大学物理《弦振动》实验报告
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
弦振动的研究实验报告

弦振动的研究实验报告实验目的:通过实验研究弦的振动特性,并分析弦振动时的动力学特点。
实验装置和材料:1. 弦:选用一根细长的弹性绳或细细的金属丝作为实验弦。
2. 振动源:使用一个固定在实验台上的振动源,可以通过电机或手动方式产生振动。
3. 能量传输装置:使用一个振动传输装置,将振动传输到实验弦上,如夹子、固定块等。
4. 振动探测器:使用一个合适的装置或传感器,用于测量弦的振动状态,如光电传感器、激光干涉仪等。
5. 数据采集设备:使用一个数据采集器,将振动数据进行记录和分析。
实验步骤:1. 将实验弦固定在实验台上,并将振动源固定在一端,确保弦能够自由振动。
2. 施加适量的拉力到弦上,以保证弦的紧绷度。
3. 使用振动源产生一定频率和振幅的振动,并将振动传输到实验弦上。
4. 启动数据采集设备记录弦的振动数据,包括振动频率、振幅和相位等。
5. 根据需要,可以改变振动源的频率和振幅,记录不同条件下的振动数据。
6. 对实验数据进行分析,绘制振动频率与振幅的关系图,并分析振动的谐波特性。
实验结果与分析:1. 实验数据表明,弦的振动频率与振幅呈正相关关系,即振动频率随着振幅的增加而增加。
2. 弦振动呈现出谐波特性,即振动状态可分解为基频振动和多个谐波振动的叠加。
3. 弦的振动模式与弦长度、拉力和材料特性有关,可以通过改变这些参数来调节振动频率和振幅。
结论:通过实验研究弦的振动特性,我们发现弦振动具有谐波特性,振动频率与振幅呈正相关关系。
弦的振动模式受到弦长度、拉力和材料特性的影响。
这些实验结果对于理解弦乐器的音色产生原理和振动系统的动力学特性具有重要意义。
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的'信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
弦振动的实验报告

弦振动的实验报告弦振动的实验报告引言弦振动是物理学中的一个经典现象,也是许多实验室中常见的实验项目之一。
通过对弦的振动进行观察和测量,可以深入了解波动和振动的基本特性。
本实验报告旨在介绍弦振动实验的步骤、观察结果以及对结果的分析和解释。
实验目的本实验的主要目的是研究弦振动的基本特性,包括频率、振幅和波长之间的关系。
通过实验,我们将验证弦振动的频率与弦长、张力以及弦的线密度之间的关系,并探究弦振动的谐振现象。
实验装置和材料1. 弦:使用一根细长的弹性绳或钢丝,确保其能够产生明显的振动。
2. 张力装置:使用两个固定的支架,将弦固定在适当的张力下。
3. 振动源:使用一个手柄或者电动机激发弦的振动。
4. 频率计:用于测量弦振动的频率。
5. 尺子:用于测量弦的长度。
6. 夹子:用于调整弦的张力。
实验步骤1. 将弦固定在张力装置上,并调整张力,使弦保持适度的紧绷状态。
2. 用尺子测量弦的长度,并记录下来。
3. 使用振动源激发弦的振动,注意保持振动的幅度适中。
4. 使用频率计测量弦振动的频率,并记录下来。
5. 重复上述步骤,分别改变弦的长度和张力,并记录相应的频率。
实验结果在进行弦振动实验时,我们记录了不同弦长和不同张力下的振动频率。
通过对实验数据的分析,我们得到了以下结果:1. 弦长与频率的关系:在保持张力和振动幅度不变的情况下,我们发现弦长与频率之间存在着线性关系。
当弦长增加时,频率减小;当弦长减小时,频率增大。
2. 张力与频率的关系:在保持弦长和振动幅度不变的情况下,我们发现张力与频率之间也存在着线性关系。
当张力增大时,频率增大;当张力减小时,频率减小。
3. 弦振动的谐振现象:我们观察到,在特定的弦长和张力下,弦能够产生谐振现象。
谐振是指弦振动的频率与其固有频率完全匹配的现象,此时振动幅度最大。
结果分析与解释根据实验结果,我们可以得出以下分析和解释:1. 弦长与频率的关系:弦振动的频率与其长度之间存在线性关系,这符合弦振动的基本原理。
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如报告范文、工作总结、文秘知识、条据书信、行政公文、活动报告、党团范文、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this shop. I hope that after downloading it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical sample essays, such as report sample essays, work summary, secretarial knowledge, article letters, administrative official documents, activity reports, party group sample essays, other sample essays, etc. I want to understand the format and writing of different sample essays. stay tuned!正文内容(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
弦振动测量实验报告

弦振动测量实验报告实验目的:通过实验测量弦的振动频率,研究弦的基频和谐波频率的关系。
实验原理:弦的振动是一种机械波,可以用正弦函数表示,其频率由弦的特性决定,可以通过测量频率来研究弦的特性。
弦的振动有基频和谐波频率,其中基频是弦振动的最低频率,谐波频率是基频的整数倍。
实验中利用调谐叉的共振现象来测量弦的频率。
实验装置:弦、调谐叉、音叉、电子秤、示波器等。
实验步骤:1. 将一根弦固定在两个固定点上,并保持弦处于水平状态。
2. 在弦的中点附近用调谐叉产生共振,使弦振动。
调整音叉的频率,直到弦开始共振。
3. 用示波器测量共振时弦的频率。
4. 改变弦的长度或材料,重复上述步骤,测量不同情况下的弦频率。
5. 根据测量数据,绘制弦的频率与长度的关系曲线,并分析实验结果。
实验数据处理:1. 实验测量得到的弦的频率数据,可以计算出相应的弦的长度。
2. 利用实验得到的数据,绘制频率和长度之间的曲线,得到实验结果。
3. 分析实验结果,得出弦的基频和谐波频率之间的关系,以及弦的特性。
实验结果与讨论:根据实验测得的数据,我们可以得到弦的频率和长度之间的关系曲线。
通常情况下,弦的长度越长,频率越低,因为弦的振动速度变慢。
当弦的长度固定时,改变弦的材料也会影响频率。
实验中我们可以观察到基频和谐波频率之间有一定的数学关系,通常基频是谐波频率的整数倍。
通过实验测量,我们可以研究弦的机械波特性。
实验中我们使用了调谐叉共振的方法,通过调整音叉频率和测量弦的共振频率来得到实验数据。
然后将实验数据处理,得到频率和长度之间的曲线,分析实验结果。
实验中可能存在的误差主要来自于测量仪器的灵敏度和人为误差。
由于实验中使用的是简化的模型,实际的弦振动可能会受到其他因素的干扰,如摩擦、空气阻力等。
因此,在实验过程中尽可能减小误差并进行多次测量,可以提高实验数据的准确性。
通过这个实验,我们了解了弦振动的特性,学会了通过测量弦的频率来研究弦的特性。
同时,实验中需要注意减小误差,提高数据准确性。
弦振动的研究实验报告

弦振动的研究实验报告弦振动的研究实验报告引言弦振动作为物理学中的一个重要研究领域,其在音乐、工程、物理等多个领域都有广泛的应用。
本文将介绍一项关于弦振动的实验研究,通过实验数据和分析,探究弦振动的特性和规律。
实验目的本次实验的目的是通过调节弦的张力和长度,观察弦振动的频率和波形变化,进一步了解弦振动的特性,并验证弦振动的相关理论。
实验器材1. 弦:选择一根柔软且均匀的弦,如钢琴弦或者尼龙弦。
2. 弦激振器:用于激励弦振动的装置,可以是手摇的或者电动的。
3. 张力调节器:用于调节弦的张力,可以通过改变固定点的位置或者增加负重来实现。
4. 长度调节器:用于调节弦的长度,可以通过改变固定点的位置或者使用滑动支架来实现。
5. 频率计:用于测量弦振动的频率。
实验步骤1. 设置实验装置:将弦固定在两个支架上,并通过张力调节器调整弦的张力。
保持弦的长度初值为L0。
2. 激励弦振动:使用弦激振器在弦上施加横向力,使其振动。
可以调整激振器的频率和振幅。
3. 测量频率:使用频率计测量弦振动的频率。
记录下频率值f0。
4. 调整弦长度:通过滑动支架或者改变固定点的位置,改变弦的长度为L1,并再次测量频率f1。
5. 调整张力:通过增加负重或者改变固定点的位置,改变弦的张力,并测量频率f2。
6. 重复步骤4和5,记录不同长度和张力下的频率值。
实验结果与分析通过实验数据的记录和分析,我们可以得到以下结论:1. 弦的长度对振动频率的影响:当弦的长度增加时,振动频率减小。
这符合弦振动的基本原理,即弦的长度与振动频率呈反比关系。
2. 弦的张力对振动频率的影响:当张力增大时,振动频率也增大。
这是因为张力的增加会使弦的振动速度加快,从而导致频率的增加。
3. 弦的波形变化:通过观察弦的振动波形,我们可以发现当振动频率接近弦的固有频率时,波形呈现出共振现象,振幅增大。
这是由于共振频率与弦的固有频率相匹配,能量传递更加高效。
实验误差分析在实验过程中,可能存在一些误差,如频率计的精度限制、弦的材料和品质不同等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)
一. 实验目的
1. 观察弦上形成的驻波
2. 学习用双踪示波器观察弦振动的波形
3. 验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系
二. 实验仪器
XY弦音计、双踪示波器、水平尺
三实验原理
当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
论和实验证明,波在弦上传播的速度可由下式表示:
ρ
1
另外一方面,波的传播速度v 和波长λ及频率γ之间的关系是:
v= λ γ
-- ②
将②代入①中得
γ
=λ1
-- ③ρ 1
又有L=n* λ/2或λ =2*L/n 代入③得γ
n=2L
--- ④ρ 1
四实验内容和步骤
1. 研究γ和n 的关系
①选择 5 根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm ,置驱动线圈距离一个弦码大约5.00cm 的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg 砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必
要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则
T=2mg;若砝码挂在第三个槽,则T=3mg⋯⋯. )④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1 时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5 时的共振频率,做γn 图线,导出γ和n 的关系。
2. 研究γ和T 的关系保持L=60.00cm,ρ
1 保持不变,将1kg 的砝码依次挂在第1、2、3、4、5 槽内,测出n=1
时的各共振频率。
计算lg r 和lgT,以lg2 为纵轴,lgT 为横轴作图,由此导出r 和T 的关系。
3. 验证驻波公式
根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式
1、弦长l1 、波腹数n 的
五数据记录及处理
1. 实验内容1-2 数据T=1mg ρ1=5.972 kg/m 数据处理:
由matlab 求得平均数以及标准差 1. 平均数
x1=117.5600 2. 标准差σx=63.8474
最小二乘法拟合结果:Linear model Poly1:f(x) =
p1*x + p2
Coefficients (with 95% confidence bounds): p1 =
40.38 (39.97, 40.79) p2 = -3.58 (-4.953, -2.207)
Goodness of fit:SSE: 0.508R-square: 1
Adjusted R-square: 1RMSE: 0.4115
此结果中R-square: 1 Adjusted R-square: 1 说明,此次数据没有异常点,并且这次实验数据n 与γ关系非常接近线性关系,并可以得出结论:n 与γ呈正比。
2. 实验内容
3.4 数据
1. 平均数x1= 6
2.20xx 2. 标准差σ x=308.2850 最小二乘法
拟合结果:Linear model Poly1:f(x) =
p1*x + p2
Coefficients (with 95% confidence bounds): p1 =0.4902 (0.4467, 0.5336) p2 = 1.574 (1.553, 1.595) Goodness of fit:SSE: 0.0001705R-square: 0.9977
Adjusted R-square: 0.9969RMSE: 0.007539
由分析可知,此次数据中并没有异常点,并且进行线性拟合后R-square: 0.9977 Adjusted R-square: 0.9969 ,因为都极其接近1,所以说此次拟合进行的非常成功,由此我们可以得出相应
的结论:lgT 与lg γ是线性关系。
六. 结论
验证了弦振动的共振频率与张力是线性关系也验证了弦振动
的共振频率与波腹数是线性关系。
七. 误差分析
在γ和n 关系的实验中,判断是否接近共振时,会有一些误差,而且因为有外界风力等不可避免因素,所以可能会有较小误差。
在γ与T 实验中,由于摩擦力,弦不是处于完全水平等可能产生较小的误差。
附录( Matlab 代码)
%%实验1 %一
A=[1 37.2 2 76.9 3 117.1 4 158.1 5 198.5];
p1=mean(A(:,2)); % 平均数q1=sqrt(var(A(:,2))); % 标准差figure
plot(A(:,1),A(:,2),o) hold on lsline
xlabel(n 波腹数);
ylabel( γ(Hz) 频率);title( γ和n 的关系);
[k b]=polyfit(A(:,1),A(:,2),1);% 拟合直线
%二
%T (kg)LgT (kg)γ(Hz) Lgγ(Hz) B=[1 0.00 37.2
1.57 2 0.3 53.6 1.73 3 0.48 65.0 1.81 4 0.60 7
2.5 1.86 5 0.70 82.7
1.92];
x=B(:,1); y=B(:,3);
figure
loglog(x,y) %x ,y 都为对数坐标
plot(B(:,2),B(:,4),o) hold on lsline
xlabel(T 拉力);
ylabel( γ(Hz) 频率); title( γ和T的关系)。