大田县2015年初中毕业班质量检测数学科参考答案

合集下载

2015年度初三毕业及统一练习数学试卷附答案

2015年度初三毕业及统一练习数学试卷附答案

2015年度初三毕业及统一练习数学试卷2015.5 学校姓名准考证号考生须知1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.如图,数轴上有A,B,C,D四个点,其中绝对值为2的数对应的点是A.点A与点C B.点A与点DC.点B与点C D.点B与点D2.南水北调工程是迄今为止世界上规模最大的调水工程. 2015年3月25日,记者从北京市南水北调办获悉,北京自来水厂每日利用南水约1 300 000立方米.将1 300 000用科学记数法表示应为A.70.1310⨯B.71.310⨯C.61.310⨯D.51310⨯3. 下面平面图形中能围成三棱柱的是A B C D4.如图,AB∥CD,AB与EC交于点F,如果EA EF=,110C∠=︒,那么E∠等于A.30︒B.40︒C.70︒D.110︒5. 如图,数轴上表示的是某不等式组的解集,那么这个不等式组可能是A.23xx-⎧⎨⎩≥>B.23xx-⎧⎨⎩<≤C.23xx-⎧⎨⎩<≥D.23xx-⎧⎨⎩>≤6. 关于x的一元二次方程2210mx x--=有两个实数根,那么字母m的取值范围是A.1m≥-B.1m>-C.10m m≠≥-且D.10m m≠>-且7. 某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了下边的折线图,那么符合这一结果的实验最有可能的是DCBA021-2-1EACBDF频率1331224B .袋子中有1个红球和2个黄球,它们只有颜色上的区别, 从中随机地取出一个球是黄球C .掷一枚质地均匀的硬币,落地时结果是“正面向上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6 8. 代数式245x x -+的最小值是A .-1B .1C .2D .5 9. 为增强居民的节水意识,某市自2014年实施“阶梯水价”. 按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是 A .240立方米B .236立方米C .220立方米D .200立方米10.如图,一根长为5米的竹竿AB 斜立于墙MN 的右侧,底端B 与墙角N 的距离为3米,当竹竿顶端A 下滑x 米时,底端B 便随着向右滑行y 米,反映y 与x 变化关系的大致图象是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:2mx 2-4mx +2m = .12. 某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:一周在校的体育锻炼时间(小时)5 6 7 8 人数2562那么这15名学生这一周在校参加体育锻炼的时间的众数是 小时. 13.如图,A ,B ,C 三点都在⊙O 上,如果∠AOB =80°,那么∠ACB = °.14.请写出一个图象经过点(11-,),并且在第二象限内函数值随着自变量的增大而增大的函数的表达式:.x (立方米)y (元)14609002601800NM BAOA CB15.如图,O 为跷跷板AB 的中点,支柱OC 与地面MN 垂直,垂足为点C ,且OC =50cm ,当跷跷板的一端B 着地时,另一端A 离地面的高度为 cm.16.右图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口 A ,B ,C 的机动车辆数如图所示,图中 123,,x x x 分别表示该时段单位时间通过路段 AB ,BC ,CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则123,,x x x 的大小关系是 .(用“>”、“<”或“=”连接)三、解答题(本题共30分,每小题5分)17.已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF . 求证:∠B =∠E .18. 计算:0-112sin60(3.14π)12()2+--+.19.解分式方程: 112x x x -=-.20.如果21m m -=,求代数式21)(1)(1)2015m m m -++-+(的值.21.如图,一次函数122y x =+的图象与x 轴交于点B ,与反比例函数ky x=的图象的一个交点为A (2,m ).(1)求反比例函数的表达式;(2)过点A 作AC ⊥x 轴,垂足为点C ,如果点P 在反比例函数图象上,且△PBC 的面积等于6,请直接写出点P 的坐标. xAyOBCFDECBA555035302030CB Ax 2x 1x 322.列方程或方程组解应用题:中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并改扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.四、解答题(本题共20分,每小题5分)23.如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,联结DB,BE,EF,FD.(1)求证:四边形DBEF是矩形;(2)如果∠A=60 ,菱形ABCD的面积为38,求DF的长.24.根据某市统计局提供的2010~2014年该市地铁运营的相关数据,绘制的统计图表如下:2010~2014年某市地铁运营的日均客流量统计表2014年某市居民乘地铁出行距离情况统计图根据以上信息解答下列问题:F EDCBA(1)直接写出“2014年某市居民乘地铁出行距离情况统计图”中m 的值;(2)从2010年到2014年,该市地铁的日均客流量每年的增长率近似相等,估算2015年该市地铁运营的日均客流量约为____________万人次;(3)自2015年起,该市地铁运营实行了新票价:乘地铁5公里内(含5公里)收费2元,乘地铁5~15公里(含15公里)收费3元,乘地铁15公里以上收费4元.如果2015年该市居民乘地铁出行距离情况与2014年基本持平,估算2015年该市地铁运营平均每日票款收入约为____________万元.25.如图,⊙O 的直径AB 垂直于弦CD ,垂足为点E ,过点C 作⊙O 的切线,交AB 的延长线于点P ,联结PD .(1)判断直线PD 与⊙O 的位置关系,并加以证明;(2)联结CO 并延长交⊙O 于点F ,联结FP 交CD 于点G ,如果CF =10,4cos 5APC ∠=,求EG 的长.26.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍 的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到22142a b ab c +=⨯+(), 整理,得22222a ab b ab c ++=+. 所以222a b c +=.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照图 1a b c cb ac bac baGO PABCD E F上述证明勾股定理的方法,完成下面的填空:由图2可以得到 , 整理,得 , 所以 .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.28.在△ABC 中,CA =CB ,CD 为AB 边的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G. (1)如果∠ACB =90°,①如图1,当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形; ②如图2,当点P 不与点A 重合时,求CFPE的值; (2)如果∠CAB =a ,如图3,请直接写出CFPE的值.(用含a 的式子表示)图2图1图2图34444123123321213xOy29. 设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离为 ; (2)①求点(3,0)M 到直线21y x =+的距离;②如果点(0,)N a 到直线21y x =+的距离为3,那么a 的值是 ; (3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.4444123123321213xO y参考答案一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BCA B DC DB CA二、填空题(本题共18分,每小题3分)题号 11 12 13 1415 16答案22(1)m x -7401y x=- , 答案不唯一100312x x x >>三、解答题(本题共30分,每小题5分) 17.证明:∵BF =CE ,∴BC =EF .……1分 ∵AC ∥DF ,∴∠ACB =∠DFE .……2分 ∵AC =DF ,∴ △ACB ≌△DFE .……4分∴∠B =∠E .……5分18.解:原式=3212322⨯+-+…4分 =33-....5分19.解:去分母得:2(2) 2.x x x x --=-…1分222 2.x x x x -+=-……2分2.x =-…….3分经检验,2x =-是原方程的解.…….4分所以,原方程的解是 2.x =-…….5分20. 解:原式=222112015m m m -++-+…1分=2222015m m -+……2分 =22()2015m m -+…….3分∵21m m -=, ∴原式=2017. …….5分21.(1)一次函数122y x =+的图象经过点A (2,m ), ∴3m =.∴点A 的坐标为(2,3). ………1分反比例函数ky x=的图象经过点A (2,3), ∴6k =………2分∴反比例函数的表达式为6.y x=……3分(2)(3,2)(3,2).P P --,………………5分22. 解:设新馆的展厅总面积为x 万平方米,原两馆大楼的展览面积为y 万平方米,根据题意列方程得:…1分4.2,30.4.x y x y =+=-⎧⎨⎩………3分 解得: 6.5,2.3.x y ==⎧⎨⎩ ………4分答:新馆的展厅总面积为6.5万平方米,原两馆大楼的展览面积为2.3万平方米. ………5分 23.(1)证明: ∵CE =CD ,CF =CB ,∴四边形DBEF 是平行四边形..…….1分 ∵四边形ABCD 是菱形, ∴CD =CB ..…….2分 ∴CE =CF ,∴BF =DE ,∴四边形DBEF 是矩形..…….3分23.(2)过点D 作DG ⊥BC 于点G ,∴∠DGC =90°. ∵四边形ABCD 是菱形,∠A =60︒,∴∠BCD =60°. 在Rt △CDG 中,cos ∠BCD =12CG CD =, ∴设CG =x ,则CD =BC =2x ,DG =3x . ∵菱形ABCD 的面积为38,∴83BC DG ⋅=.∴2383x x ⋅=,得2x =±(舍负),∴DG =23..……. 4分 ∵CF =CD ,∠BCD =60°,∴∠DFC =30°. ∴DF =2DG =43..…….5分24.(1)15;…1分(2)483;…2分(3)1593.9.…2分25.(1)PD 与⊙O 相切于点D ..……. 1分 证明:联结OD∵在⊙O 中,OD OC =,AB CD ⊥于点E , ∴12∠=∠. 又∵OP OP =,∴OCP ∆≌ODP ∆. ∴OCP ODP ∠=∠.又∵PC 切⊙O 于点C ,OC 为⊙O 半径, ∴OC PC ⊥..……. 2分∴090OCP ∠=.∴090ODP ∠=.∴OD PD ⊥于点D . ∴PD 与⊙O 相切于点D ..……. 3分 (2)作FM AB ⊥于点M .∵090OCP ∠=,CE OP ⊥于点E ,∴03490∠+∠=,0490APC ∠+∠=.∴3APC ∠=∠.∵4cos 5APC ∠=,∴Rt △OCE 中,4cos 35CE OC =∠=.∵10CF =,∴152OF OC CF ===.∴4CE =,3OE =..……. 4分 又∵FM AB ⊥,AB CD ⊥,∴090FMO CEO ∠=∠=.ABCDEFG M3421FE D CBAPO G5BCAxO yD x =1y =2x -2y =2x 2-4x -2-13-2-4∵51∠=∠,OF OC =,∴OFM ∆≌OCE ∆.∴4FM CE ==,3OM OE ==. ∵在Rt △OCE 中,4cos 5PC OP APC =∠=,设4,5PC k OP k ==,∴3OC k =. ∴35k =,53k =.∴253OP =.∴163PE OP OE =-=,343PM OP OM =+=. 又∵090FMO GEP ∠=∠=,∴FM ∥GE .∴PGE ∆∽PFM ∆.∴GE PE FM PM =,即1633443GE=.∴3217GE =..……. 5分26.22142ab b a c ⨯+-=(),.…….3分 22222ab b ab a c +-+=,.……. 4分 222a b c +=..……. 5分五、解答题27 . 解:(1)∵抛物线22y x mx n =++过点 A (-1,a ),B (3,a ), ∴抛物线的对称轴x =1..……. 1分 ∵抛物线最低点的纵坐标为-4 , ∴抛物线的顶点是(1,-4)..……. 2分 ∴抛物线的表达式是22(1)4y x =--, 即2242y x x =--..…3分把A (-1,a )代入抛物线表达式,求出4a =..……. 4分(2)∵抛物线顶点(1,4)C -关于y 轴的对称点为点D ,∴(1,4)D --.求出直线CD 的表达式为4y =-. .……. 5分求出直线BD 的表达式为22y x =-,当1x =时,0y =..……. 6分所以40t -<≤..……. 7分28.(1)①作图.……. 1分ADE ∆(或PDE ∆).…….2分②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,.…….3分∴CPM CAB ∠=∠.∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF CG ⊥,∴∠PFC =∠PFN =90°.∵PF =PF ,∴PFC ∆≌PFN ∆.∴CF FN =..…….4分 由①得:PME ∆≌CMN ∆.∴PE CN =.∴12CF CF PE CN ==..…….5分 (2)1tan 2α..…….7分29. (1)4;.…….2分(2)①直线21y x =+记为l ,过点M 作MH l ⊥,垂足为点H ,设l 与,x y 轴的交点分别为,E F ,则1(,0)(0,1)2E F -,.∴52EF =..…….3分 ∵EOF MHE ∆∆∽∴MH ME OF EF =,即72152MH=.∴755MH =.∴点M 到直线21y x =+的距离为755..…….4分 ②135a =±..…….6分GF EBC(P )A DG F EC D A PBN MM 3—121H yOxEF y =2x +1(3)3b =-或374b =..…….8分。

九年数学参考答案2015.10

九年数学参考答案2015.10

2015—2016学年度上学期九年级质量监测(一)·数学答案阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参与答案”的相应步骤给分. 一、选择题(每小题3分,共24分)1.B 2.A 3.B 4.C 5.C 6.D 7.D 8.C 二、填空题(每小题3分,共18分)9.< 10.(2,4)- 11.2 12.9 13.50 14.254三、解答题(本大题10小题,共78分)15.解:原式3=- (4分) 3= (6分) 16.解:∵1,3,2a b c ==-=-, (1分)∴224(3)41(2)17b ac -=--⨯⨯-=. (2分)∴x =(4分)∴1233,22x x +-==. (6分) 17.解:由题意,得2121x x -=+. (2分) 整理得2220x x --=. (4分)解得1211x x == (6分) ∴x的值为1+118.如图,画对一个得4分,两个都画对得7分.本题答案不唯一,以下答案供参考.19.解:设这两年投入教育经费的平均增长率为x . (1分)由题意,得22500(1)3025x +=. (4分) 解得10.110%x ==,2 2.1x =-(不合题意舍去).答:这两年投入教育经费的平均增长率为10%. (7分)A21(第18)20.解:(1)证明:2244(2)8m m ∆=--= (2分)∴0∆>. (3分)∴不论a 取何实数,该方程都有两个不相等的实数根. (4分)(2)将2x =代入方程22220x mx m ++-=得,24420m m ++-=. (5分)解得1222m m =-=-. (7分)21.解:(1)答案不唯一,如:BPC ∆∽BSE ∆,PCQ ∆∽SDQ ∆ (2分) (2)如图,∵ABC ∆≌DCE ∆,∴ACB DEC ∠=∠. (3分)∴ACDE . (4分)∴BPC ∆∽BSE ∆,PCQ ∆∽SDQ ∆.(5分)∴12PB PC BC PS SE BE ===,PC PQDS QS=. (6分) ∵点S 是DE 的中点, ∴12PQ QS =. (7分) ∴::3:1:2BP PQ QS =. (8分)22.探究:证明:如图①,∵13l l ,1CD l ⊥,∴90ADC CEB ∠=∠=︒. (2分) ∴90ACD DAC ∠+∠=︒. (3分)∵90ACB ∠=︒,∴90ACD ECB ∠+∠=︒. (4分)∴DAC ECB ∠=∠. (5分)∴ACD ∆∽CBE ∆. (6分) 应用:3(9分) 解答如下:如图②,设AB 与2l 的交点为F .∵AC BC =,∴ACD ∆≌CBE ∆.∴1AD EC ==,2CD BE ==. ∵90ADC CEB ∠=∠=︒,∴AC BC ==90ACB ∠=︒,∴AB =∵123l l l ∴AF DCAB DE =AF = (第22题) E D B AC l 3l 2l 1(图①) (图②)F l 1l 2l 3C AB D EQS P E DCBA(第21题)23.解:(1)80x - 20010x + 800200(20010)x --+或40010x - (3分)(2)由题意,得200(8050)(8050)(20010)(5040)(40010)9000x x x ⨯-+--+---= (7分) 整理,得2201000x x -+=.解得1210x x ==. (9分) 当10x =时,807050x -=>.答:第二个月销售时每件服装是70元. (10分)24.解:(1)125(2分) (2)∵AC AB ⊥,∴4AC ==.(3分) ①当03t <≤时,如图①,∵四边形ABCD 是平行四边形,∴ABCD .∵PE AB ⊥,AC AB ⊥,∴4PE AC ==. (4分)②当38t <<时,如图②, ∵PE AB ⊥,AC AB ⊥,∴PEAC .∴BPE ∆∽BCA ∆. (5分)∴PE BP AC BC =.∴845PE t-=. ∴4(8)432555t PE t -==-+. (6分)(3)①当03t <≤时,如图③,设PE 与AD 的交点为F . (7分)∵AC AB ⊥,PE AB ⊥,∴PF AC .∴DPF ∆∽DCA ∆.∴PF DP AC DC =. ∴43PF t =.∴43tPF =. ∴211422233S DP PE t t t ===. (8分)E PDCB A (图①) (图②) A BCD PE (图③) (图④)FE PDBAG AB CDPE②当38t <<时,如图④,延长DC EP 、交于点G ,则DG EG ⊥. (9分) ∵ABCD ,∴B PCG ∠=∠. ∵BAC PGC ∠=∠ ∴CPG ∆∽BCA ∆.∴CG PCAB BC =. ∴335CG t -=. ∴3(3)5t CG -=.∴3(3)363555t t DG -=+=+.∴2113643263696()()225555252525S DG PE t t t t ==+-+=-++. (10分) (4)32t =或112t = (12分)。

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016 学年第一学期期末教学质量监测九年级数学试题2016.1亲爱的考生:欢迎参加考试!请你认真审题,积极思考,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共 6 页,满分 150 分,考试时间 120 分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效. 3.答题前,请认真阅读答题纸上的《注意事项》 按规定答题. 4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列函数的图象是双曲线的是( ▲ )A . y = 2 x - 1B . y =1C . y = xD . y = x 2x2.下列事件是随机事件的是( ▲ )A .火车开到月球上;B .抛出的石子会下落;C .明天临海会下雨;D .早晨的太阳从东方升起.3.二次函数 y =x 2+4x -5 的图象的对称轴为( ▲ )A .x =4B .x =﹣4C .x =2D .x =﹣24.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =50°,∠C =60°,则∠DOE =( ▲ )A .70°B .110°C .120°D .130°C B ′ CC ′E F OBD(第 4 题)A B(第 5 题)A△5.如图,把 ABC 绕着点 A 顺时针方向旋转 34°,得到△AB ′C ′,点 C 刚好落在边 B ′C ′上.则∠C ′=( ▲ )A .56°B .62°C .68°D .73°6.将抛物线 y =3x 2 先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ▲ )A .y =3(x +1)2+1B .y =3(x +1)2-1C .y =3(x -1)2+1D .y =3(x -1)2-17.小洋用一张半径为 24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计), 如果做成的圆锥形小丑帽子的底面半径为 10 cm ,那么这张扇形纸板的面积是( ▲ )A .120 π cm 2B .240 π cm 2C .260 π cm 2D .480 π cm 224 cmy A nA 4 A 3 A 2 A 1…B nB 4C 3C 2B 3B 2C 1B 1O(第 10 题)x4 (1 + k )2 = 1 B . k + k 2 = 1 4 4 (1 + k )2 = 1(x - 1)2 = ( 2 ) ,所以 x8.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的 k 倍(0<k <1).已知一个钉子受击 3 次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的 4 7,设铁钉的长度为 1,那么符合这一事实的方程是( ▲ )A .4 4 7 7 74 4 4 C . + k + k 2 = 1 D . + 7 7 7 7 79.利用平方根去根号可以构造一个整系数方程.例如: x =2 + 1 时,移项得 x - 1 = 2 ,两边平方得22 - 2 x + 1 = 2 ,即 x 2 - 2 x - 1 = 0 .仿照上述构造方法,当 x =6 - 1 2时,可以构造出一个整系数方程是( ▲ )A . 4 x 2 + 4 x + 5 = 0B . 4 x 2 + 4 x - 5 = 0C . x 2 + x + 1 = 0D . x 2 + x - 1 = 010.如图,在 y 轴正半轴上依次截取 OA 1=A 1A 2=A 2A 3=…=A n-1A n (n 为正整数),过 A 1,A 2,A 3,…,A n 分别作 x 轴的平行线,与反比例函数 y =2 x(x >0)交于点 B 1,B 2,B 3,…,B n ,如图所示的 Rt △B 1C 1B 2,△Rt B 2C 2B 3,△Rt B 3C 3B 4,…,△Rt B n-1C n-1B n 面积分别记为 S 1,S 2,S 3,…,S n-1,则 S 1+S 2+S 3+…+S n-1=( ▲ )A .1B .2C .1﹣1 1D .2﹣n n二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.点 A (1,19)与点 B 关于原点中心对称,则点 B 的坐标为▲ .12.如果反比例函数 y = m - 3x的图象在 x <0 的范围内,y 随 x 的增大而减小,那么 m 的取值范围是 ▲13.如图,点 O 是正五边形 ABCDE 的中心,则∠BAO 的度数为▲ .AyD CPBOEH GAOBC D(第 13 题)A E O FB x(第 15 题) (第 16 题)14.一个盒子中装有大小、形状一模一样的白色弹珠和黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是13.如果盒子中白色弹珠有4颗,则盒中有黑色弹珠▲颗.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为▲.2-1-c-n-j-y16.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=▲秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,第17题10分,第18题7分,第19题8分,第20题9分,第21题10分,第22题10分,第23题12分,第24题14分,共80分)17.解方程:(1)4x2-20=0;(2)x2+3x-1=0.18.动手画一画,请把下图补成以A为对称中心的中心对称图形.A19.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.D CB EOA20.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)x=0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.同时从袋中各随机摸出 1 个球,并计算摸出的这 2 个小球上数字之和,记录后都将小球放回袋中搅匀,进行重21.一只不透明的袋子中装有 4 个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x .甲、乙两人每次..复试验.实验数据如下表:摸球总次数“和为 8”出现的频数102 2010 3013 6024 9030 12037 18058 24082 330110 450150“和为 8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为 8”的频率将稳定在它的概率附近.估计出现“和为 8” 的概率是▲;(2)当 x =7 时,请用列表法或树状图法计算“和为 8”的概率;并判断 x =7 是否可能.22.如图是一种新型娱乐设施的示意图,x 轴所在位置记为地面,平台 AB ∥x 轴,OA =6 米,AB =2 米, BC 是反比例函数 y = k x的图象的一部分,CD 是二次函数 y =﹣x 2+mx +n 图象的一部分,连接点 C 为抛物线的顶点,且 C点到地面的距离为 2 米, D 点是娱乐设施与地面的一个接触点.(1)试求 k ,m ,n 的值;(2)试求点 B 与点 D 的水平距离.yA BCOD x23.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB ,AE (AB <AE )在一条直线上,正方形 AEFG 以点 A 为旋转中心逆时针旋转,设旋转角为 α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE ,DG .(1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE =DG ;(2)如图 3,如果 α=45°,AB =2,AE =3 2 .①求 BE 的长;②求点 A 到 BE 的距离;(3)当点 C 落在直线 BE 上时,连接 FC ,直接写出∠FCD 的度数.GGADGADB CBCFABDCFE(图 1)FE(图 2)E(图 3)24.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,抛物线 y =x 2-2x -3 与 x 轴交于点 A ,B ,与 y 轴交于点 D ,以 AB 为直径,在 x 轴上方作半圆交 y 轴于点 C ,半圆的圆心记为 M ,此时这个半圆与这条抛物线 x 轴下方部分组成的图形就称为“蛋圆”.(1)直接写出点 A ,B ,C 的坐标及“蛋圆”弦 CD 的长;A▲ ,B ▲ ,C ▲ , CD = ▲ ;(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.①求经过点 C 的“蛋圆”切线的解析式;②求经过点 D 的“蛋圆”切线的解析式;(3)由(2)求得过点 D 的“蛋圆”切线与 x 轴交点记为 E ,点 F 是“蛋圆”上一动点,试问是否存在 S △CDE =△S CDF ,若存在请求出点 F 的坐标;若不存在,请说明理由;(4)点 P 是“蛋圆”外一点,且满足∠BPC =60°,当 BP 最大时,请直接写出点 P 的坐标.yC yCAO M B x A O M B xDD(备用图)9数学参考答案2016.1一、选择题(每小题4分,共40分)题号答案1B2C3D4B5D6A7B8C9B10C二、填空题(每小题 5 分,共 30 分)11.(﹣1,﹣19)12.m >3 13.54° 14.815. 2 5 - 216. 4914 22 32或 或 或9 9三、解答题(共 80 分)17.(10 分,每小题 5 分)(1)4x 2-20=0;(2)x 2+3x -1=0.4x 2=20a =1,b =3,c =﹣1x 2=5△=32-4×1×(﹣1)=13x = ± 5x =- 3 ± 13 218.(7 分)略(图形基本形状差不多就给分)19.(8 分)(1)∵AB 是⊙O 的直径∴∠C =90°∵OD ⊥BC∴∠OEB =∠C =90°∴OD ∥AC………4 分(2)令⊙O 的半径为 r ,根据垂径定理可得:r 2=42+(r -3)2,解得:r = 25 25,所以⊙O 的直径为 . ………8 分6 320.(9 分)(△1) =[2(k -1)]2-4(k 2-1)=﹣8k +8∵方程有两个不相等的实数根,∴﹣8k +8>0,解得:k <1.………4 分(2)把 x =0 代入方程得:k 2-1=0,解得:k =±1∵k <1 ∴k=﹣1 ∴x=0 可能是方程的一个根∴原方程为:x 2-4x =0 解得:x 1=0,x 2=4 ∴方程的另一个根为 4.………9 分21.(10 分)(1)13(或者 0.33) ………3 分(2)列表略,可得:P 和为 8= 2 1 1= ≠ ,所以 x 的值不可以取 7.………10 分12 6 322.(10 分)(1)把 B (2,6)代入 y =k 12,可得 y = . x x把 y =2 代入 y =12x, 可得 x =6,即 C 点坐标为(6,2).23.(12 分)(1)由题意可得: ⎨∠BAE = ∠DAG = a ⎪ A B = AD ⎩ y = x 2 - 2x - 3得: x 2-(2 +k)x =∵二次函数 y =﹣x 2+mx +n 的顶点为 C ,∴y =﹣(x -6)2+2,∴y =﹣x 2+12x -34. AE∴k =12,m =12,n =﹣34.………6 分C(2)把 y =0 代入 y =﹣(x -6)2+2,解得:x 1=6+ 2 ,x 2=6- 2 .点 B 与点 D 的距离为 6+ 2 -2=4+ 2 .………10 分ODB⎧ A E = AG ⎪⎩∴△ABE ≌△ADG (SAS )G∴BE =DG………4 分(2)①作 BN ⊥AE 于点 NANDF在△ABN 中可求得 AN =BN = 2 .在△BEN 中可求得 BE = 10 .………7 分MBCE(图 3)②作 AM ⊥BE 于点 M .S △ABE = 1 1⨯ AE ⨯ BN = ⨯ 3 2 ⨯ 2 =32 2又∵S △ABE = 1 1⨯ BE ⨯ AM = ⨯ 10 ⨯ AM2 21 3∴ ⨯ 10 ⨯ AM =3 ∴AM = 2 510即点 A 到 BE 的距离 3 510 .………10 分(3)∠FCD 的度数为 45°或 135°.………12 分(注:可以构造三垂直的基本图形求两个角度,也可用四点共圆求两个角度)24.(14 分)(1)A (﹣1,0),B (3,0),C (0,3 ),CD = 3+ 3………4 分(2)①如图 1,NC ⊥CM ,可求得 N (﹣3,0)yCN E A O M B x3∴经过点 C 的“蛋圆”切线的解析式为: y =x + 3 …7 分 3A②过点 D 的“蛋圆”切线的解析式为:y =kx -3D⎧ y = kx - 3 由 ⎨ ∵直线与抛物线只有一个交点,∴k =﹣2,(图 1) yCF 1∴经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3 .………10 分A EO M Q B x(3)如图 2∵经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3ADF 2,),F 2(, -).………12 分∴E 点坐标为( -∵S △CDE =S △CDF3 2,0),∴F 点的横坐标为 3 2,在 △Rt MQF 1 中可求得 F 1Q = 15 2,把 x = 3 15 代入 y =x 2-2x -3,可求得 y = - .2 4∴F 1( 3 2 2 2 4(4)如图 3,考虑到∠BPC =60°保持不变,因此点 P 在一圆弧上运动.yP此圆是以 K 为圆心(K 在 BC 的垂直 平分线上,且∠BKC =120°),BK 为半径. 当 BP 为直径时,BP 最大.在 △Rt PCR 中可求得 PR =1,RC = 3 . RC KA OM B x所以点 P 的坐标为(1,2 3 ).………14 分AD(图 3)。

2015年安徽省初中毕业学业考试数学试卷及参考答案(Word版)

2015年安徽省初中毕业学业考试数学试卷及参考答案(Word版)

2015年安徽省初中毕业学业考试数学试题(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.在-4,2,-1,3这四个数中,比-2小的数是()A.-4B.2C.-1D.32.)A B.4 C D.23.移动互联网已全面进入人们的日常生活.截至2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.162×106C.1.62×108D.0.162×1094.下列几何体中,俯视图是矩形的是()A. B. C. D.5.与1)A.4B.3C.2D.16.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.57根据上表中的信息判断,下列结论中错误..的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分8.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =12∠ADC D .∠ADE =13∠ADG9.如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上, 点F 在CD 上,点G 、H 在对角线上,若四边形EGFH 是菱形,则AE 的长是( )A .B .C .5D .610.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )第10题图 A . B . C . D .二、填空题(本大题共4小题,每小题5分,满分20分)11.-64的立方根是_________________.12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB 的长 为2π,则∠ACB 的大小是________.13.按一定规律排列的一列数:21,22,23,25,28,213,…, 若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的 关系式是_____________________.14.已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3, 则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(21a a -+11a -)﹒1a ,其中a =-12.16.解不等式:3x >1-36x -.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网络线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18.如图,平台AB高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度 1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且 OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 长;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值.第20题图1 第20题图2六、(本题满分12分) 21.如图,已知反比例函数y =1k x与一次函数y =k 2x +b 的图象交于A (1,8),B (-4,m ). (1)求k 1、k 2、b 的值; (2)求△AOB 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是反比例函数y =1k x图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长),用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度是x米,矩形区域ABCD的面积为y平方米.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x取何值时,y有最大值?最大值是多少?第22题图八、(本题满分14分)23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接GA、GB、GC、GD、EF,若∠AGD=∠BGC.第23题图1第23题图2(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求ADEF的值.数学试题参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分)二、填空题(本大题共4小题,每小题5分,满分20分)11. -4 12. 20° 13. xy =z (只要关系式对前六项是成立的即可) 14. ①③④ 三、(本大题共2小题,每小题8分,满分16分)15.解:原式=(21a a --11a -)﹒1a =211a a --﹒1a=(1)(1)1a a a +--﹒1a =1a a +.……(6分)当a =-12时,1a a+=1122-+-=-1. ……(8分)16.解:2x >6-(x -3),2x >6-x +3 ……(4分)3x >9,x >3所以,不等式的解集为x >3. ……(8分) 四、(本大题共2小题,每小题8分,满分16分)17.解:(1)△A 1B 1C 1,如图所示. ……(4分) (2)线段A 2C 2和△A 2B 2C 2.如图所示(符合条件的△A 2B 2C 2不唯一) ……(8分)第17题答案图 第28题答案图18.解:作BE ⊥CD 于点E ,则CE =AB =12,在Rt △BCE 中,BE =tan CE CBE ∠=12tan 30︒= ……(3分)在Rt △BDE 中,DE =BE ﹒tan ∠DBE =tan45°= ……(6分)∴CD =CE +DE =32.4,所以,楼房CD 的高度约为32.4米. ……(8分) 五、(本大题共2小题,每小题10分,满分20分)19.解:(1)两次传球的所有结果有4种,分别是:A →B →C ,A →B →A ,A →C →B ,A →C →A ,每种结果发生的可能性相等,球恰在B 手中的结果只有一种,所以两次传球后,球恰在B 手中的概率是14. ……(4分) (2)由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等. ……(8分) 其中,三次传球后,球恰在A 手中的结果有A →B →C →A ,A →C →B →A ,这2种, 所以三次传球后,球恰在A 手中的概率是28=14. ……(10分)第19题答案图 第20题答案图20.解:(1)∵OP ⊥PQ ,PQ ∥AB , ∴OP ⊥AB ,在Rt △OPB 中,OP =OB ﹒tan ∠ABC =3﹒tan30° ……(3分) 如图,连接OQ ,在Rt △OPQ 中,PQ , ……(5分)(2)∵PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC ., ……(7分) OP =OB ﹒sin ∠ABC =3﹒sin30°=32,∴PQ……(10分) 六、(本题满分12分)21.解:(1)把A (1,8),B (-4,m ) 分别代入y =1k x,得k 1=8,m =-2, ∵A (1,8),B (-4,m )在y =k 2x +b 图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:k 2=2,b =6 ……(5分)(2)设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3,∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ……(8分) (3)点M 在第三象限,点N 在第一象限. ……(9分) ①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意; ③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. ……(10分) 七、(本题满分12分)22.解:(1)设AE =a ,由题意,得AE ﹒AD =2AE ﹒BC ,AD =BC ,∴BE =12a ,AB =32a , 由题意,得2x +3a +2×12a =80,∴a =20-12x , ……(4分)∴y =AB ﹒BC =32a ﹒x =32(20-12x ),即y =-234x +30x (0<x <40). ……(8分)(2)∵y =-234x +30x =-34(x -20)2+300,∴当x =20时,y 有最大值,最大值是300平方米. ……(12分) 八、(本题满分14分)23.(1)证明:GE 是AB 的垂直平分线, ∴GA =GB ,同理GD =GC ,在△AGD 和△BGC 中,∵GA =GB ,∠AGD =∠BGC ,GD =GC ,∴△AGD ≌△BGC ,∴AD =BC . ……(5分) (2)证明:∵∠AGD =∠BGC , ∴∠AGB =∠DGC , 在△AGB 和△DGC 中,GA GBGD GC= ,∠AGB =∠DGC ., ∴△AGB ∽△DGC , ……(8分) ∴AG EGDG FG= , 又∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . ……(10分) (3)解:如图1,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH , 由△AGD ≌△BGC ,知∠GAD =∠GBC ,在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴∠AGB =∠AHB =90º, ∴∠AGE =12∠AGB =45º, ……(12分)∴AGEG又△AGD ∽△EGF ,∴AD AGEF EG==. ……(14分) (本小题解法有多种,如可按图2和图3作辅助线求解,过程略)第23题答案图1 第23题答案图2 第23题答案图3。

2015年初中毕业升学考试试卷数学含答案(真卷出击)

2015年初中毕业升学考试试卷数学含答案(真卷出击)

2015年初中毕业升学考试试卷数学(考试时间共120分钟,全卷满分120分)第Ⅰ卷(选择题,共36分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅰ卷为第1页至第2页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦干净后,再填涂其它答案. 在第Ⅰ卷上答题无效.一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,错选、不选或多选均得零分) 1.AB.C.5-D.52.如图1,点A B C 、、是直线l 上的三个点,图中共有线段条数是A .1条 B.2条 C.3条 D.4条3.三条直线a b c 、、,若a c ∥,b c ∥,则a 与b 的位置关系是A .a b ⊥ B.a b ∥ C.a b a b ⊥或∥ D.无法确定 4.图2的几何体中,主视图、左视图、俯视图均相同的是5.若分式23x-有意义,则x 的取值范围是 A .3x ≠ B.3x = C.3x < D.3x > 6.不等式5x +≥8的解集在数轴上表示为A . B. C. D.7.一个正多边形的一个内角为120度,则这个正多边形的边数为 A .9 B.8 C.7 D.6图 1图28.如图3,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3cm CD =,则点D 到AB 的距离DE 是A .5cm B.4cm C.3cm D.2cm9.如图4,在正方形ABCD 的外侧作等边ADE △,则AEB ∠的度数为 A .10° B.12.5° C.15° D.20°10.上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是 A .19岁 B.20岁 C.21岁 D.22岁11.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法正确的个数是①抛物线与x 轴的一个交点为(20)-,②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大A .1 B.2 C.3 D.4 12.如图6,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且3B C '=,则AM 的长是A .1.5 B.2 C.2.25 D.2.52015年初中毕业升学考试试卷第Ⅱ卷(非选择题,共84分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅱ卷为第3页至第10页.答题时,用蓝黑色墨水笔或圆珠笔直接将答案写在试卷上.图3 图4 图5 图6二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在题中横线上的空白处)13= . 14.因式分解:29x -= .15.写出一个经过点(11),的一次函数解析式 . 16.2010年广州亚运会吉祥物取名“乐羊羊”.图7中各图是按照一定规律排列的羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有 只羊.17.关于x 的一元二次方程(3)(1)0x x +-=的根是 . 18.如图8,AB 是O ⊙的直径,弦2cm BC =,F 是弦BC 的中点,60ABC ∠=°.若动点E 以2cm/s 的速度从A 点出发沿着A B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当t 值为 s时,BEF △是直角三角形. 三、解答题(本大题8分,满分66分.解答应写出必要的文字说明、演算步骤或推理过程) 19.(本题满分6分)计算:30(2)(2010tan 45-+-°.20.(本题满分6分)如图9,在88⨯的正方形网格中,ABC △的顶点和线段EF 的端点都在边长为1的小正方形的顶点上.A B图8 图7(1)填空:ABC ∠= .BC = ; (2)请你在图中找出一点D ,再连接DE DF 、,使以D E F 、、为顶点的三角形与ABC △全等,并加以证明. 21.(本题满分6分)桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”“4”.先将卡片背面朝上洗匀.(1)如果让小唐从中任意抽取一张,抽到奇数的概率是 ;(2)如果让小唐从中同时抽取两张.游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由. 22.(本题满分8分) 如图10,从热气球P 上测得两建筑物A B 、的底部的俯角分别为45°和30°,如果A B 、两建筑物的距离为90m ,P 点在地面上的正投影恰好落在线段AB 上,求热气球P 的高度.(结果精确到0.01m1.7321.414)图9 45°30°图10目前,“低碳”已成为保护地球环境的热门话题.风能是一种清洁能源,近几年我国风电装机容量迅速增长.图11是我国2003年-2009年部分年份的内力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题.(1)2007年,我国风力发电装机容量已达万千瓦;从2003年到2009年,我国风力发电装机容量平均每年增长......万千瓦;(2)求2007~2009这两年装机容量的年平均增长率......;(参考数据: 2.24,1.123.74)(3)按(2)的增长率,请你预测2010年我国风力发电装机容量.(结果保留到0.1万千瓦)24.(本题满分10分)某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低?图11如图12,AB 为O ⊙直径,且弦CD AB ⊥于E ,过点B 的切线与AD 的延长线交于点F . (1)若M 是AD 的中点,连接ME 并延长ME 交BC 于N .求证:MN BC ⊥. (2)若4cos 35C DF ∠==,,求O ⊙的半径. 26.(本题满分12分)如图13,过点(43)P -,作x 轴、y 轴的垂线,分别交x 轴、y 轴于A B 、两点,交双曲线(2)ky k x=≥于E F 、两点. (1)点E 的坐标是 ,点F 的坐标是 ;(均用含k 的式子表示) (2)判断EF 与AB 的位置关系,并证明你的结论; (3)记PEF OEF S S S =-△△,S 是否有最小值?若有,求出其最小值;若没有,请说明理由.2015年初中毕业升学考试 数学参考答案及评分标准图12图13(说明:第17题只写对一个结果给2分,两个结果都写对给3分;第18题每写对一个结果给1分) 三、解答题: 19.本题满分6分.解:原式=811-+- ························································································ 3分=8- ································································································ 6分20.本题满分6分.(1)135ABC ∠=°,BC = ·········································· 2分(2)(说明:D 的位置有四处,分别是图中的1234D D D D 、、、.此处画出D 在1D 处的位置及证明,D 在其余位置的画法及证明参照此法给分)解:EFD △的位置如图所示. ········································· 3分证明:FD BC === ··············································· 4分9045135EFD ABC ∠=∠==°+?° ·································································· 5分 2EF AB ==EFD ABC ∴△≌△ ······················································································· 6分(说明:其他证法参照此法给分) 21.本题满分6分. 解:(1)12··································································································· 2分 (2)(方法一)这个游戏不公平. ··························································································· 3分 理由如下:任意抽取两个数,共有6种不同的抽法,其中和为奇数的抽法共有4种.P ∴(和为奇数)=4263= ················································································ 4分 P (和为偶数)=13························································································ 5分(方法二)设2008年的风力发电装机容量为a 万千瓦.5002520500a aa--= ······················································································· 4分 21260000a = ························································································· 0a >1122a ∴≈ ····························································································· 5分经检验,1122a ≈是所列方程的根. 则2007到2009这两年装机容量的年增长率为11225001.24124%500-=≈ ················· 6分答:2007到2009这两年装机容量的年平均增长率约为124%. (3)(1 1.24)25205644.8+⨯= ····································································· 7分∴2010年我国风力发电装机容量约为5644.8万千瓦. ··········································· 8分 24.本题满分10分.解:(1)设甲种树苗买x 株,则乙种树苗买(300)x -株. ······································ 1分6090(300)21000x x +-= ·············································································· 3分200x = ·················································································· 4分300200100-= ················································································ 5分答:甲种树苗买200株,乙种树苗买100株.(2)设买x 株甲种树苗,(300)x -株乙种树苗时该小区的空气净化指数之和不低于90.0.20.6(300)90x x +-≥ ················································································ 6分 0.21800.690x x +-≥0.490x --≥225x ≤ ·············································································· 7分此时费用6090(300)y x x =+-3027000y x =-+ ············································································· 8分y 是x 的一次函数,y 随x 的增大而减少∴当225x =最大时,302252700020250y =-⨯+=最小(元) ······························ 9分 即应买225株甲种树苗,75株乙种树苗时该小区的空气净化指数之和不低于90,费用最小为20250元. ······························································································· 10分 (说明:其他解法参照此法给分) 25.本题满分10分 (1)(方法一) 连接AC .AB 为O ⊙的直径,且AB CD ⊥于E ,由垂径定理得:点E 是CD 的中点. ··························· 1分 又M 是AD 的中点ME ∴是DAC △的中位线 ········································ 2分MN AC ∴∥ ························································· 3分 AB 为O ⊙直径,90ACB ∴∠=°, ························· 4分90MNB ∴∠=°即MN BC ⊥ ···································· 5分(方法二)AB CD ⊥,90AED BEC ∴∠=∠=° ····················· 1分M 是AD 的中点,ME AM ∴=,即有MEA A ∠=∠ ··········································· 2分又MEA BEN ∠=∠,由A ∠与C ∠同对BD 知C A ∠=∠C BEN ∴∠=∠ ····························································································· 3分又90C CBE ∠+∠=°90CBE BEN ∴∠+∠=° ················································································· 4分 90BNE ∴∠=°,即MN BC ⊥. ····································································· 5分(方法三)AB CD ⊥,90AED ∴∠=° ········································································· 1分由于M 是AD 的中点,ME MD ∴=,即有MED EDM ∠=∠ 又CBE ∠与EDA ∠同对AC ,CBE EDA ∴∠=∠ ············································ 2分 又MED NEC ∠=∠ NEC CBE ∴∠=∠ ························································································ 3分 又90C CBE ∠+∠=°90NEC C ∴∠+∠=° ···················································································· 4分即有90CNE ∠=°,MN BC ∴⊥ ···································································· 5分 (2)连接BDBCD ∠与BAF ∠同对BD ,C A ∴∠=∠4cos cos 5A C ∴∠=∠=······································ 6分 BF 为O ⊙的切线,90ABF ∴∠=°在Rt ABF △中,4cos 5AB A AF ∠== 设4AB x =,则5AF x =,由勾股定理得:3BF x =··········································································7分 又AB 为O ⊙直径,BD AD ∴⊥ABF BDF ∴△∽△ BF DF AF BF∴= ································································································ 8分即3353x x x= 53x = ··································································································· 9分∴直径5204433AB x ==⨯= 则O ⊙的半径为103······················································································· 10分(说明:其他解法参照此法给分) 26.本题满分12分. 解:(1)44k E ⎛⎫--⎪⎝⎭,,33k F ⎛⎫ ⎪⎝⎭, ······································································ 3分 (说明:只写对一个点的坐标给2分,写对两个点的坐标给3分)(2)(证法一)结论:EF AB ∥ ······································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 31241212123443PA PB k k PE k PF k ====++++, APB EPF ∠=∠PAB PEF ∴△∽△PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分(证法二)结论:EF AB ∥ ············································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 在Rt PAB △中,4tan 3PB PAB PA ∠== 在Rt PEF △中,443tan 334k PF PEF k PE +∠===+tan tan PAB PEF ∴∠=∠PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分。

2015年大田县初中毕业班质量检测

2015年大田县初中毕业班质量检测

2015年大田县初中毕业班质量检测语文试题(满分:150分考试时间:120分钟)友情提示:1.本试卷6页。

2.考生将自己的姓名、准考证号及所有答案均填写在答题卡上。

3.答题要求见答题卡上的“注意事项”。

一、积累与运用(22分)(一)古诗文积累(12分)1.根据提示,默写古诗文。

(12分)(1)问渠那得清如水,。

(朱熹《观书有感》)(2)蒹葭萋萋,。

所谓伊人,。

(《诗经·秦风》)(3)安得广厦千万间,!(杜甫《茅屋为秋风所破歌》)(4)前不见古人,。

念天地之悠悠,。

(陈子昂《登幽州台歌》)(5)戴朱缨宝饰之帽,,左佩刀,。

(宋濂《送东阳马生序》)(6),佳节又重阳,。

(李清照《醉花阴》)(7)三年羁旅客,。

,谁言天地宽。

(夏完淳《别云间》(二)阅读下面语段,完成2~4题。

(10分)闽湖在尤溪、大田、德化三县的交界之处,位于福建版图的中心,36平方千米的湖面犹如xiāng嵌在福建胸口的一面护心镜。

论起“江湖”,闽湖资历甚浅,本钱不厚。

她不能跟鄱阳湖比(1),人家是“泽国芳草碧,梅黄烟雨中”,号称鱼米之乡;她不能跟洞庭湖比(2),人家是“气蒸云梦泽,波撼岳阳城”;她更不能与杭州西湖比(3),人家有苏轼来描眉,白居易来施粉,还有西施姑娘的吴侬软语来帮衬;她也不能跟同样“庶出”(水库)的泰宁金湖比(4),人家是丹霞地貌、“红粉佳人”。

“闽湖”最宜人的地方在于她的深沉含蓄,淡雅素装,“闽湖”是自然、娴静的,人们尽可以从容安静地赏睐.她美好的本色:晴日,阳光用最明亮最透彻最温暖的语言抚慰她的丰肌玉肤,她笑逐颜开,浮光跃金,俏皮娇媚;阴天,微风吹送两岸草木的爱意和芳香,她闭目养神,似醉非醉,憨态可掬;雨天,她自有一种忧郁之美,细雨霏霏,水雾飘飘,风姿绰.约。

“闽湖”这个刚出道的姑娘,一登台亮相就博得满堂喝彩。

--------------------------(选自郑国钦《闽湖素描》,有删节)2.请用正楷字将语段中画波浪线的文字工整地书写在“田”字格里。

2015年初中毕业生学业质量检测数学试题附答案

2015年初中毕业生学业质量检测数学试题附答案

2015年初中毕业生学业质量检测数学试题(满分:150分 考试时间:120分钟)友情提示:1.作图或画辅助线等需用签字笔描黑. 2.未注明精确度的计算问题,结果应为准确数.一、选择题(共10小题,每小题4分,满分40分,每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.下列各数中无理数是( ▲ )A .B .-1C .0D .2.2014年将乐县全县旅游门票收入为 19700000元,比往年增长 13.3%.其中 19700000 用科学记数法可表示为( ▲ ) A .0.197×108B .1.97×108C .1.97×107D .1.97×1063.下列运算正确的是( ▲ )A .4a 2-2a 2=2B .(a 2)3=a 5C .a 3·a 6=a 9D .(3a )2=6a 2 4.下列图形中,∠2大于∠1的是( ▲ )5.不等式组 的解集在数轴上表示为( ▲ )A B C D6.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是 ,则黄球的个数为( ▲ ) A .18B .20C .24D .287.已知α是一元二次方程 x 2-x -1=0 较大的根,则下面对α的估计正确的是( ▲ ) A . 0<α<1B . B . 1<α<1.5C .1.5<α<2D .2<α<38.正比例函数 y =- x 的图像与x 轴正半轴所成的锐角度数是( ▲ ) A .30° B .45°C .60°D .80°9.如图,矩形 OABC 与矩形 ODE F 是位似图形,点 O 为位似中心,相似比为 1:1.2 , 点 B 的坐标为(-3,2),则点 E 的坐标是( ▲ )A .(3.6,2.4)B .(-3,2.4)C .(-3.6,2)D .(-3.6,2.4)10.如图,矩形 ABCD 的长为 20,宽为 14,点 O 1 为矩形的中心,⊙O 2的半径为 5, O 1O 2⊥AB 于点P ,O 1O 2=23.若 ⊙O 2 绕点 P 按顺时针方向旋转 360°,在旋转过程中,⊙O 2与矩形的边所在的直线相切的位置一共出现( ▲ )A .18次B .12次C .8次D .4次二、填空题(共6小题,每小题4分,满分24分,请将答案填入答题卡...的相应位置) 11.分解因式:2a 2+4a = ▲ . 12.化简: + = ▲ .13.如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,若S △BDE :S △BAC =1:9,· D·BACO 1O 2P ·则 S △BDE :S △CDE = ▲ .14.某校 7 名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则 这组数据的众数和中位数分别为 ▲ .15.如图所示,将正五边形ABCDE 绕点C 按顺时针方向最少旋转 ▲ 度后顶点 D 会落在直线 BC 上.16.如图,把Rt △ABC 放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿 x 轴向右平移,当点 C 落在直线 y =2x -6上时, 线段BC 扫过的面积为 ▲ .三、解答题(共8小题,满分86分,请将解答过程写在答题卡的相应位置)17.(本题满分7分)18.(本题满分7分)先化简,再求值.(a +b)(a -b)+b(a +2b)-b 2,其中a=1,b=﹣2.(第13题图) (第15题图) (第16题图)EAB CD19.(本题满分8分)如图,已知D 是AC 上一点,AB=DA ,DE ∥AB ,∠B=∠DAE . 求证:BC=AE .20.(本题满分8分)如图,已知一次函数 y = x+b 与反比例函数 y = 在第二象限的图像交于 A(n , )、B(-1,2 )两点. ⑴求 m 、 n 的值;(3分)⑵根据图象回答:在第二象限内,当 x 取何值时, 一次函数大于反比例函数的值?(3分) ⑶△AOB 的面积是多少?(2分)21.(本题满分10分)为了解本校九年级学生期末数学考试情况,小明在九年 级随机抽取了一部分学生的期末数学成绩为样本,分为A (85分或85分以上)、B (84~70分)、C (69~60分)、D (59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题: ⑴这次随机抽取的学生共有多少人?(2分) ⑵请补全条形统计图;(2分)⑶这个学校九年级共有学生600人,估计这次九年级学生期末数学考试成绩为A 等级的学生人数大约有多少?扇形统计图中 A 等级的圆心角多少度?(4分)⑷随机抽取一个学生了解成绩,抽到A 等级的学生的概率约是多少?(2分)(第19题图)ABCD EB50%25%AC D10%(第20题图)(第21题图)如图,已知△ABC 中,∠ACB=90°,CE 是中线,△ACD 与△ACE 关于直线AC 对称. ⑴求证:四边形ADCE 是菱形;(5分) ⑵求证:BC=ED .(5分)23.(本题满分10分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. ⑴两种型号的地砖各采购了多少块?(5分)⑵如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?(5分)24.(本题满分12分)如图,点P 是⊙O 外一点,PA 为⊙O 的切线,A 为切点,直线PO 交⊙O 于点E 、F , 弦AB ⊥PF ,垂足为D ,延长BO 交⊙O 于点C ,连接AC ,BF . ⑴求证:PB 与⊙O 相切;(6分)⑵若AC=12,tan ∠F= ,求⊙O 的直径.(6分)(第22题图)(第24题图)ABCDEACPEDO·BF如图,抛物线l1 :y=-x2平移后过点A(8,0)和原点得到抛物线l2 ,l2的顶点为B,对称轴与x轴相交于点C,与原抛物线l1相交于点D,直线AB 交y 轴于点E.⑴求l2的解析式并和阴影部分的面积S阴影;(7分)⑵在l2的对称轴上是否存在一个点F,使得△OEF的周长最小,若存在,求出点F的坐标,若不存在,说明理由;(3分)⑶点P是抛物线l2上一个动点,过P作PM⊥x轴垂足为M,是否存在点P,使得以O、P、M为顶点的三角形与△OAE相似?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由;(4分)(第25题图)。

15年考试数学答案.doc

15年考试数学答案.doc

]3a (a(415.化简剑阁县2015年高中基地班选拔考试数学解答提示及参考答案.选择题(每小题4分,共32分)1-4 DBDB 5-8 CBBD . 填空题(每小题4分,共20分)9. -2 10. 1211. 112.7.513. 122.解答题(本大题共68分)请在答题卡上写出必要的解答步骤或证明过程。

14.1(7 分)解分式方程为x=l,代入求值,结果为—.(7分)1216. (1)坡顶A 到地面PQ 的距离10m.(4分) (2)古塔BC 的高度约为19m.(8分)5417. ⑴ 印、顷"=6, P(«)=6,所以游戏对双方不公平;(4分) (2)边宽x 为10cm 时,游戏对双方公平.(8分)18. (1) -4<x<-1(2分) ⑵ y=|x+| (5分) (3)P (-|-(8分)2 419. (1)A 型 75 盏,B 型 25 盏;(4 分)⑵A 型25盏,B 型75盏,获利最多,利润为1875元. (9分)(3 20.⑴连接OB,证左PAO^APBO (SAS),可得直线PA为。

O的切线.(6(2分) (6分)(8(2) EF 2=4OD«OP. 证明:ZPAO=ZPDA=90°A ZOAD+ZAOD=90°, ZOPA+ZAOP=90°, ZOAD=ZOPA, AOAD^AOPA,OD OA nn ,——=—,即 OA 2=OD ・OP ,OA OP又 VEF=2OA, .-.EF 2=4OD»OP.(3)VOA=OC, AD=BD, BC=6, .\OD=-BC=3 (二角形中位线定理), 2 设 AD=x,1V tanZF=—,2 FD=2x, OA=OF=2x-3,在RtAAOD 中,由勾股定理,得(2x-3) 2=x 2+32, 解之得,xi=4, x 2=0 (不合题意,舍去), .♦.AD=4, OA=2x-3=5, VAC 是AO 直径, .I ZABC=90°,又 VAC=2OA=10, BC=6, . / 6 3 .・cos/ACB=——=—.10 5VOA 2=OD «OP ,.♦.3 (PE+5) =25, •,•PE=y.(9 分)21. (1) A(-2, 0), B(6, 0)(2) y=-|x 2+2x+6,抛物线对称轴为x=2,顶点坐标(2, 8) (3) 点P 坐标(2, 4)⑷ 依题意,得 AB=8, QB=6-m,, AQ=m+2, OC=6,则 S AABC =-ABxOC=24.2由 DQ 〃AC, .♦.△BDQsABCA,^ABDQ BQ 2 6-m 2"疝)r),3即— (m-6),83 2 3 9 —m + —8 2 23 ——(m~2)2+6,8(12分)又S AACQ—一AQxOC=3m+6, 23S ACDQ=S AABC_S ABDQ_S AACQ-24-— (m - 6)2- (3m+6) -_8当m=2时,S最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年大田县初中毕业班质量检测 数学试卷参考答案及评分标准
说明:以下各题除本参考答案提供的解法外,其他解法参照本评分标准,按相应给分点评分. 一、选择题 (每题4分,共40分)
1.B 2.C 3.D 4.A 5.A 6.D 7.B 8.C 9.B 10.D 二、填空题(每题4分,共24分)
11.(a +2)(a -2) 12.64 13.600
14.答案不唯一,如:AC =DF 或∠A=∠D 等 15.6 16.10- 三、解答题(共86分)
17.原式=3﹣4×+1……………………………………4分 =3﹣2+1=2………………………………7分
18. 解:原式=x 2+3x ﹣x 2﹣2x ﹣1
=x ﹣1…………………………4分
当1x =
+时,原式
11-=7分
19. 解:①+②得:5x=10,即x=2……………………3分 将x=2代入①得:y=1………………………………6分 则方程组的解为
.………………………8分
20. ∵Rt △ABD 中,tan ∠BAD=
=
∴BD=AD•tan ∠BAD=12×=9…………………………6分 ∴CD=BC ﹣BD=14﹣9=5.………………8分 21. (1)
3
1。

………………4分 (2)这个游戏不公平.画树状图得: ∴P (小婷胜)=,……6分 P (小倩胜)=.……8分
∴P (小婷胜)≠P (小倩胜),∴这个游戏不公平.…………10分
22.(1)设甲种茶树苗每株的价格为x 元、则乙种茶树苗每株的价格为(x +3)元 得
100160
3
x x =+,解得x =5………………2分 经检验x =5为原方程的根,当x =5时,x +3=8.
答:甲、乙两种油茶树苗每株的价格分别为5元,8元。

………………4分
(2)设甲种树苗购买a 株,则乙种树苗购买(1000﹣a )株,购买的总费用为W 元,由题意,得90%a +95%(1000﹣a )≥1000×92%…………6分 ∴a ≤600.W =5a +8(1000﹣a )=﹣3a
+8000
……………………3分
∴k =﹣3<0,∴W 随a 的增大而减小,∴a =600时,W 最低=6200元.……………9分 答:购买甲种树苗600株,乙种树苗400株费用最低,最低费用是6200元.………10分 23.(1)证明:连接OB ,如图,∵OP ⊥OA ,∴∠AOP=90°,∴∠A+∠APO=90° ∵CP=CB ,∴∠CBP=∠CPB 而∠CPB=∠APO ,∴∠APO=∠CBP ∵OA=OB ,∴∠A=∠OBA ,∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90° ∴OB ⊥BC ,∴BC 是⊙O 的切线;…………5分 (2)解:设BC=x ,则PC=x ,在Rt △OBC 中,OB=3 OC=CP+OP=x+1,∵OB 2+BC 2=OC 2,∴32+x 2=(x+1)2,解得x=4即
BC 的长为4.………………10分
24. (1)把点A (1,0)和B (3,0)代入23y ax bx =++
得,
,解得

所以,抛物线的解析式为………………4分
(2)抛物线的对称轴为直线x=2
∵四边形OECF 是平行四边形∴点C 的横坐标是4………………6分 ∵点C 在抛物线上,∴241633y =-+= ∴点C 的坐标为(4,3)………………8分
(3)∵点C 的坐标为(4,3),∴点D 的坐标为3(2,)2
①点O 是直角顶点时,易得△OED ∽△PEO ,∴
,OE PE
DE OE
=即232PE
=
,解得PE=83所以,点P 的坐标为(2,8
3
-
)………………9分 ②点C 是直角顶点时,同理求出PF= 8
3

所以,PE=83+3=173,点P 的坐标为(2,17
3
)……10分
③点P 是直角顶点时,由勾股定理得,OC=,5
∵PD 是OC 边上的中线,∴PD=OC=
5
2
若点P 在OC 上方,则PE=PD+DE=4
此时,点P 的坐标为(2,4)………………11分 若点P 在OC 的下方,则PE=PD ﹣DE=1 此时,点P 的坐标为(2,1)-
综上所述,抛物线的对称轴上存在点P(2,
8
3
-),(2,
17
3
),(2,4),(2,1)
-使△OCP是
直角三角形。

……………………12分
25.(1)AC1=BD1………………2分
证明:∵四边形ABCD是正方形,
∴OC=OA=OD=OB,AC⊥BD,
∴∠AOB=∠COD=90°,
∵△COD绕点O按逆时针方向旋转得到△C1OD1,
∴O C1=OC,O D1=OD,∠CO C1=∠DO D1,
∴O C1=O D1,∠AO C1=∠BO D1=90°+∠AOD1
在△AO C1和△BOD1中
,∴△AO C1≌△BOD1(SAS);∴AC1=BD1………………4分
(2)AC1⊥BD1,1
13 4
AC
BD
=.………………6分
∵四边形ABCD是菱形,∴OC=OA=AC,OD=OB=BD,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,
∴O C1=OC,O D1=OD,∠CO C1=∠DO D1,
∴O C1=OA,O D1=OB,∠AO C1=∠BO D1,
∴,∴△AO C1∽△BOD1,………………8分
∴∠O AC1=∠OB D1,又∵∠AOB=90°,
∴∠O AB+∠ABP+∠OB D1=90°,
∴∠O AB+∠ABP+∠O AC1=90°,
∴∠APB=90°∴AC1⊥BD1;
∵△AO C1∽△BOD1,∴1
11
3 2
14 2
AC
AC OA AC
BD OB BD
BD
====………………10分
(3)
1
2
k=……………………12分
AC12+(kDD1)2=100……………………14分。

相关文档
最新文档