最新高考物理牛顿运动定律的应用试题经典
最新高考物理牛顿运动定律的应用题20套(带答案)

最新高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B处,且系统启动传送带轮转动,将包裹送回C处.已知v0=3m/s,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC长度L=10m,重力加速度g=10m/s2,sin37º=0.6,cos37º=0.8,求:(1)包裹P沿传送带下滑过程中的加速度大小和方向;(2)包裹P到达B时的速度大小;(3)若传送带匀速转动速度v=2m/s,包裹P经多长时间从B处由静止被送回到C处;(4)若传送带从静止开始以加速度a加速转动,请写出包裹P送回C处的速度v c与a的关系式,并画出v c2-a图象.【答案】(1)0.4m/s2 方向:沿传送带向上(2)1m/s(3)7.5s(4)222200.4/80.4/ca a m sva m s⎧<=⎨≥⎩()()如图所示:【解析】【分析】先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a进行讨论分析得到v c2-a的关系,从而画出图像。
【详解】(1)包裹下滑时根据牛顿第二定律有:1sin cos mg mg ma θμθ-=代入数据得:210.4/a m s =-,方向:沿传送带向上;(2)包裹P 沿传送带由B 到C 过程中根据速度与位移关系可知:220L=2v v a- 代入数据得:1/v m s =;(3)包裹P 向上匀加速运动根据牛顿第二定律有:2cos sin mg mg ma μθθ-=得220.4/a m s =当包裹P 的速度达到传送带的速度所用时间为:12250.4v t s s a === 速度从零增加到等于传送带速度时通过的位移有:2245220.4v x m m a ===⨯ 因为x<L ,所以包裹先加速再匀速,匀速运动时间:2105 2.52L x t s s v --=== 则P 从B 处到C 处总时间为:127.5t t t s =+=;(4)若20.4/a m s <,则包裹相对传送带静止一起做匀加速运动,加速位移等于传送带的长度,即:22C v aL = 即:220C v a = 若20.4/a m s ≥,则包裹在传送带上有相对滑动,包裹以a 2=0.4m/s 2向上匀加速运动,有:222C v a L = 即228/?C v m s =() 两种情况结合有:222200.4/80.4/ca a m s v a m s ⎧<=⎨≥⎩()() 图像如图所示:【点睛】解决本题的关键会根据物体的受力分析物体的运动规律,结合牛顿第二定律和运动学公式分析求解。
高考物理牛顿运动定律的应用题20套(带答案)及解析

高考物理牛顿运动定律的应用题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。
【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【解析】【详解】(1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得:可解得:μ=0.875.(2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为(3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为:0~6 s内物体位移为:则0~6 s内物体相对于皮带的位移为0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,代入数据得:Q=126 J故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【点睛】对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。
2.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25sA 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.3.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB发生弹性碰撞则动量守恒:mv a+mv B=mv a'+mv B'机械能守恒:12mv a2+12mv B2=12mv a'2+12mv B'2解得:v A'=2m/s v B'=8m/s4.如图甲所示,有一倾角为37°的光滑固定斜面,斜面底端的水平面上放一质量为M的木板。
2025高考物理 牛顿运动定律的综合应用

2025高考物理 牛顿运动定律的综合应用一、多选题1.用水平拉力使质量分别为m 甲、m 乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙。
甲、乙两物体运动后,所受拉力F 与其加速度a 的关系图线如图所示。
由图可知( )A .甲乙<m mB .m m >甲乙C .μμ<甲乙D .μμ>甲乙 2.用一水平力F 拉静止在水平面上的物体,在外力F 从零开始逐渐增大的过程中,物体的加速度a 随外力F 变化的关系如图所示,2=10m /s g 。
则下列说法正确的是( )A .物体与水平面间的最大静摩擦力为14NB .物体做变加速运动,F 为14N 时,物体的加速度大小为27m /sC .物体与水平面间的动摩擦因数为0.3D .物体的质量为2kg3.如图所示,一物块以初速度0v 沿粗糙斜面上滑,取沿斜面向上为正向。
则物块速度随时间变化的图像可能正确的是( )A.B.C.D.4.如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取g=10m/s2.由题给数据可以得出A.木板的质量为1kgB.2s~4s内,力F的大小为0.4NC.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2二、单选题5.某运送物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。
若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.F B.1920FC.19FD.20F6.如图,两物块P、Q用跨过光滑轻质定滑轮的轻绳相连,开始时P静止在水平桌面上。
高考物理牛顿运动定律题20套(带答案)及解析

高考物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m,某时刻另一质量m=0.1kg的小滑块(可视为质点)以v0=2m/s的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m/s2,小滑块始终未脱离长木板。
求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1)1.65m (2)0.928m【解析】【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v0=10m/s的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x将发生变化.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m3.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m4.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++解得:F=14N所以物体B对地面的压力大小为14N5.某研究性学习小组利用图a所示的实验装置探究物块在恒力F作用下加速度与斜面倾角的关系。
最新高考物理牛顿运动定律的应用题20套(带答案)

最新高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:(1)小物体在传送带A 、B 两端间运动的平均速度v ;(2)物体与传送带间的动摩擦因数μ;(3)2 s 内物体机械能的减少量ΔE .【答案】(1)8 m/s (2)0.5 (3)48 J【解析】【详解】(1)由v-t 图象的面积规律可知传送带A 、B 间的距离L 即为v-t 图线与t 轴所围的面积,所以:112122v v v L t t t =++ 代入数值得:L =16m由平均速度的定义得:168/2L v m s t === (2)由v-t 图象可知传送代运行速度为v 1=10m/s ,0-1s 内物体的加速度为:22110/10/1v a m s m s t V V === 则物体所受的合力为: F 合=ma 1=2×10N=20N .1-2s 内的加速度为:a 2=21=2m /s 2, 根据牛顿第二定律得:a 1= mgsin mgcos mθμθ+=gsinθ+μgcosθ a 2= mgsin mgcos mθμθ-=gsinθ-μgcosθ 联立两式解得:μ=0.5,θ=37°.(3)0-1s 内,物块的位移:x 1=12a 1t 12=12×10×1m =5m 传送带的位移为:x 2=vt 1=10×1m=10m则相对位移的大小为:△x 1=x 2-x 1=5m则1-2s 内,物块的位移为:x 3=vt 2+12a 2t 22=10×1+12×2×1m =11m 0-2s 内物块向下的位移:L =x 1+x 3=5+11=16m物块下降的高度:h =L sin37°=16×0.6=9.6m物块机械能的变化量:△E =12m v B 2−mgh =12×2×122−2×10×9.6=-48J 负号表示机械能减小.2.如图,光滑绝缘水平面上静置两个质量均为m 、相距为x 0的小球A 和B ,A 球所带电荷量为+q ,B 球不带电。
高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为2222243()()1223a t a tx ma a∆=-=--整个过程物块与木板的相对位移为1282.673x x x m m∆=∆-∆==点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.2.如图,质量分别为m A=2kg、m B=4kg的A、B小球由轻绳贯穿并挂于定滑轮两侧等高H=25m处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g=10m/s2,不计细绳与滑轮间的摩擦,求:,(1)A、B两球开始运动时的加速度.(2)A、B两球落地时的动能.(3)A、B两球损失的机械能总量.【答案】(1)25m/sAa=27.5m/sBa=(2)850JkBE=(3)250J【解析】【详解】(1)由于是轻绳,所以A、B两球对细绳的摩擦力必须等大,又A得质量小于B的质量,所以两球由静止释放后A与细绳间为滑动摩擦力,B与细绳间为静摩擦力,经过受力分析可得:对A:A A A Am g f m a-=对B:B B B Bm g f m a-=A Bf f=0.5A Af m g=联立以上方程得:25m/sAa=27.5m/sBa=(2)设A球经t s与细绳分离,此时,A、B下降的高度分别为h A、h B,速度分别为V A、V B,因为它们都做匀变速直线运动则有:212A Ah a t=212B Bh a t=A BH h h=+A AV a t=B BV a t=联立得:2st=,10mAh=,15mBh=,10m/sAV=,15m/sBV=A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E =(3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+-- 代入以上数据得:250J E ∆= 【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到. (2)根据运动性质和动能定理可得到. (3)由能量守恒定律可求出.3.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
最新高考物理牛顿运动定律的应用题20套(带答案)

最新高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.2.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆==点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.4.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2 解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+=滑块m1在传送带上加速阶段产生的热量Q1=μ1m1g(vt1-x1)=10 J滑块m2在传送带上减速的加速大小413vat'∆'=='∆m/s2滑块m2受到的滑动摩擦力大小f = m2a′滑块m2在传送带上减速阶段产生的热量Q2 = f(L BC-vt) = 6 J系统因摩擦产生的热量Q = Q1 + Q2 =16 J.5.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。
高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】 【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -= 对B :B B B B m g f m a -=A B f f = 0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t =212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E =21()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+-- 代入以上数据得:250J E ∆= 【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到. (2)根据运动性质和动能定理可得到. (3)由能量守恒定律可求出.2.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,210/g m s =,求:(1)拉力撤去时,木板的速度v B ;(2)要使物块不从木板上掉下,木板的长度L 至少为多大; (3)在满足(2)的条件下,物块最终将停在右端多远处.【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m 【解析】【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置. (1)若相对滑动,对木板有:212B F mg mg ma μμ--⋅=,得:24/B a m s =对木块有2A mg ma μ=,22/A a m s =所以木块相对木板滑动撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s == (2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-22122B mgt mgt mv mv μμ--=-,可得20.2t s =,v=2.4m/s在撤掉F 之前,二者的相对位移11122B A v v x t t ∆=- 撤去F 之后,二者的相对位移22222B A v v v v x t t ++∆=- 木板长度12 1.2L x x m =∆+∆=(3)获得共同速度后,对木块,有22102A mgx mv μ-=-, 对木板有()2211202B mg mg x mv μμ-=- 二者的相对位移3A B x x x ∆=-木块最终离木板右端的距离1230.48d x x x m =∆+∆-∆=【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.3.如图所示,质量M =8kg 的小车放在光滑水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大? (2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t =1.5s 小物块通过的位移大小为多少?(取g =10m/s 2).【答案】(1)2m/s 2,0.5m/s 2(2)1s ,2m/s (3)2.1m 【解析】 【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可. 【详解】(1) 根据牛顿第二定律可得 小物块的加速度:m/s 2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.4.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2m/s的恒定速率顺时针转动,一包货物以v0=12m/s 的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(sin37°=0.6,cos37°=0.8,g取10m/s2)求:(1)货物刚滑上传送带时加速度的大小和方向;(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?【答案】(1)10m/s2,方向沿传送带向下;(2)1s;7m.(3)2)s.【解析】【分析】(1)货物刚滑上传送带时,受到重力、传送带的支持力和沿传送带向下的滑动摩擦力,根据牛顿第二定律求解加速度;(2)货物向上做匀减速运动,根据运动学公式求出货物的速度和传送带的速度相同经历的时间和上滑的位移;(3)货物的速度和传送带的速度相同后,继续向上做匀减速运动,滑动摩擦力方向沿传送带向上,由牛顿第二定律求出加速度,由运动学公式求出速度减至零的时间和位移,再求出上滑的总位移,货物到达最高点后将沿传送带匀加速下滑,由下滑位移大小与上滑总位移大小相等,求出下滑的时间,最后求出总时间; 【详解】(1)设货物刚滑上传送带时加速度为1a ,货物受力如图所示:沿传送带方向: 1f mgsin F ma θ+=垂直传送带方向: N mgcos F θ=,又f N F F μ=故货物刚滑上传送带时加速度大小2110/a m s =,方向沿传送带向下;(2)货物速度从0v 减至传送带速度v 所用时间设为1t ,位移设为1x , 则根据速度与时间关系有:011212110v v t s s a --===-- 根据平均速度公式可以得到位移为:01172v vx t m +== (3)当货物速度与传送带速度相等时,由于0.5tan μθ=<,即mgsin mgcos θμθ>,此后货物所受摩擦力沿传送带向上,设货物加速度大小为2a ,则有2mgsin mgcos ma θμθ-= 设货物再经时间2t ,速度减为零,则:2201vt s a -==- 沿传送带向上滑的位移:22012v x t m +== 则货物上滑的总距离为:128x x x m =+=货物到达最高点后将沿传送带匀加速下滑,下滑加速度等于2a ,设下滑时间为3t , 则22312x a t =,代入解得:322t s =. 所以货物从A 端滑上传送带到再次滑回A 端的总时间为:123222s t t t t =++=+(). 【点睛】本题考查了倾斜传送带上物体相对运动问题,分析判断物体的运动情况是难点.5.如图所示,五块完全相同的长木板依次紧挨着放在水平地面上,每块木板的长度为0.5m ,质量为0.6kg .在第一块长木板的最左端放置一质量为0.98kg 的小物块已知小物块与长木板间的动摩擦因数为0.2,长木板与地面间的动摩擦因数为0.1,设最大静摩擦力与滑动摩擦力相等.一颗质量为0.02kg 的子弹以的150m/s 水平速度击中小物块并立即与小物块一起在长木板表面滑行,重力加速度g 取10m/s 2(结果保留2位有效数字)(1)分析小物块滑至哪块长木板时,长木板才开始在地面上滑动. (2)求整个运动过程中最后一块长木板运动的距离. 【答案】(1) 物块滑上第五块木板(2)0.078m x =板 【解析】 【分析】 【详解】(1)设子弹、小物块、长木板的质量分别为0,,m M m ,子弹的初速度为0v 子弹击中小物块后二者的共同速度为1v 由动量守恒定律()0001m v M m v =+ ①子弹击中小物块后物块的质量为M ',且0M M m '=+.设当物块滑至第n 块木板时,木板才开始运动12((6))M g M n m g μμ''>+- ②其中12,μμ分别表示物块与木板间、木板与地面间的动摩擦因数. 由式解得n 4.3>即物块滑上第五块木板时,木板才开始在地面上滑动. (2) 令物块滑上第五块木板上时,s v 满足:()()()22100114,1/2s s M m g L M m v v v m s μ-+⋅=+-= 之后物块继续减速,第五块木板加速直至共速后一起减速,v t -图象如图:11122231-2s381m/s41s413115m m 0.078m284464t t t v v t g x μ=⇒====⎛⎫∴=+⨯== ⎪⎝⎭共共板6.如图所示,质量均为3kg m =的物体A 、B 紧挨着放置在粗糙的水平面上,物体A 的右侧连接劲度系数为100N/m k =的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物体压紧弹簧并恰好处于静止状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高考物理牛顿运动定律的应用试题经典一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】 【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -= 对B :B B B B m g f m a -=A B f f = 0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t =212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E =2 1()2kB B B B BE m v m g H h=+-850JkBE=(3)两球损失的机械能总量为E∆,()A B kA kBE m m gH E E∆=+--代入以上数据得:250JE∆=【点睛】(1)轻质物体两端的力相同,判断A、B摩擦力的性质,再结合受力分析得到.(2)根据运动性质和动能定理可得到.(3)由能量守恒定律可求出.2.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B处,且系统启动传送带轮转动,将包裹送回C处.已知v0=3m/s,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC长度L=10m,重力加速度g=10m/s2,sin37º=0.6,cos37º=0.8,求:(1)包裹P沿传送带下滑过程中的加速度大小和方向;(2)包裹P到达B时的速度大小;(3)若传送带匀速转动速度v=2m/s,包裹P经多长时间从B处由静止被送回到C处;(4)若传送带从静止开始以加速度a加速转动,请写出包裹P送回C处的速度v c与a的关系式,并画出v c2-a图象.【答案】(1)0.4m/s2 方向:沿传送带向上(2)1m/s(3)7.5s(4)222200.4/80.4/ca a m sva m s⎧<=⎨≥⎩()()如图所示:【解析】先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a 进行讨论分析得到v c 2-a 的关系,从而画出图像。
【详解】(1)包裹下滑时根据牛顿第二定律有:1sin cos mg mg ma θμθ-=代入数据得:210.4/a m s =-,方向:沿传送带向上;(2)包裹P 沿传送带由B 到C 过程中根据速度与位移关系可知:220L=2v v a-代入数据得:1/v m s =;(3)包裹P 向上匀加速运动根据牛顿第二定律有:2cos sin mg mg ma μθθ-=得220.4/a m s =当包裹P 的速度达到传送带的速度所用时间为:12250.4v t s s a === 速度从零增加到等于传送带速度时通过的位移有:2245220.4v x m m a ===⨯ 因为x<L ,所以包裹先加速再匀速,匀速运动时间:21052.52L x t s s v --=== 则P 从B 处到C 处总时间为:127.5t t t s =+=;(4)若20.4/a m s <,则包裹相对传送带静止一起做匀加速运动,加速位移等于传送带的长度,即:22C v aL = 即:220C v a =若20.4/a m s ≥,则包裹在传送带上有相对滑动,包裹以a 2=0.4m/s 2向上匀加速运动,有:222C v a L = 即228/?C v m s =() 两种情况结合有:222200.4/80.4/ca a m s v a m s ⎧<=⎨≥⎩()() 图像如图所示:【点睛】解决本题的关键会根据物体的受力分析物体的运动规律,结合牛顿第二定律和运动学公式3.如图甲所示,有一倾角为37°的光滑固定斜面,斜面底端的水平面上放一质量为M的木板。
开始时质量为m=2 kg 的滑块在水平向左的力F作用下静止在斜面上,现将力F变为水平向右,当滑块滑到木板上时撤去力F,木块滑上木板的过程不考虑能量损失。
此后滑块和木板在水平面上运动的v-t图象如图乙所示,g=10 m/s2。
求:(1)水平作用力F的大小;(2)滑块开始下滑时的高度;(3)木板的质量。
【答案】(1)15N(2)2.5m(3)3kg【解析】【分析】(1)对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;(2)根据图乙判断滑块滑到斜面底部的速度,由牛顿第二定律求出加速度,从而根据在斜面上的位移和三角关系求出下滑时的高度。
(3)根据摩擦力的公式求出地面和木板间的摩擦力,根据牛顿第二定律求出滑块和木板间的摩擦力,进而根据牛顿第二定律求出木板的质量。
【详解】(1)滑块受到水平推力F、重力mg和支持力N处于平衡,如图所示,水平推力:F=mgtanθ=2×10×0.75N=15N(2)由图乙知,滑块滑到木板上时速度为:v1=10m/s设下滑的加速度为a,由牛顿第二定律得:mgsinθ+Fcosθ=ma代入数据得:a=12m/s2则下滑时的高度:21100·0.6 2.5224vh sin m maθ=⨯==(3)设在整个过程中,地面对木板的摩擦力为f,滑块与木板间的摩擦力为f1由图乙知,滑块刚滑上木板时加速度为:a1=21020vtVV=--=−4m/s2对滑块:f1=ma1①此时木板的加速度:a 2=2020v t --V V ==1m /s 2 对木板: f 1-f=Ma 2 ②当滑块和木板速度相等,均为:v=2m/s ,之后连在一起做匀减速直线运动,加速度为:a 3=0242--m/s 2=-1m/s 2 当滑块和木板速度相等后连在一起做匀减速直线运动,受到的摩擦力: f =(M+m )a 3 ③联立①②③代入数据解得:M=3kg 【点睛】本题考查斜面上力的合成与分解,和牛顿第二定律的应用,关键是分析物理过程,从v-t 图像中获取信息求解加速度。
4.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
【答案】(1)5m/s 2 2m/s 2(2)14m (3)12m 【解析】 【分析】(1)由题意知,冲上木板后木块做匀减速直线运动,木板由静止做匀加速度直线运动,根据牛顿第二定律求解加速度;(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等;根据位移关系求解木板的长度;(3)木块木板达到共同速度后将一起作匀减速直线运动,结合运动公式求解木板在地面上运动的最大位移. 【详解】(1)由题意知,冲上木板后木块做匀减速直线运动,初速度 v 0=14m/s ,加速度大小 212a μg 5m /s ==木板由静止做匀加速度直线运动 即 ()212μmg μM m g Ma -+=解得 22a 2m /s =(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等。
设此过程所用时间为t即 012v v a t v a t =-==木板木块解得 t=2s木块位移 2011xv t a t 18m 2木块=-= 木板位移 221x a t 4m 2木板== 木板长度 L x x 14m =-=木板木块(3)木块木板达到共同速度后将一起作匀减速直线运动,分析得2231v a t 4m /s a μg 1m /s ====共,木板位移 23v x8m 2a ==,共木板总位移 ,x x x 12m =+=木板木板5.研究物体的运动时,常常用到光电计时器.如图所示,当有不透光的物体通过光电门时,光电计时器就可以显示出物体的挡光时间.光滑水平导轨MN 上放置两个物块A 和B ,左端挡板处有一弹射装置P ,右端N 处与水平传送带平滑连接,将两个宽度为d =3.6×10-3m 的遮光条分别安装在物块A 和B 上,且高出物块,并使遮光条在通过光电门时挡光.传送带水平部分的长度L =9.0m ,沿逆时针方向以恒定速度v =6.0m/s 匀速转动。
物块B 与传送带的动摩擦因数μ=0.20,物块A 的质量(包括遮光条)为m A =2.0kg 。
开始时在A 和B 之间压缩一轻弹簧,锁定其处于静止状态,现解除锁定,弹开物块A 和B ,迅速移去轻弹簧.两物块第一次通过光电门,物块A 通过计时器显示的读数t 1=9.0×10-4s ,物块B 通过计时器显示的读数t 2=1.8×10-3s ,重力加速度g 取10m/s 2,试求: (1)弹簧储存的弹性势能E p ;(2)物块B 在传送带上滑行的过程中产生的内能;(3)若物体B 返回水平面MN 后与被弹射装置P 弹回的A 在水平面上相碰,碰撞中没有机械能损失,则弹射装置P 必须对A 做多少功才能让B 碰后从Q 端滑出。
【答案】(1)E p=24J ;(2)Q =96J ;(3)84J W >。