3-2 牛顿运动定律的应用
牛顿三大定律在生活中的应用

牛顿第二定律
•
用力推或拉物体,物体瞬间获得加速度,开始运动
踢足球时足球受到 力后,加速度改变, 从而改变运动状态
牛顿第二定律
• • 适用范围 (1)当物体速度接近光速时,会有很 强的相对论效应,经典力学需要做修改。 • (2)当考察物体的运动线度可以和该 物体的德布罗意波长相比拟时,经典力学不 再适用,需要用量子力学方法。 • (3)经典力学成立的参考系为惯性系。
牛顿第三定律
• 两个物体之间的作用力和反作用力,在同一条 直线上,大小相等,方向相反。
飞机向后喷气, 起飞
牛顿第三定律
跑步时向后蹬踏,人向前跑 用拳头打墙,手会感到疼痛 马拉车时,马同时受到车向后的拉力
牛顿第三定律
注意:
•
• • • •
• •
两个物体间的作用力和反作用力总是大小相等,方向 相反,并且作用在同一直线上 F1=-F2 ①力的作用是相互的。同时出现,同时消失。 ②相互作用力一定是相同性质的力 ③作用力和反作用力作用在两个物体上,产生的作用 不能相互抵消。 ④作用力也可以叫做反作用力,只是选择的参照物不 同 ⑤作用力和反作用力因为作用点不在同一个物体上, 所以不能求合力
牛顿三大定律的演变
牛顿的三大运动定律包括:一切物体在不受外力的情况下,总保持静止或匀 速直线运动状态(惯性定律);物体运动的加速度与物体所受合外力成正比, 与物体质量成反比,加速度方向与合外力方向相同(加速度定律);两个物 体间的作用力与反作用力在同一条直线上,大小相等,方向相反(作用力与 反作用力定律)。 运动三定律虽以英国著名物理学家、天文学家、数学家牛顿(I.Newton, 1643-1727)的名字命名,但它是历史上许多科学家长期探索的结晶。 16世纪末、17世纪初,意大利物理学家伽利略(G.Galilei,1564- 1642)详细研究了落体的运动,对惯性运动、物体运动与加速度的关系进 行了科学的描述。此后,荷兰物理学家惠更斯(C.Huygens,1629-1695) 对惯性运动和碰撞运动进行了深入的研究,并进行了科学的阐释。伽利略、 惠更斯等人的工作为运动三定律奠定了实验和理论的基础。 1684年,牛顿集成并发展了前人的研究成果,科学、系统地定义了惯 性定律、加速度定律、作用力与反作用力定律,合称运动三定律。
牛顿运动定律的应用

牛顿运动定律的应用牛顿运动定律是力学中非常重要的理论,它描述了物体运动的规律。
这三条定律分别是:第一定律,即惯性定律;第二定律,即力和加速度的关系;第三定律,即作用力和反作用力的相互作用。
牛顿第一定律,也被称为惯性定律,表明一个物体如果没有受到外力作用,将保持静止或匀速直线运动。
应用牛顿第一定律的一个例子是车辆在直线上行驶的情况。
假设车辆停止时,乘坐车辆的人会向前倾斜。
这是因为车辆突然停止,但乘坐车辆的人仍然保持了原有的前进速度。
这种现象可以通过牛顿第一定律解释,即人的惯性使其保持了原有的速度。
牛顿第二定律告诉我们,物体的加速度正比于作用在其上的力,并且与物体的质量成反比。
公式表示为 F = ma,其中 F 是作用力,m 是物体的质量,a 是物体的加速度。
一个常见的应用是弹簧秤的原理,弹簧秤通过测量物体受到的重力来确定其质量。
根据牛顿第二定律,物体所受的重力与其质量成正比,因此可以通过测量弹簧的伸缩量来确定物体的质量。
牛顿第三定律指出,任何两个物体之间的相互作用力都是相等且相反的。
这意味着如果一个物体对另一个物体施加一个力,那么另一个物体也将对它施加同样大小但方向相反的力。
一个常见的应用是火箭发射。
当火箭喷出高速气体时,根据牛顿第三定律,喷出气体的力将产生一个相反的推力,从而推动火箭向上运动。
除了上述应用之外,牛顿运动定律在日常生活中还有许多其他的应用。
例如,使用力来推动自行车,理解球类在空中的轨迹,以及分析体育运动中的各种动作等等。
牛顿运动定律不仅在物理学领域中发挥着重要作用,而且对于我们理解和解释自然界中的各种现象也起着至关重要的作用。
总结一下,牛顿运动定律是力学中重要的理论,它广泛应用于各个领域。
无论是研究物体的运动规律,还是解释日常现象中的偏差,牛顿运动定律都能提供准确的描述和解释。
深入理解和应用牛顿运动定律不仅有助于扩展我们对物理学的认识,而且能够帮助我们更好地理解和解释我们身边发生的各种事物。
牛顿三大定律的概念及应用

牛顿三大定律的概念及应用_牛顿三大定律的概念及应用牛顿三大定律是在力学当中重要的定律,在这里,我们一起来回顾学习一下牛顿三大定律的概念解读及其应用。
一、概念及解读1、牛顿第一定律(惯性定律):任何一个物体在不受外力或受平衡力的作用时,总是保持静止状态或匀速直线运动状态,直到有作用在它上面的外力迫使它改变这种状态为止。
解读:力改变物体的运动状态,惯性维持物体的运动状态,直至受到可以改变物体运动状态的外力为止。
2、牛顿第二定律(加速度定律):物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
解读:(1)适用范围:一般只适用于质点的运动。
(2)表达式为:F=kma(k=1)=ma,这是一个矢量方程,注意规定正方向,一般取加速度的方向为正方向。
(3)牛顿第二定律解题常用的两种方法:①合成法;②正交分解法:已知受力情况时,正交分解力;已知运动情况时,正交分解加速度。
3、牛顿第三定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。
解读:注意相互作用力与平衡力的区别:(1)一对相互作用力大小相等、方向相反、作用在同一直线上、且分别在两个物体上,一定是同性质力。
而一对平衡力是作用在同一个物体上的两个大小相同、方向相反,作用在同一直线上的力,两个力不一定是同性质力。
(2)一对平衡力中的两个力不一定同时存在,可以单独存在,但一对相互作用力同时存在,同时消失。
二、应用例1.(牛顿第一定律)根据牛顿运动定律,以下选项中正确的是( )。
A.人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位臵B.人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方C.人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D.人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方答案:C。
解析:AB、除了在静止车厢外,在匀速直线前进的车厢内,跳起后,由于水平方向的惯性,人在水平方向依然保持原来的速度,故也将落在车厢的原来位置。
牛顿的三大运动定律解析与应用

牛顿的三大运动定律解析与应用在物理学领域中,牛顿的三大运动定律是基础且重要的理论,它们对于解释物体运动的规律以及实际应用有着广泛的影响和意义。
本文将对牛顿三大运动定律进行解析,并探讨其在实际生活中的应用。
第一定律:惯性定律牛顿第一定律也被称为惯性定律,它表明一个物体如果没有受到外力的作用,将保持静止状态或匀速直线运动状态。
这意味着物体具有惯性,只有外力的作用才能改变其状态。
例如,当我们在车辆急刹车时,坐在车内没有扶持物的人会向前倾斜,这是因为人的身体会继续保持运动状态,反应出牛顿第一定律的特性。
第二定律:动量定律牛顿第二定律是描述物体运动与所受力量之间关系的定律,它表明力等于质量乘以加速度,即F=ma。
这条定律揭示了物体的运动状态如何受到力的作用而改变,并定量地描述了力的效果。
例如,当一个人用力推动一辆停着的自行车,施加在自行车上的力越大,自行车的加速度也越大。
第三定律:作用反作用定律牛顿第三定律也被称为作用反作用定律,它表明任何一个物体施加在另一个物体上的力,都会产生一个大小相等、方向相反的力作用到施力物体上。
简单来说,作用力和反作用力相等且反向。
例如,当我们站在地面上,我们的身体对地面施加一个向下的力,而地面同样也对我们的身体施加一个大小相等、方向相反的向上的力,使我们保持平衡。
三大定律的应用牛顿三大运动定律在实际生活中有着广泛的应用。
以下是几个重要的应用示例:1. 汽车行驶汽车的驱动是基于牛顿第三定律的应用。
当汽车的轮胎与地面产生摩擦力时,地面同样施加相当于摩擦力的反作用力到轮胎上,使汽车能够前进。
2. 跳水运动在跳水运动中,运动员通过牛顿第二定律的应用来控制自己的运动。
通过改变身体的姿势和动作,运动员可以控制自己的质量和加速度,从而实现翻滚和旋转等特定动作。
3. 建筑物工程在建筑物的设计和施工中,需要合理运用牛顿定律来平衡和支撑结构的力。
例如,在高楼建筑中,需要根据物体的重力和受力情况来计算和确定建筑材料的强度和支撑结构。
牛顿运动定律及其应用

牛顿运动定律及其应用牛顿运动定律是经典物理学的重要组成部分。
该定律是形成整个物理学的基础,它解释了物体运动的力学规律。
牛顿运动定律不仅有纯理论方面的应用,还有实际物理问题的具体解决方案。
一、牛顿运动定律的概念牛顿运动定律简称牛顿定律,是经典力学中的三个基本定律之一,主要阐述了物体在受力作用下的运动规律。
一般认为牛顿运动定律包含以下三个方面的内容:1. 物体运动状态的惯性,即没有外部力作用时,物体将保持静止或匀速直线运动的状态;2. 物体的加速度大小与作用力成正比,方向与作用力方向相同;3. 物体作用力与反作用力大小相等,方向相反。
二、牛顿运动定律的应用1. 牛顿第一定律的应用牛顿第一定律是运动学与动力学的基础,具有重要的应用价值。
在许多科学技术领域,长时间的恒定作用力是很难实现的。
而且,为了保证精度及可靠性,必须满足设备的高精度、长时间性能稳定等需求。
常常采用惯性运动的概念,即由物体的惯性保持其原来的状态,以达到稳定的效果。
比如说,汽车减速时要离开刹车,将离合器松开,让发动机阻力和车轮的弹性力平衡,这就是利用牛顿第一定律所实现的。
2. 牛顿第二定律的应用牛顿第二定律说明了力与加速度的关系。
任何物体都可以视为质点,即对质量集中在一个点而导致的物体。
它通常被描述为一个物体所受力的大小与速度的变化率成正比。
因此,牛顿第二定律可以被看作是加速度计算的基本公式。
举个例子,当我们想要去提高跳绳的速度时,必须增加绳索的旋转速度,以增加绳上的拉力,使脚踩弹跳更顺畅。
根据牛顿第二定律,物体受力与加速度成正比。
因此,在提高跳绳速度的过程中,我们可以通过应用拉力来增加加速度,从而提高跳绳的速度。
3. 牛顿第三定律的应用牛顿第三定律描述了两个物体之间相互作用的情况。
它表示每个物体受到的作用力与另一个物体施加在其上的相同大小的反作用力相等,方向相反。
举个例子,当人们在游泳时,水对游泳池边的力与离水面很近的空气对人体的相等的反向力是一对牛顿第三定律的作用力和反作用力。
物理学中的牛顿运动定律解释及应用示例

物理学中的牛顿运动定律解释及应用示例牛顿运动定律是物理学中最基本的定律之一,它描述了物体在受到力的作用下的运动规律。
在本文中,我们将探讨牛顿运动定律的解释及其在现实生活中的应用示例。
首先,让我们回顾一下牛顿运动定律的三个基本原理。
第一定律,也被称为惯性定律,指出物体在没有外力作用时将保持静止或匀速直线运动。
这意味着物体的运动状态不会自发地改变,除非有外力作用于其上。
第二定律是牛顿运动定律中最为重要的定律,它描述了物体在受到力的作用下的加速度。
牛顿的第二定律可以用数学公式F=ma来表示,其中F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
这个公式说明了力和加速度之间的关系,即物体所受的力越大,其加速度也越大。
第三定律是牛顿运动定律中最为有趣的定律,它表明对于每一个作用力都存在一个相等大小但方向相反的反作用力。
简而言之,这意味着每一个作用力都会引起物体对作用力的反向作用。
例如,当我们站在地面上时,我们对地面施加了一个向下的力,而地面对我们也会施加一个向上的力,这就是牛顿第三定律的体现。
牛顿运动定律的应用非常广泛,下面我们将通过几个具体的示例来说明。
首先,我们来看一个常见的应用示例:汽车的加速。
当我们踩下油门时,引擎会施加一个向前的力,推动汽车向前加速。
根据牛顿第二定律,汽车的加速度取决于所受的推力和汽车的质量。
如果我们增加了引擎的功率,汽车将加速得更快;而如果汽车的质量增加,加速度将减小。
另一个应用示例是弹射器的原理。
弹射器是一种用来发射物体的装置,比如弓箭或者弹弓。
当我们拉紧弓弦或者拉动弹弓时,我们施加了一个力来储存能量。
当我们松开弓弦或者弹弓时,储存的能量转化为物体的动能,使其飞出。
这个过程可以通过牛顿第二定律来解释,拉紧弓弦或者拉动弹弓时施加的力会导致物体加速,从而飞出。
最后一个示例是摩擦力的作用。
当我们在桌子上推动一个物体时,我们需要克服摩擦力。
摩擦力是由物体之间的接触面产生的力,它的大小取决于物体之间的粗糙程度和压力。
牛顿三大定律在生活中的应用

牛顿三大定律在生活中的应用
牛顿三大定律是科学发展史上最重要的基本原理之一,在现代物理学和工程学中都有广泛的应用。
在实际的生活中,牛顿三大定律也都有着广泛的应用,特别是在动力学中的应用最为明显。
下面结合牛顿三大定律和生活中的实际应用,来详细阐述一下牛顿三大定律在生活中的应用情况。
首先,牛顿第一定律,即物体恒定运动定律,明确规定了物体经过无外力作用时,保持其运动状态不变,在实际生活中,比如运动框架,以及我们平时观察到的物体运动守恒,都离不开这个定律的应用。
其次,牛顿第二定律,即物体受力运动定律,指出了物体受到外力的作用,其加速度的幅度与外力的大小成正比,方向和外力的方向一致。
在生活中,比如我们用脚抬起物体,物体所受到的外力越大,则其向上移动的速度越快。
最后,牛顿第三定律,即物体交互作用定律,指出了物体之间相互作用的原理,即“力的互作用是相等相反的”。
在实际生活中,比如我们把物体放置在平坦的桌面上,物体与桌面之间的推力是相等相反的,桌面产生的推力与物体产生的反作用力是相等的,而这正是牛顿第三定律的典型应用实例。
以上就是牛顿三大定律在生活中的应用情况,牛顿三大定律的普遍性和实用性,使其在生活中得到了广泛的应用,而且,牛顿三大定律也是其他定律的基础,比如洛伦兹定律,爱因斯坦相对论等等。
因此,未来,牛顿三大定律在实际生活中的重要作用还会给我们带来更
多惊喜。
牛顿运动定律研究牛顿三大运动定律的应用

应用领域:在物理学、工 程学、航空航天等领域有
广泛应用
推导过程:通过理想实验 和逻辑推理,推翻了亚里 士多德的Leabharlann 力是维持物体运动的原因”的观点
意义:奠定了经典力学的 基础,成为物理学发展史
上的重要里程碑
牛顿第二定律
内容:物体加速度的大小跟它 受到的力成正比,跟它的质量 成反比
公式:F=ma
01
0 2
03
04
牛顿第三定律在声学领域的应用
声波的发射与接收:牛顿第三定律指出,对于每一个作用力,都有一个大小相等、 方向相反的反作用力。在声学领域,这一原理表现为声波的发射和接收。当声源 产生声波时,会产生一个向外的压力波,使周围介质产生振动。同样地,当声波 遇到障碍物或接收器时,会产生一个相反方向的声波,即反作用力。 声音的传播:在声音的传播过程中,牛顿第三定律也起着重要的作用。声音通过 介质传播时,会产生连续的振动,这些振动会对介质产生反作用力,推动介质中 的粒子运动。这种运动又会产生新的声波,使声音得以传播。
牛顿运动定律的应用
,a click to unlimited possibilities
汇报人:
目录
单击添加目录标题
牛顿运动定律在科 技领域的应用
牛顿三大运动定律 概述
牛顿运动定律在物 理学研究中的应用
牛顿运动定律在日 常生活中的应用
单击添加章节标题
牛顿三大运动定律概 述
牛顿第一定律
定义:物体在不受外力作 用时,将保持静止状态或
重要意义。
牛顿运动定律在日常 生活中的应用
牛顿第一定律的应用
惯性:保持静止或匀速直线运动的状态 刹车:车辆在行驶过程中需要减速或停车时,利用摩擦力来减小速度 跑步:在跑步过程中,人体通过不断改变速度和方向来保持平衡 滑行:在滑行过程中,利用摩擦力来减小速度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、对超重和失重的理解
【自主探究2】 为了研究超重与失重现象,某同学把一体 重计放在电梯的水平地板上,并将一质量为45 kg的物体 放在体重计上随电梯在竖直方向运动,并观察体重计示 数的变化情况。下表记录了几个特定时刻体重计的示数 (表内时间不表示先后顺序):
时间
体重计示数/kg
t0 45.0
t1 50.0
t2 40.0
t3 45.0
若已知t0时刻电梯静止,则(
)。
三、求解两类动力学问题的基本思路
【自主探究3】 质量为12 kg的箱子放在水平地面 上,箱子和地面的滑动摩擦因数为0.3,现用倾角为 37°的60 N的力拉箱子,如图所示,3 s末撤去拉力, 则撤去拉力时箱子的速度为多少?箱子继续运动 多少时间?
摩擦因数μ;
(2)水平推力F的大小; (3)0~10 s内物体运动位移的大小。
命题研究二、超重、失重问题 【例2】 某举重运动员在地面上最多能举起160 k
g的杠铃。
(1)若该运动员在升降机中能举起200 kg的杠铃, 求升降机加速度的大小和方向。 (2)若升降机以(1)中等大的加速度减速下降,求该
应用牛顿第二定律的解题步骤 (1)明确研究对象,分析物体的受力情况和运动情况,
画好受力分析图,明确物体的运动性质和运动过程。
(2)选取正方向或建立坐标系,通常以加速度的方向
为正方向或以加速度方向为某一坐标轴的正方向,必要
时把加速度分解。
(3)根据牛顿第二定律F=max列出方程,再根据题意列
出辅助方程,联合求解,必要时还要对结果进行讨论。
(2)用大小为30 N,与水平方向成37°的力斜向上拉此物体,
使物体从A处由静止开始运动并能到达B处,求该力作用
的最短时间t。
拓展链接1(2010· 安徽理综)质量为2 kg的物体在
水平推力F的作用下沿水平面做直线运动,一段时
间后撤去F,其运动的v-t图像 如图所示。g取10 m/s2
,求:
(1)物体与水平面间的动
核心深化理解
一、如何判断物体的运动性质
【自主探究1】 如图所示,物体P以一定的初速度沿光滑
水平面向右运动,与一个右端固定的轻质弹簧相撞,并被
弹簧反向弹回。若弹簧在被压缩过程中始终遵守胡克定
律,那么在P与弹簧发生相互作用的整个过程中
答案: A.P做匀速直线运动
C
B.P的加速度大小不变,但方向改变一次 C.P的加速度大小不断改变,当加速度数值最大时,速度最 小 D.有一段过程,P的加速度逐渐增大,速度也逐渐增大
第三章 牛顿运动定律
第二节 牛顿运动定律的 应用
基础梳理整合
一、两类动力学问题
1、已知受力情况求运动情况
2、已知物体的运动情况求物体的
受力情况
加速度是“桥梁”
二、超重和失重
1)大小:G=mg (3)方向:竖直向下 (4)作用点:重心(重力作用效果的
运动员在升降机中举起杠铃的最大质量(g取10 m/s )
2
。
拓展链接2在电梯中,把一重物置于台秤上,台秤与
力传感器相连,当电梯从静止加速上升,然后又匀
速运动一段时间,最后停止运动,传感器的屏幕上 显示出其受到的压力与时间的关系图象如图所示 ,则
命题研究三、临界与极值问题 【例3】 如图所示,一质量为0.2 kg的小球系在光 滑的倾角为53°的斜面上,斜面静止时,球紧靠在斜 面上,绳与斜面平行,当斜面以10 m/s 的加速度水
命题研究一、动力学两类基本问题
【例1】(2011· 上海单科)如图,质量m=2 kg的物体静止 于水平地面的A处。A、B间距L=20 m。用大小为30 N, 沿水平方向的外力拉此物体,经t0=2 s拉至B处。(已知 cos37°=0.8,sin37°=0.6,取g=10 m/s2) (1)求物体与地面间的动摩擦因数μ;
等效位置,不一定在物体上)
2、视重
弹簧测力计的示数或者台秤的 示数即为视重。 当物体在竖直方向上有加速 度时,物体对弹簧测力计的拉力 或对台秤的压力将不等于物体的 重力。
3、视重与实重的关系
(1)物体具有竖直向上的加 速度或者加速度有竖直向上的分 量,物体处于超重状态。
F视=mg+ma
(2)物体具有竖直向下的加 速度或者加速度有竖直向下的分 量,物体处于超重状态。
F视=mg-ma
归纳要点:1.超重与失重条件:决定于加速度方向,与 速度方向无关,当加速度向上或有向上的分量时,超重; 当加速度向下或有向下的分量时,失重。
2.不论超重、失重或完全失重,物体的重力不变,只
是这种现象和重力增加、减小或消失产生的效果相同。 3. 处于完全失重状态下的液体F浮=0,即液体对浸在液 体中的物体不再产生浮力,同时单摆停摆、天平失效、 液柱不再产生压强,好像重力消失一样。
2
平向右做匀加速直线运动时,求线对小球的拉力
和斜面对小球的弹力.(取g=10 m/s )
2
拓展链接3如图所示,1、2两细绳与水平车顶
的夹角分别为30°和60°,物体质量为m,现让
小车以2g(g为重力加速度)的加速度向右做 匀加速直线运动,当物体与车保持相对静止
时,求绳1中弹力的大小。
答案: 5m g
命题研究四、传送带问题
【例4】 如图所示,传送带与水平面间的倾角为θ= 37°,皮带以10 m/s的速率运行,在传送带上端A处
无初速地放上质量为0.5 kg的物体,它与传送带间
的动摩擦因数为0.5。若传送带A到B的长度为16
m,则物体从A运动到B的时间为多少?
限时作业
7
答案:5.7 m/s 1.9 s
易错辨析
放在水平地面上的一物块,受到方向不变的水平推力F的
作用,力F的大小与时间t的关系和物块速度v与时间t的关
系如图所示,重力加速度g=10 m/s2。求:物体的质量和动
摩擦因数。
以下是某同学的解答过程,请你判断是否正确,若不正确,
请指出其中的错误。
方法探究突破