2﹣2某﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=某2﹣2某﹣3,解得:某=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程某2﹣3某+2=0进行因式分解,变为(某﹣2)(某﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将某=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:某2﹣3某+2=0,(某﹣2)(某﹣1)=0,某1=2,某2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4某1某(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当某=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:某2﹣某﹣2=0,即(某﹣2)(某+1)=0,解得:某1=2,某2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程a某2+b某+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+某(某+1)=(某+4)(某﹣1),整理,得2某=9,解得某=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为某米,则矩形的另一边长为(30﹣2某)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为某米,则某(30﹣2某)=72,解方程得:某1=3,某2=12.当某=3时,长=30﹣2某3=24>18,故舍去,所以某=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则某(30﹣2某)=120,整理得即某2﹣15某+60=0,△=b2﹣4ac=152﹣4某60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB 的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当某=0时,y=2,即C(0,2),当y=0时,某+2=0,解得某=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣某2﹣某+2;(2)抛物线上是存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。
2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秘密★启用前试卷类型:A
第一学期九年级期末质量检测
数学试题
(总分120分考试时间120分钟)
注意事项:
1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.
2. 答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.
3. 第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm碳素笔答在答题卡的相应位置上.
4. 考试时,不允许使用科学计算器.
第Ⅰ卷(选择题共30分)
一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.﹣2015的倒数是()
A .﹣
B .C.﹣2015 D.2015
2.下列计算正确的是()
A .B.3﹣1=﹣3 C.(a4)2=a8 D.a6÷a2=a3
3.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,
说法正确的是()
A.主视图的面积最大 B.左视图的面积最大
C.俯视图的面积最大 D.三个视图的面积一样大
4.关于x 的不等式的解集在数轴上表示如图所示,则a
的值是()
A.﹣6 B.﹣12 C.6 D.12
5.将一副三角板按图中的方式叠放,则∠α等于()
A.75°B.60°C.45°D.30°6.小明为研究反比例函数y=的图象,在﹣2、﹣1、1中任意取一个数为横坐标,在﹣1、2
中任意取一个数为纵坐标组成点P的坐标,点P在反比例函数
y=的图象上的概率是()A .B .C .D .
7.下列命题中,真命题是()
A.等边三角形是中心对称图形
B.对角线相等且互相垂直的四边形是菱形
C.相等的圆心角所对的弦相等
D.相似三角形周长的比等于对应中线的比
8.如图,直径为10的⊙A经过点C(0,5)和点O (0,0),B是y轴右侧⊙A优弧上一点,则tan∠OBC的值为()
A .
B .
C .
D .
9.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()
A.5cm B.10cm C.20cm D.5πcm
10.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:
(1)∠DBM=∠CDE;(2)S△BDE<S四边形BMFE;(3)CD•EN=BN•BD;(4)AC=2DF.其中正确结论的个数是()
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.
11.在刚刚过去的2014年,中央财政下达农村义务教育经费保障机制资金共878.97亿元,在学生人数减少的情况下,仍比2013年增长6.1%.数据“878.97亿元”用科学记数法可表示为______________元。
12.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:
身高(cm ) 170 172 175 178 180 182 185
人数(个)
2 4 5 2
4 3
1 则该校排球队21名同学身高的中位数分别是_______cm.
13.分解因式:5x 3
﹣10x 2
+5x= .
14.若使式子
有意义,则x 的取值范围是 .
15.如图,点A 在双曲线
上,点B 在双曲线y=上,且AB ∥x 轴,C 、D 在x 轴上,若四
边形ABCD 为矩形,则它的面积为 .
16.如图,在四边形ABCD 中,AD ∥BC ,∠B=Rt ∠,∠C=60°,AD=4,CD=8,点E 在BC
上,点F 在CD 上,现将四边形ABCD 沿EF 折叠,若点C 洽与点A 重合,EF 为折痕,则CE= 17.如图,以任意△ABC 的边AB 和AC 向形外作等腰Rt △ABD 和等腰Rt △ACE ,F 、G 分别
是线段BD 和CE 的中点,则的值等于____________
18.在直角坐标系中,直线y=x+1与y 轴交于点A ,按如图方式作
正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…,A 1、A 2、A 3…在直线y=x+1上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1、S 2、S 3、…S n ,则S n 的值为 (用含n 的代数式表示,n 为正整数).
三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分7分,第(1)题3分,第(2)题4分) (1)计算:
45tan
)2
1()2015(1)2(10
2
---+----π (2)先化简,后求值.
)2
5
2(423--+÷--m m m m ,
其中
32-=m
20.(本题满分8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学
生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.
根据图中提供的信息,解答下列问题: (1)补全频数分布直方图;
(2)求扇形统计图中m 的值和“E ”组对应的圆心角度数;
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.
21.(本题满分8分)如图,在⊙O 中,∠AOB=150°,∠ABC=45°,延长OB 到D ,使BD=OB ,连接CD .
(1)求证:CD 与⊙O 相切; (2)若CD=6,求弓形BC (劣弧所对)的面积.(结果保留π
和根号)
22.(本题满分8分)如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.
(1)求点E距水平面BC的高度;
(2)求楼房AB的高.(结果精确到0.1
米,参考数据
≈1.414,≈1.732).
23.(本题满分9分)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.
(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?
24.(本题满分10分)如图,在直角△ABC中,∠C=90°,AC=4,∠A=60°,CD是边AB上的中线,直线BM∥AC,E是边CA延长线上一点,ED交直线BM于点F,将△EDC沿CD翻折得△E′DC,射线DE′交直线BM于点G.
(1)如图1,当CD⊥EF时,求BF的值;
(2)如图2,当G在点F右侧时,求证:△BDF∽△BGD;
(3)如果△DFG的面积为6,求AE的长.
25.(本题满分12分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.。