2018年初中毕业班质量检测及标准答案
2018年漳州市初中毕业班质量检测数学试题和答案

2018漳州市初中毕业班质量检测数学试题一、选择题(本大题共10小题,每小题4分,共40分) 1.如图,数轴上点M 所表示的数的绝对值是( ). A .3 B .3- C .±3 D .31-2.“中国天眼"FAST 射电望远镜的反射面总面积约250 000m 2,数据250 000用科学记数法表示为( ).A .25×104B .2.5×105C .2。
5×106D .0。
25×1063.如图是某几何体的左视图,则该几何体不可能...是( ). 4.下列计算,结果等于x 5的是( ).A .32x x + B .32x x ⋅ C .210x x÷ D .(x 2)35.如图,在右框解分式方程的4个步骤中,根据等式基本性质的是( ).A .①②B .②④C .①③D .③④6.如图,OP 平分∠AOB,PC⊥OA 于C ,点D 是OB 上的动点,若PC=6cm 则PD 的长可以是( ).A .3cmB .4cmC .5cmD .7 cm7.如图,点A ,B 在方格纸的格点上,将线段AB 先向右平移3格,再向下 平移2个单位,得线段DC,点A 的对应点为D ,连接AD 、BC,则关于 四边形ABCD 的对称性,下列说法正确的是( ). A .既是轴对称图形,又是中心对称图形 B .是中心对称图形,但不是轴对称图形 C .是轴对称图形,但不是中心对称图形 D .既不是轴对称图形,也不是中心对称图形8.甲、乙两地今年2月份前5天的日平均气温如图所示,则下列描述错误..的是( ). A .两地气温的平均数相同B .甲地气温的众数是4℃C .乙地气温的中位数是6℃D .甲地气温相对比较稳定9.如图,正六边形 ABCDEF 的中心与坐标原点0重合,其中A (-2,0). 将六边形 ABCDEF 绕原点O 按顺时针方向旋转2018次,每次旋转 60°,则旋转后点A 的对应点A’的坐标是( ). A . (1,3)B . (3,1)C .(1,3-)D .(—1,3) 10.如图,在矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且C 、D 两点在函数y=⎪⎩⎪⎨⎧<+-≥+)0(121)0(1x x x x 的图象上,若在矩形ABCD左视图CBAD xyE FO C BA DxyO内随机取一点,则此点取自阴影部分的概率是( ). A .21 B .83 C .41 D .61二,填空题(本大题共6小题,每小题4分,共24分) 11.因式分解:a ax -2=________.12.一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意搞出3个球,则事件“摸出的球至少有1个红球"是________事件(填“必然”、 “随机”或“不可能”) 13.如图,DE 是△ABC 的中位线,若△ADE 的面积为3,则△ABC 的面积为________.14.“若实数a ,b ,c 满足a 〈b <c ,则a +b 〈c ”,能够说明该命题是假命题的一组a ,b ,c 的值依次为________. 15.如图,在□ABCD 中,点E ,F 分别在边AD 、BC 上,BF=2,∠DEF=60°将四边形EFCD 沿EF 翻折,得到四边形EFC ’D’,ED’交BC 于点G ,则△GEF 的周长为________. 16.如图,双曲线y=xk(x >0)经过A 、B 两点,若点A 的横坐标为1, ∠OAB=90°,且OA=AB ,则k 的值为________. 三、解答题(本大题共9小题,共86分) 17.(8分) 计算:91301-+-π 18.(8分)如图,在△ABC 中,∠A=80°,∠B=40°.(1)求作线段BC 的垂直平分线DE ,垂足为E ,交AB 于点D; (要求;尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,连接CD ,求证:AC=CD . 19.(8分)求证:对角线相等的平行四边形是矩形. (要求:画出图形,写出已知和求证,并给予证明)20.(8分)为响应市收府关于”垃圾不落地·市区更美丽"的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A :非常了解,B :比较了解C :了解较少,D:不了解”四种,并将调查结果绘制成以下两幅不完整的统计图. 请根据图中提供的信息,解答下列问题: (1)把两幅统计图补充完整;(2)若该校学生数1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学 生共有________名;(3)已知“非常了解”的4名男生和1名女生,从 中随机抽取2名向全校做垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到1男1女的概率.CB A D EA B CDD ’ EF G BAxyOB CABCD ___%___%30%8%垃圾分类知识掌据情况条形统计图垃圾分类知识掌据情况A21.(8分)如图,AB 是⊙0的直径,AC 是弦,D 是BC 的中点,过点D 作EF 垂直于直线AC ,垂足为F,交AB 的延长线于点E . (1)求证:EF 是⊙0的切线; (2)若tan A=34,AF=6,求⊙0的半径.22.(10分)某景区售票处规定:非节假日的票价打a 折售票; 节假日根据团队人数x (人)实行分段售票:若≤x 10,则按 原展价购买;若x 〉10,则其中10人按原票价购买,超过部 分的按原那价打b 折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y 1元,在节假日的购票款为y 2元,y 1、y 2与x 之间的函数图象如图所示.(1)观察图象可知:a ________,b ________;(2)当x >10时,求y 2与x 之间的函数表达式;(3)该旅行社在今年5月1目带甲团与5月10日(非节假日)带乙国到该景区游览,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数.23.(10分)阅读:所谓勾股数就是满足方程x 2+y 2=z 2的正整数解,即满足勾股定理的三个正整数构成的 一组数.我国古代数学专著《九章算术》一书,在世界上第一次给出该方程的解为:)(2122n m x -=,y =mn ,)(2122n m z +=,其中m 〉n >0,m 、n 是互质的奇数. 应用:当n =5时,求一边长为12的直角三角形另两边的长.D24.(12分)已知抛物线c bx ax y ++=2 (a 、b 、c 是常数,0≠a )的对称轴为直线2-=x . (1) b =______;(用含a 的代数式表示)(2)当1-=a 时,若关于x 的方程02=++c bx ax 在13<<-x 的范围内有解,求c 的取值范围; (3)若抛物线过点(2-,2-),当01≤≤-x 时,抛物线上的点到x 轴距离的最大值为4,求a 的值. 25.(14分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,E 为OC 上动点(与点0不重合), 作AF⊥BE,垂足为G ,交BC 于F,交B0于H,连接0G ,CC . (1)求证:AH=BE ; (2)试探究:∠A GO 的度数是否为定值?请说明理由; (3)若OG⊥CG,BG=5,求△OGC 的面积.CD2018年漳州市初中毕业班质量检测数学参考答案及评分建议一、选择题(本大题共10小题,每小题4分,共40分)1 2 3 4 5 6 7 8 9 10A B D B C D A B A C二、填空题(本大题共6小题,每小题4分,共24分)11. a(x+1)(x—1); 12. 必然; 13. 12; 14.答案不唯一,如1,2,3; 15。
2018年福建省福州市初中毕业班质量检测数学试题及答案

福州市初中毕业班质量检测数学试卷(考试时间:120分钟,满分:150分)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式2x<4的解集是()A. x<2B. x<1C. x>2 .2D. x>122.下列图形中,由AB∥CD能得到∠1= ∠2的是()3.下列图形中,是轴对称图形的是()4.福州近期空气质量指数(AQI)分别为:78,80,79,79,81,78,80,80,这组数据的中位数是()A.79 B.79.5 C.80 D.80.55.如图,⊙O中,半径OC=4,弦AB垂直平分OC,则AB的长是()A.3B.4C.6.因式分解3y2-6y+3,结果正确的是()A. 3(y-l)2B. 3(y2 -2y+l)C.(3y-3)227.下列计算正确的是()A. (a+b)2 =a2+b2B. a9÷a3=a3C.(ab)3=a3b3.D.(a5)2 =a78.如图,C,D是线段AB上两点,分别以点A和点B为圆心,AD,BC长为半径作弧,两弧相交于点M,连接AM,BM.测量∠AMB的度数,结果为()A.100° B.110° C.120°D.130°9.已知y是x的函数,当x>-1时,y随着x的增大而减小;当x<-l时,y随着x的增大而增大.满足上述条件的函数图象可能是()10.在△ABC中,∠C= 90°,AC=3,BC =4,D为BC边上一点,将△ACD沿AD折叠,当点C落在边AB上时,BD的长为()A.1.5 B.2 C.2.5 D.3二、填空题(共6小题,每题4分,满分24分)11.如图,∠ABC=90°,∠CBD=40°,则∠ABD的度数是12.已知反比例函数图象过点(3,1),则它的解析式是.13.如果2426x =-,那么13x -值是 14. 一个质地均匀的小正方体,’六个面分别标有数字“l”“2”“2”“3”“3”“3”,掷小正方体后,朝上的一面数字为2的概率是 .15.某企业今年5月份产值为a(l - 10%)(1+15%)万元,比4月份增加了15%,4月份比3月份减少了10%,则3月份的产值是 万元.16.已知二次函数y=(x-l)2-t 2(t ≠0),方程(x-1)2-t 2-1=0的两根分别为m ,n (m <n ),方程(x-l)2-t 2-2=0的两根分别为p ,q(p <q),判断m ,n ,p ,q 的大小关系是 (用“<”连接). 三、解答题(共10小题,满分96分) 17.(7分)计算:011(2015()4--+18.(7分)化简求值:,22y x y y x x ---其中.31,31-=+=y x19.(8分)解方程:.0522=-+x x20.(8分)如图,AC ,BD 交于点D ,AB∥CD,OA= OC . 求证:AB= CD .21. (9分)某校政教处针对同学们对福州地铁建设情况的了解程度进行随机抽样调查,并制成如下统计图,请根据图中的信息,解答下列问题:(1)抽样调查的人数共有 人;(2)就福州地铁建设情况随机采访该校一名学生,哪部分学生最可能被采访到,为什么?22.(9分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23. (10分)如图,AB为⊙O的直径,弦AC=2,∠B= 30°,∠ACB的平分线交⊙O于点D,求:(1) BC,AD的长。
2018年福建省福州市初中毕业班质量检测数学试题及答案

(1) 抽样调查的人数共有
人;
(2) 就福州地铁建设情况随机采访该校一名学生,哪部分学生最可能 被采访到,为什么?
22. ( 9 分)某班去看演出,甲种票每张 24 元,乙种票每张 18 元,如 果 35 名学生购票恰好用去 750 元,甲乙两种票各买了多少张? 23. (10 分 ) 如图, AB 为⊙ O的直径,弦 AC=2,∠ B= 30 °,∠ ACB的 平分线交⊙ O于 点 D,求: (1) BC , AD的长。 (2) 图中两阴影部分面积的和.
∴∠ BDE= ∠BAC= ,
∵ BD= 2BC=2sin , ∴ BE=BD· sin =2sin .sin ∴ AE=AB-BE=l-2sin 2 ,
=2sin 2 ,
∴ cos2
AE 1 2sin 2
cos DAE
AD
1
2
1 2sin
阅读以上内容,回答下列问题: (1) 如图 l ,若 BC=1 ,则 cos =
)
>2 .
3.下列图形中,是轴对称图形的是(
)
4. 福州近期空气质量指数 (AQI) 分别为: 78,80, 79, 79, 81, 78,
80, 80,这组数
据的中位数是(
)
A .79
B
.79.5
C
.80
D
.80.5
5.如图, ⊙ O中,半径 OC=4,弦 AB垂直平分 OC,则 AB的长是 ( )
3
(2) 求出 sin 2 的表达式(用含 sin
, cos2 =
;
或 cos 的式子表示) .
25. ( 13 分)如图,△ AABC 中, AC=8, BC=6, AB =10.点 P 在 AC 边
2018年初中毕业班质量检测及答案

2018年初中毕业班质量检测语文试题(全卷共6页,23题;完卷时间120分钟;满分150分)友情提示:请把所有答案填写(涂)在答案卡上,请不要错位、越界做答!(1)窈窕淑女,。
(《诗经·关雎》)(2),悠然见南山。
(陶渊明《饮酒》)(3)会当凌绝顶,。
(杜甫《望岳》)(4)春蚕到死丝方尽,。
(李商隐《无题》)(5)乱花渐欲迷人眼,。
(白居易《钱塘湖春行》)(6),燕然未勒归无计。
(范仲淹《渔家傲·秋思》)(7)千古兴亡多少事?悠悠。
(辛弃疾《南乡子·登京口北固亭有怀》)(8)峰峦如聚,,。
(张养浩《山坡羊·潼关怀古》)(9)子曰:“,思而不学则殆。
”(《论语》)(10)我们常引用周敦颐《爱莲说》中的“,”来强调一个人应不受环境影响,保持崇高的个性节操。
2. 下列文学常识说法有误..的一项是(2分)A.我国古代文学作品常用“桑梓”“桃李”“婵娟”分别代指家乡、老师、月亮。
B.唐诗、宋词、元曲是我国诗歌史上的三大高峰。
唐有大小李杜,宋有豪放之“苏辛”,元有四大家。
C.《从百草园到三味书屋》和《藤野先生》都是现代作家鲁迅的回忆性散文。
D.《我的叔叔于勒》选自法国作家莫泊桑的短篇小说集《羊脂球》。
3. 阅读下面文字,按要求作答。
(6分)2018平昌冬奥会闭幕式上,“北京八分钟”表演甲(A、美轮美奂B、富丽堂皇)、科技感十足,为观众献上了一场视觉盛宴。
24台移动机器人携.①(A、xié B、jiá)带“冰屏”与舞蹈演员配合完成了一系列màn ②(A、曼 B、嫚)妙复杂的舞美动作,展现了人工智能与中华文化的完美原句:在经久不息的掌声中,表明八分钟的演出完美成功。
修改句:二、阅读(70分)(一)阅读下面这首诗,完成4~5题。
(5分)送杜少府之任蜀州王勃城阙辅三秦,风烟望五津。
与君离别意,同是宦游人。
海内存知己,天涯若比邻。
无为在歧路,儿女共沾巾。
2018年漳州市初中毕业班质量检测数学试题和答案

2018漳州市初中毕业班质量检测数学试题一、选择题(本大题共10小题,每小题4分,共40分) 1.如图,数轴上点M 所表示的数的绝对值是( ). A .3 B .3- C .±3 D .31-2.“中国天眼”FAST 射电望远镜的反射面总面积约250 000m 2,数据250 000用科学记数法表示为( ).A .25×104B .2.5×105C .2.5×106D .0.25×1063.如图是某几何体的左视图,则该几何体不可能...是( ). 4.下列计算,结果等于x 5的是( ).A .32x x + B .32x x ⋅ C .210x x÷ D .(x 2)35.如图,在右框解分式方程的4个步骤中,根据等式基本性 质的是( ).A .①②B .②④C .①③D .③④6.如图,OP 平分∠AOB,PC⊥OA 于C ,点D 是OB 上的动点,若PC=6cm 则PD 的长可以是( ).A .3cmB .4cmC .5cmD .7 cm7.如图,点A ,B 在方格纸的格点上,将线段AB 先向右平移3格,再向下 平移2个单位,得线段DC ,点A 的对应点为D ,连接AD 、BC ,则关于 四边形ABCD 的对称性,下列说法正确的是( ). A .既是轴对称图形,又是中心对称图形 B .是中心对称图形,但不是轴对称图形 C .是轴对称图形,但不是中心对称图形 D .既不是轴对称图形,也不是中心对称图形8.甲、乙两地今年2月份前5天的日平均气温如图所示,则下列描述错误..的是( ). A .两地气温的平均数相同B .甲地气温的众数是4℃C .乙地气温的中位数是6℃D .甲地气温相对比较稳定9.如图,正六边形 ABCDEF 的中心与坐标原点0重合,其中A(-2,0). 将六边形 ABCDEF 绕原点O 按顺时针方向旋转2018次,每次旋转 60°,则旋转后点A 的对应点A'的坐标是( ). A . (1,3)B . (3,1)C .(1,3-)D .(-1,3) 10.如图,在矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且C 、D 两点在函数y=⎪⎩⎪⎨⎧<+-≥+)0(121)0(1x x x x 的图象上,若在矩形ABCD左视图内随机取一点,则此点取自阴影部分的概率是( ). A .21 B .83 C .41 D .61二,填空题(本大题共6小题,每小题4分,共24分) 11.因式分解:a ax -2=________.12.一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意搞出3个球,则事件“摸出的球至少有1个红球”是________事件(填“必然”、13.如图,DE 是△ABC 的中位线,若△ADE 的面积为3,则△ABC 的面积为________.14.“若实数a ,b ,c 满足a<b <c,则a +b <c ”,能够说明该命题是假命题的 一组a ,b ,c 的值依次为________. 15.如图,在□ABCD 中,点E ,F 分别在边AD 、BC 上,BF=2,∠DEF=60°将四边形EFCD 沿EF 翻折,得到四边形EFC ’D’,ED ’交BC 于点G ,则△GEF 的周长为________. 16.如图,双曲线y=xk(x >0)经过A 、B 两点,若点A 的横坐标为1, ∠OAB=90°,且OA=AB ,则k 的值为________. 三、解答题(本大题共9小题,共86分) 17.(8分) 计算:91301-+-π 18.(8分)如图,在△ABC 中,∠A=80°,∠B=40°.(1)求作线段BC 的垂直平分线DE ,垂足为E ,交AB 于点D ; (要求;尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,连接CD ,求证:AC=CD .19.(8分)求证:对角线相等的平行四边形是矩形. (要求:画出图形,写出已知和求证,并给予证明)20.(8分)为响应市收府关于”垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B :比较了解C :了解较少,D :不了解”四种,并将调查结果绘制成以下两幅不完整的统计图. 请根据图中提供的信息,解答下列问题: (1)把两幅统计图补充完整;(2)若该校学生数1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学 生共有________名;(3)已知“非常了解”的4名男生和1名女生,从 中随机抽取2名向全校做垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到1男1女的概率.CA B CDD ’ EF G B C垃圾分类知识掌据情况条形统计图垃圾分类知识掌据情况21.(8分)如图,AB 是⊙0的直径,AC 是弦,D 是BC 的中点,过点D 作EF 垂直于直线AC ,垂足为F ,交AB 的延长线于点E . (1)求证:EF 是⊙0的切线; (2)若tan A=34,AF=6,求⊙0的半径.22.(10分)某景区售票处规定:非节假日的票价打a 折售票; 节假日根据团队人数x (人)实行分段售票:若≤x 10,则按 原展价购买;若x >10,则其中10人按原票价购买,超过部 分的按原那价打b 折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y 1元,在节假日的购票款为y 2元,y 1、y 2与x 之间的函数图象如图所示.(1)观察图象可知:a ________,b ________;(2)当x >10时,求y 2与x 之间的函数表达式;(3)该旅行社在今年5月1目带甲团与5月10日(非节假日)带乙国到该景区游览,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数.23.(10分)阅读:所谓勾股数就是满足方程x 2+y 2=z 2的正整数解,即满足勾股定理的三个正整数构成的 一组数.我国古代数学专著《九章算术》一书,在世界上第一次给出该方程的解为:)(2122n m x -=,y =mn ,)(2122n m z +=,其中m >n >0,m 、n 是互质的奇数. 应用:当n =5时,求一边长为12的直角三角形另两边的长.24.(12分)已知抛物线c bx ax y ++=2(a 、b 、c 是常数,0≠a )的对称轴为直线2-=x . (1) b =______;(用含a 的代数式表示)(2)当1-=a 时,若关于x 的方程02=++c bx ax 在13<<-x 的范围内有解,求c 的取值范围; (3)若抛物线过点(2-,2-),当01≤≤-x 时,抛物线上的点到x 轴距离的最大值为4,求a 的值.25.(14分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,E 为OC 上动点(与点0不重合), 作AF⊥BE,垂足为G ,交BC 于F ,交B0于H ,连接0G ,CC . (1)求证:AH=BE ; (2)试探究:∠A GO 的度数是否为定值?请说明理由; (3)若OG⊥CG,BG=5,求△OGC 的面积.CD2018年漳州市初中毕业班质量检测数学参考答案及评分建议二、填空题(本大题共6小题,每小题4分,共24分)11. a(x+1)(x-1); 12. 必然; 13. 12; 14.答案不唯一,如1,2,3; 15. 6; 16.2.三、解答题(本大题共9小题,共86分)17.(本小题满分8分)解:原式=11+133……………………………………………………………………6分=1. ……………………………………………………………………8分18.(本小题满分8分)解:(1)如图,直线DE为所求作的垂直平分线,点D,E就是所求作的点;…………4分(没标字母或字母标错扣1分)(2)连接CD.方法一:∵DE垂直平分AB,∴BD=CD,∴∠1=∠B=40°. ……………………………5分∴∠2=∠B+∠1=80°. ……………………6分∵∠A=80°,∴∠2=∠A. …………………………………………………………7分∴AC=CD.……………………………………………………………8分方法二:∵DE垂直平分AB,∴BD=CD,∴∠1=∠B=40°. ………………………………………………………5分∵∠A=80°,∴∠ACB=180°-∠A-∠B=60°.∴∠ACD=60°-40°=20°. ……………………………………………6分∴∠2=180°-∠A-∠ACD=80°=∠A. …………………………………7分∴AC=CD.……………………………………………………………8分已知:如图,在□ABCD 中, AC =BD . (画图2分,已知1分) ………………3分 求证:□ABCD 是矩形. …………………………………………………………4分 证明:方法一:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD . …………………5分∵AC =BD ,BC =BC ,∴△ABC ≌△DCB .∴∠ABC =∠DCB . ………………………………………………6分 ∵AB ∥CD ,∴∠ABC +∠DCB =180°.∴∠ABC =11802⨯°=90°. …………………………………………7分 ∴□ABCD 是矩形. ……………………………………………………8分方法二:设AC ,BD 交于点O .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD . ………………5分∵AC =BD ,∴OA =OC =OB .∴∠1=∠3,∠2=∠4. ……………………………………………6分∴∠ABC =∠1+∠2=11802⨯°=90°. …………………………………7分 ∴□ABCD 是矩形. ………………………………………………8分 20.(本小题满分8分)解:(1)如图所示(补充2个或3个正确,得1分); …………………………………2分 (2)500; ………4分(3)树状图法:………………………………………6分共有12种等可能结果,其中满足条件有6种,∴P (一男一女)=12. ………………8分 (用列表法参照给分)解:(1)方法一:如图1,连接OD . ∵EF ⊥AF ,∴∠F =90°.∵D 是BC 的中点,∴BD DC =.∴∠1=∠2=12∠BOC . ………………………………………………1分 ∵∠A =12∠BOC , ∴∠A =∠1 . ………………………………………2分 ∴OD ∥AF . ∴∠EDO =∠F =90°.∴OD ⊥EF . ……………………………………………………………3分 ∴EF 是⊙O 的切线. ……………………………………………………4分方法二:如图2,连接OD ,BC .∵D 是BC 的中点,∴BD DC =.∴∠1=∠2. …………………………………………………………1分∵OB =OC ,∴OD ⊥BC . ……………………………2分∵AB 是⊙O 的直径,∴∠ACB =90°. ∵AF ⊥EF ,∴∠F =∠ACB =90°.∴BC ∥EF .∴OD ⊥EF . ……………………………………………………………3分∴EF 是⊙O 的切线. …………………………………………………4分(2)设⊙O 半径为r ,则OA =OD =OB =r .方法一:在Rt △AFE 中,tan A =43,AF =6, ∴EF =AF ·tan A =8.∴10AE ==. ………………5分∴OE =10-r .∵cos A = 35AF AE=, ………………………………………………………6分∴cos ∠1= cos A =3105OD r OE r ==-. ……………………………………7分 ∴r =154, 即⊙O 的半径为154. ……………………………………8分方法二:在Rt △AFE 中,tan A =43,AF =6, ∴EF =AF ·tan A =8.∴10AE ==. ………………5分∴EO =10-r .∵∠A =∠1,∠E =∠E ,∴△EOD ∽△EAF . ……………………………………………………6分 ∴OD EO AFEA= . …………………………………………………………7分∴10610r r -=.∴r =154, 即⊙O 的半径为154. ……………………………………8分22. (本小题满分10分)解:(1)6,8; ………………………………………………………………………………2分(2)当x ﹥10时,设y 2=kx +b .∵图象过点(10,800),(20,1440), …………………3分 ∴⎩⎨⎧=+=+.144020,80010b k b k ……………………………………4分解得⎩⎨⎧==.160,64b k …………………………………………5分∴y 2=64x +160 (x ﹥10) . ………………………………………………………6分 (3)设甲团有m 人,乙团有n 人.由图象,得y 1=48x . ……………………………………………………………7分 当m ﹥10时,依题意,得⎩⎨⎧=+=++.50,31204816064n m n m ………………………………………8分解得⎩⎨⎧==.15,35n m ……………………………………………………………………9分答:甲团有35人,乙团有15人. ………………………………………………10分23. (本小题满分10分)解:∵n =5,直角三角形一边长为12,∴有三种情况: ① 当x =12 时,12)52122=-m (. ………………………………………………………………1分 解得m 1=7,m 2= -7(舍去). …………………………………………………2分∴y = mn =35. ……………………………………………………………………3分 ∴222211()(75)3722z m n =+=⨯+=. ……………………………………4分 ∴该情况符合题意. ② 当y =12时,5m =12, …………………………………………………………………………5分125m =. …………………………………………………………………………6分 ∵m 为奇数, ∴125m =舍去. …………………………………………………………………7分 ③ 当z =12时,221(5)122m +=,…………………………………………………………………8分 21m =-, …………………………………………………………………9分此方程无实数解. ………………………………………………………………10分 综上所述:当n =5时, 一边长为12的直角三角形另两边的长分别为35,37. 24. (本小题满分12分)解:(1)4a ; ………………………………………………………………………………2分(2)当a = -1时,∵关于x 的方程240x x c --+=在-3< x <1的范围内有解,即关于x 的方程x 2+4x-c =0在-3< x <1的范围内有解,∴b 2-4ac =16+4c ≥0,即c ≥ -4. …………………………………………………3分 方法一:∴抛物线y= x 2+4x =(x +2)2-4与直线y = c 在-3 <x <1的范围内有交点. ……………………………………………………………………4分 当x = -2时,y = -4,当x =1时,y = 5. ………………………………5分 由图像可知: -4≤ c < 5. …………………………………………7分方法二:∴抛物线y= x 2 +4x -c =(x +2)2-4-c 与x 轴在-3 <x <1的范围内有交点. ……………………………………………………………………4分 当x = -2,y =0时,c = -4,当x = 1,y =0时,c = 5. …………………5分 由图像可知:-4≤ c <5. ………………………………………………7分 方法三:∵224(2) 4.c x x x =+=+-∴c 是x 的二次函数. ……………………………………………………4分当x = -2时,c = -4,当x = 1时,c = 5. ……………………………5分由图像可知: -4≤ c < 5. ………………………………………………7分 (3)∵抛物线y =ax 2+4ax +c 过点(-2,-2),∴c = 4a -2.∴抛物线解析式为:22442(2)2y ax ax a a x =++-=+-. …………………8分 方法一: ① 当a > 0时,抛物线开口向上.∵抛物线对称轴为x =-2.∴当-1≤x ≤0时,y 随x 增大而增大.∵抛物线上的点到x 轴距离的最大值为4,由图像可知:4a -2=4. ………………………………………………9分∴32a =. …………………………………………………………10分 ② 当a < 0时,抛物线开口向下.∵抛物线对称轴为x =-2.∴当-1≤x ≤0时,y 随x 增大而减小. ∵抛物线上的点到x 轴距离的最大值为4,由图像可知:4a -2= -4. ……………………………………………11分∴12a =-. …………………………………………………………12分 方法二: ∵-1≤x ≤0,∴当x = 0时,y = 4a -2;当x = -1时,y = a -2. ……………8分 ∵当-1≤x ≤0时,抛物线上的点到x 轴距离的最大值为4. ∴有两种情况:① 若424a -=,则3122a a ==-或. ……………………9分 此时1242a -=<或5242a -=<,符合题意. ………10分 ② 若24a -=,则a = 6或a = -2. ………………………11分 此时42224a -=>或42104a -=>.∴a = 6或a = -2不合题意,舍去. ………………………12分综上所述: 3122a a ==-或. 25. (本小题满分14分)解:(1)方法一:∵四边形ABCD 是正方形,∴OA =OB ,∠AOB =∠BOE =90°.…………………………………………1分∵AF ⊥BE ,∴∠GAE+∠AEG =∠OBE +∠AEG =90°.∴∠ GAE =∠OBE . ………………………2分∴△AOH ≌ △BOE . ………………………3分∴AH =BE . …………………………………4分方法二:∵四边形ABCD 是正方形,∴∠ABC =90°,AB =CB ,∠ABO =∠ECB =45°. ……………………1分∵AF ⊥BE ,∴∠BAG+∠ABG =∠CBE +∠ABG =90°.∴∠BAH =∠CBE . ………………………………………………………2分 ∴△ABH ≌△BCE . ……………………………………………………3分 ∴AH =BE . ………………………………………………………………4分(2)方法一:∵∠AOH =∠BGH =90°, ∠AHO =∠BHG ,∴△AOH ∽△BGH . ……………………5分 ∴OH AH GH BH=. …………………………6分 ∴OH GH AH BH=. …………………………7分 ∵∠OHG =∠AHB .∴△OHG ∽△AHB . ………………………………………………………8分 ∴∠AGO =∠ABO =45°,即∠AGO 的度数为定值. ……………………9分方法二:如图,取AB 中点M ,连接MO ,MG . ………6分∵∠AGB =∠AOB =90°,∴AM =BM =GM =OM . ………………………7分∴点O ,G 在以AB 为直径的⊙M 上,即点A ,B ,G ,O 四点在以AB 为直径的⊙M 上, ………………………8分 ∴∠AGO =∠ABO =45°,即∠AGO 的度数为定值. ………………………………………………9分(3)∵∠ABC =90°,AF ⊥BE ,∴∠BAG =∠FBG ,∠AGB =∠BGF =90°,∴△ABG ∽△BFG . ……………………………………………………………10分 ∴GFBG BG AG =,∴AG ·GF =BG 2 =5. …………………………………11分∵△AHB ∽△OHG ,∴∠BAH =∠GOH =∠GBF .∵∠AOB =∠BGF =90°,∴∠AOG =∠GFC . ……………………………………………………………12分 ∵∠AGO =45°,CG ⊥GO ,∴∠AGO =∠FGC =45°.∴△AGO ∽△CGF . ………………………………………………………13分 ∴CGAG GF GO =, ∴GO ·CG =AG ·GF =5.∴S △OGC =12CG ·GO =52. ……………………………………………………14分。
2018年莆田市初中毕业班质量检查试卷评分标准与参考答案

2018年莆田市初中毕业班质量检查试卷数学参考答案与评分标准说明:(一)考生的解法与“参考答案”不同时,可参考“答案的评分标准”的精神进行评分. (二)如果解答的某一步计算出现错误,这一错误没有改变后续部分的考察目的,可酌情给分,但原则上不超过后面得分数的二分之一;如果属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位1分,得分和扣分都不能出现小数点.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1) C (2) C (3) B (4) D (5) C (6) A (7) D (8) B (9) B (10) A 二、填空题(本大题共6小题,每小题4分,共24分.把答案填在答题卡上的相应位置) (11) 2 (12) 8.27⨯105 (13) 1 (14)25 (15) 43(16) 四 三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤)(17) (本小题满分8分)解:原式=111)1(2+-+÷+a a a a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分=aa a a 1)1(2+⨯+ ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分 =11+a ┄ ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分 ∵a =13-. ∴原式=33311131==+-. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 (18) (本小题满分8分)(I)┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 如图所示,点D 就是所求作的点. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分 (II) 在菱形ABCD 中,∠BAC =60°,OB ⊥OA , ┄┄┄┄┄┄┄┄ ┄┄┄┄5分∴在Rt △OAB 中,tan ∠OAB =tan60°=OAOB.∵OA=1∴3=BO ,BD =32. ┄┄┄┄┄┄┄┄ ┄┄┄┄┄┄┄┄┄┄┄┄┄┄7分 又∵AC =2OA =2∴菱形ABCD 的面积3221=⋅=AC BD S . ┄┄┄┄┄┄┄┄┄┄┄┄┄8分(19) (本小题满分8分)(I) 120 ┄┄┄┄┄┄┄┄ ┄┄┄┄┄┄┄┄┄┄4分 (II) 解:平均保费为300)21075.1305.14025.14018085.0100(6000⨯+⨯+⨯+⨯+⨯+⨯⨯=6950(元) ┄┄┄┄┄┄┄┄ ┄┄┄┄┄┄┄┄┄┄8分 (20) (本小题满分8分)(I) △ADE 是等腰直角三角形. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分 理由:在等边△ABD 和等边△ACE 中, ∵BA =DA ,CA =EA ,∠BAD =∠CAE =60°. ∴∠BAD -∠CAD =∠CAE -∠CAD . 即∠BAC =∠EAD .∴△ABC ≌△ADE . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 ∴AB=AD ,BC=DE ,∠ABC =∠ADE ∵ AB =BC ,∠ABC =90° ∴AD =DE ,∠ADE =90°即△ADE 是等腰直角三角形. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分 (II) 连接CD ,则直线CD 垂直平分线段AE .(或连接BE ,则直线BE 垂直平分线段AC ) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分理由:由(I)得DA =DE . 又∵CA =CE .∴直线CD 垂直平分线段AE . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 (21) (本小题满分8分)(I) 解:观察可知,售价x 与日销量y 的乘积为定值300.y 与x 之间的关系为反比例函数. ┄┄┄┄┄┄┄┄┄┄┄┄2分设函数解析式为)0( ≠=k x ky .当30,10==y x 时,300=k . ┄┄┄┄┄┄┄┄┄┄┄┄┄3分∴函数解析式为 300xy =. ┄┄ ┄┄┄┄┄┄┄┄┄┄4分 (II)解: 能达到200元.理由:依题意:200300)10(=⋅-xx .解得:30=x . ┄┄┄┄┄┄┄┄┄┄┄┄6分 经检验,30=x 是原方程的解,并且符合题意. ┄┄┄┄┄┄┄7分 答:当售价30元/kg 时,水果店销售该种水果的日利润为200元. ┄┄┄┄8分 (22) (本小题满分10分)(I)解:∵AB ⊥CD ,垂足为N∴∠BNO =90°在Rt △ABC 中,∵ON =1,BN =3∴222=+=ON BN BO ,3tan ==∠ONBNBON ┄┄┄┄┄┄┄┄┄┄┄┄3分 ∴∠BON =60° ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分∴. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分(II)证明:如图,连接BC ∵CD 是⊙O 的直径,AB ⊥CD ,∴. ┄┄┄┄┄┄┄┄┄┄┄┄6分∴∠1=∠CAB∵AB AE AC ⋅=2,且∠A =∠A∴△ACE ∽△ABC ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 ∴∠1=∠2 ∴∠CAB =∠2∴∠CEB =∠CAB +∠2=2∠CAB . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10分 (23) (本小题满分10分)(I)解:直线2+-=x y 经过点(2,0)与(0,2),则这两点绕原点O 顺时针旋转90°的对应点为(0,-2)与(2,0)┄┄┄2分 设直线2+-=x y 的“旋转垂线”的解析式为)0( ≠+=k m kx y ┄┄3分 把(0,-2)与(2,0)代入 m kx y +=得:⎩⎨⎧=+-=022m k b .解得⎩⎨⎧-==21m k .即直线2+-=x y 的“旋转垂线”为2-=x y ; ┄┄┄┄┄┄┄┄┄┄┄┄┄5分DC(II) 证明:直线)0( 111≠+=k x k y 经过点(11k -,0)与(0,1), ┄┄┄┄6分 则这两点绕原点O 顺时针旋转90°的对应点为(0,11k )与(1,0), ┄┄8分 把(0,11k )与(1,0)代入b x k y +=2,得⎪⎩⎪⎨⎧=+=0121b k k b∴0112=+k k ,∴121-=⋅k k . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10分 (24) (本小题满分12分)(I)证明∵AD 平分∠BAC , ∴∠P AQ =∠BAD∵PQ ⊥AC ,BD ⊥AD ∴∠PQA =∠BDA =90°∴△PQA ∽△BDA ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分 ∴ABAD AP AQ = ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 (II)证法一:由(I)得ABADAP AQ =又∵∠P AB =∠QAD∴△P AB ∽△QAD ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分 ∴∠APB =∠AQD∵∠APB =∠PDB +∠DBP ∠AQD =∠AQP +∠DQP ∴∠PDB =∠AQP =90°∴∠DBP =∠DQP ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7分 证法二:如图,延长AC ,交BD 的延长线于点E , 连接PE ,取PE 的中点O ,连接OD,OQ.∵∠PDE =∠PQE =90°在Rt △PDE 与Rt △PQE 中,∵O 是PE 的中点,∴PE DO 21=,PE QO 21= 即PO EO QO DO ===∴P 、D 、E 、Q 四点都在以O 为圆心,OP 为半径的⊙O 上,┄┄┄┄┄┄┄┄5分∴∠1=∠DQP ∵AD 垂直平分BE ∴PB =PE ∴∠1=∠DBP∴∠DBP =∠DQP ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7分B(III)解:过点P 分别作PG ⊥AB 于点G ,PH ⊥DQ 于点H . 则PG =d 1,PH =d 2.∵AD 平分∠BAC ,PQ ⊥AC.∴d 1=PG =PQ . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 ∴PHPQ d d S ==21. 由(II)得∠DBP =∠DQP ,∵∠BDP =∠QHP =90°.∴△DBP ∽△HQP ; ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10分 ∴PDPB PH PQ =. 在Rt △BDP 中,BD =1,DP =t.∴12+=t PB .∴tt S 12+=. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分25.(本小题满分14分)(I) 解:∵A (-1,0),B (3,0),∴该二次函数图象的对称轴为1=x ,且AB =4. 过点C 作CH ⊥AB 于点H.∵△ABC 为等腰直角三角形,∴CH =21AB =2. ┄┄1∴C (1,-2)或C (1,2) ①如图1,当C (1,-2)时,可设2)1(2--=x a y .把点B (3,0)代入可得:21=a . ┄┄┄┄3分②如图2,当C (1,2)时,可设2)1(2+-=x a y .把点B (3,0)代入可得:21-=a .综上所述,21=a 或21-. ┄┄┄┄┄┄┄4分(II) 解:(i ) 当a b 2-=时,c ax ax y +-=22=a c x a -+-2)1(.┄┄┄┄┄┄┄┄5分 ∴C (1,c -a )∴B (1+c -a ,0).┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分 ∴0)(2=-+-a c a c a .B∴0)1)((2=+--a ac a c . ∵0≠-a c ,∴aa c 1-=.∴()ax a y 112--=. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 (ii ) 法一:∵31≤≤-x ,a <0,∴当x =-1或3时,y 取得最小值aa 14-,┄┄┄┄┄┄┄┄┄┄┄┄10分当x =1时,y 取得最大值a1-. ┄┄┄┄┄┄┄┄┄┄┄┄11分若以321, , y y y 为长度的三条线段能围成三角形.则aa a 1)14(2->-. ┄┄┄┄┄┄┄┄┄┄┄┄13分整理得:0182<-a . ∴042<<-a . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14分 法二:依题意得:a x a y 1)1(211--=,a x a y 1)1(222--=,ax a y 1)1(233--=. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9分以321, , y y y 为长度的三条线段能围成三角形.不妨设321y y y ≤≤. 则321y y y >+在31≤≤-x 范围内恒成立.∴ax a a x a a x a 1)1(1)1(1)1(232221-->--+-- 整理得:22322211)1()1()1(ax x x <---+-. ┄┄┄┄┄┄┄┄┄┄┄10分等价于232221)1()1()1(---+-x x x 最大值小于21a.当121-==x x 时,2221)1()1(-+-x x 取最大值为8; 当13=x 时,23)1(-x 取最小值为0.此时232221)1()1()1(---+-x x x 取最大值为8. ∴218a <. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13分 整理得:0182<-a . ∵0<a .2-a. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14分<<∴04。
2018年福州市初中毕业班质量检测试卷及答案

2018 年福州市初中毕业班质量检测(考试时间:45分钟满分:75分)可能用到的相对原子质量:H-1 C-12 O-16第Ⅰ卷选择题分。
每题只有一个选项符合题目要求30题,每题3分,共第Ⅰ卷包含101.下列福州传统工艺制作步骤中,主要发生化学变化的是()A.糊纸伞B.酿米酒C.刻石雕D.磨牛角梳2.钨酸(HWO)中钨元素的化合价为()42A.+2 B.+3 C.+4 D.+63.下列化学用语与其含义不相符的是()AC—60 个碳原子.60BBaSO—硫酸钡.4C2CH—2 个甲烷分子.4+2—氯化亚铁中铁元素为+2价FeClD.24. 实验室配制稀硫酸并用其与氧化铜反应,部分操作如图1所示,其中正确的是()D C A B 热.倾.加.取样.稀释倒1图 5. 下列关于水和冰的说法,正确的是()B. 分子间隔相同 A. 分子质量相同D. 组成元素不同分子大小不同C.)6.下列物质的用途主要利用其化学性质的是(.稀有气体用于霓虹灯A B.干冰用于人工降雨8/ 1.石墨用作电池电极DC.熟石灰改良酸性土壤)。
下列说法正确的是年5月9日,中科院发布了四种新元素的中文名称(如表17. 2017()A.四种元素都属于金属元素单质.“Nh”可表示B是地壳中含量最多元素.Og C D.镆原子的相对原子质量是115 1表)8. 鉴别下列各组物质所用的试剂或方法,错误的是(.硝酸铵和氯化钠A ——水B.硬水和软水——肥皂水.纯铝和硬铝C ——互相刻划D.氢氧化钠和碳酸钠——酚酞溶液9. 下列归纳正确的是()——都属于天然纤维A.蚕丝和涤纶——都属于复合肥KNOB.和CO(NH)232——防锈原理相同C.自行车车架喷漆和链条涂油去污原理相同D.洗洁精除油污和汽油除油污——表示X10.图2为采用“数字化”实验,由传感器采集实验相关信息描绘出曲线,其中物质Y能与二氧化碳反应的某液体,纵坐标Y表示烧杯中的某个量。
下列对物质X与纵坐标)的分析正确是(物质X 纵坐标Y 选项A 水溶液的质量pH B 溶液的水氢氧化钠溶液C 溶质的质量溶液中钙元素质量 D 氢氧化钙溶液8/ 2非选择题第Ⅱ卷(10分)化学源于生活。
2018年莆田市初中毕业班质量检查数学试卷(含答案)

2018年莆田市初中毕业班质量检查试卷(满分:150分;考试时间:120分钟)注意:本试卷分为 试题”和 答题卡”两部分,答题时请按答题卡中的注意事项”认真作答,答案写在答题卡上的相应位置. 一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中有且只有 一个选项是正确的,答对的得 4分;答错、不答或答案超过一个的一律得0分) (1) 2018的相反数为1 1 (A) 2018 (B) — (C) -2018 (D) 2018 2018⑵下列式子运算结果为2a 的是(A) a a (B) 2 a (C) a a (D) a' “ a(3)若一个几何体的主视图、左视图、俯视图都是半径相等的圆,则这个几何体是(A)圆柱 (B)球 (C)正方体 (D) 圆锥⑷下列说法中,正确的是(A) 一组对边平行,另一组对边相等的四边形是平行四边形(B) 对角线相等的四边形是矩形(C) 对角线互相垂直的四边形是菱形(D) 有一组邻边相等的矩形是正方形⑸ 若x=1是关于x 的方程x 2 -2x • c =0的一个根,贝U c 的值为(A) 2 (B) 3 (C) 4 (D) 5⑺一组数据:2, 3, 3,4,若添加一个数据3,则发生变化的统计量是(A)平均数 (B)中位数 (C)众数 (D)方差(8) 已知一次函数y =kx ■ 1的图象经过点A ,且函数值y 随x 的增大而减小,则点A 的坐标可 能是(A) (2, 4) (B) (-1, 2) (C) (-1, -4) (D) (5, 1)(9) 如图,在四边形ABCD 中,/ A=120°,Z C=80°将厶BMN 沿着MN 翻折,得到△ FMN. 若MF // AD , FN // DC ,贝U/ F 的度数为(A) 70° (B) 80° (C) 90° (D) 100°⑹1 a OB(10) 如图,点A,B 分别在反比例函数y= —(x .0), y )(x :::0)的图象上若OA 丄OB,0—=2 , x x OA则a 的值为(A) -4 (B) 4 (C) -2 (D) 2二、填空题(本大题共6小题,每小题4分,共24分•把答案填在答题卡上的相应位置)(11) ___________________ 计算:18=(12) 我国五年来(2013年一2018年)经济实力跃上新台阶,国内生产总值增加到827000亿元. 数据827000亿元用科学记数法表示为 ___________________ 亿元.(14) 如图,△ ABC 中,AB=3 5,AC=4,5 .点 F 在 AC 上, AE 平分/ BAC ,AE 丄 BF 于点E .若点D 为BC 中点,贝U DE 的长为 ______ .(15) 小峰抛掷一枚质地均匀硬币两次,则事件“至少出现一次正面朝上”的概率为(16) 2010年8月19日第26届国际数学家大会在印度的海德拉巴市举行,并首次颁出陈省身奖,该奖项是首个以中国人名字命名的国际主要科学奖 .根据蔡勒公式可以得出2010年8月19日是星期 _________ .(注:蔡勒(德国数学家)公式:心;一2^土誉严“其中:W ――所求的日期的星期数(如大于7,就需减去7的整数倍),c 所求年份的 前两位,y 所求年份的后两位,m 月份数(若是1月或2月,应视为上一年的13 月或14月,即3空m乞14),d 日期数,a 1 表示取数a 的整数部分.)三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图 或演算步骤)(17) (本小题满分8分)先化简,再求值:2 a "(1- 1 ),其中a = 3-1.a 2+2a+1 a+1(18) (本小题满分8分)D(13)如图,四个全等的直角三角形围成一个大正方形 ABCD ,中间阴影部分是一个小正方形EFGH 的面积为.4- C如图,等边△ ABC.(I) 求作一点D ,连接AD , CD ,使得四边形ABCD 为菱形;(要求:尺规作图,保留作 图痕迹,不写作法)(II) 连接BD 交AC 于点0,若0A=1,求菱形ABCD 的面积.(19) (本小题满分8分)保险公司车保险种的基本保费为 a (单位:元),继续购买该险种的投保人称为续保人, 续保人本年度的保费与其上年度出险次数的关联如下表:该公司随机调查了该险种的300名续保人在一年内的出险情况,得到如下统计图:(I) 样本中,保费高于基本保费的人数为名;(II) 已知该险种的基本保费a 为6000元,估计一名续保人本年度的平均保费.(20) (本小题满分8分)如图,在△ ABC 中,AB=BC ,Z ABC=90°.分别以AB ,AC 为边在AB 同侧作等边△ ABD 和等边△ ACE ,连接DE .(I) 判断△ ADE 的形状,并加以证明;(II) 过图中两点画一条直线,使其垂直平分图中的某条线段,并说明理由.(21) (本小题满分8分)水果店在销售某种水果,该种水果的进价为10元/kg.根据以往的销售经验可知:日销量 y(单位:kg)随售价x(单位:元/kg)的变化规律符合某种函数关系.该水果店以往的销售记录如下表:(售价不低于进价)若y与x之间的函数关系是一次函数,二次函数,反比例函数中的某一种(I) 判断y与x之间的函数关系,并写出其解析式;(II) 水果店销售该种水果的日利润能否达到200元?说明理由.(22) (本小题满分10分)如图,O O的直径CD,AB是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年初中毕业班质量检测
语文试题
(全卷共6页,23题;完卷时间120分钟;满分150分)友情提示:请把所有答案填写(涂)在答案卡上,请不要错位、越界做答!
(2),悠然见南山。
(陶渊明《饮酒》)
(3)会当凌绝顶, 。
(杜甫《望岳》)
(4)春蚕到死丝方尽, 。
(李商隐《无题》)
(5)乱花渐欲迷人眼, 。
(白居易《钱塘湖春行》)
(6) ,燕然未勒归无计。
(范仲淹《渔家傲·秋思》)
(7)千古兴亡多少事?悠悠。
(辛弃疾《南乡子·登京口北固亭有怀》) (8)峰峦如聚,,。
(张养浩《山坡羊·潼关怀古》)
(9)子曰:“ ,思而不学则殆。
”(《论语》)
(10)我们常引用周敦颐《爱莲说》中的“ , ”
来强调一个人应不受环境影响,保持崇高的个性节操。
2. 下列文学常识说法有误
..的一项是(2分)
A.我国古代文学作品常用“桑梓”“桃李”“婵娟”分别代指家乡、老师、月亮。
B.唐诗、宋词、元曲是我国诗歌史上的三大高峰。
唐有大小李杜,宋有豪放之“苏辛”,元有四大家。
C.《从百草园到三味书屋》和《藤野先生》都是现代作家鲁迅的回忆性散文。
D.《我的叔叔于勒》选自法国作家莫泊桑的短篇小说集《羊脂球》。
3.阅读下面文字,按要求作答。
(6分)
2018平昌冬奥会闭幕式上,“北京八分钟”表演甲 (A、美轮美奂B、富丽堂皇)、科技感十足,为观众献上了一场视觉盛宴。
24台移动机器人携.① (A、xiéB、jiá)带“冰屏”与舞蹈演员配合完成了一系列màn② (A、曼B、嫚)妙复杂的舞美动作,展现了人工智能与中华文
原句:在经久不息的掌声中,表明八分钟的演出完美成功。
修改句:
二、阅读(70分)
(一)阅读下面这首诗,完成4~5题。
(5分)
送杜少府之任蜀州
王勃
城阙辅三秦,风烟望五津。
与君离别意,同是宦游人。
海内存知己,天涯若比邻。
无为在歧路,儿女共沾巾。
4. 对这首诗的理解和分析不正确
...的一项是(3分)
A.这是一首送别诗,表达了对友人的惜别之情。
B.“城阙辅三秦,风烟望五津”写出了送行的地点和友人要赴任的地方。
C.“与君离别意,同是宦游人”写对友人的安慰,表现了诗人依依不舍的伤感之情。
D.“无为在歧路,儿女共沾巾”,这两句承上作结,表达了诗人豪迈旷达的思想感情。
5.品味“海内存知己,天涯若比邻”两句诗,简述其中所蕴涵的哲理。
(2分)
(二)阅读下面文言文,完成6~9题。
(16分)
【甲】山不在高,有仙则名.。
水不在深,有龙则灵。
斯是陋室,惟吾德馨。
苔痕上阶绿,草色入帘青。
谈笑有鸿儒,往来无白丁。
可以调素琴,阅金经。
无丝竹之乱耳,无案牍之劳形。
南阳诸葛庐,西蜀子云亭。
(《黄冈新建小竹楼记》)
[注]①椽:房椽。
②陶瓦:用泥土烧成的瓦。
③雉堞圮毁:城上矮墙倒塌毁坏。
④公退:公事完毕,回来。
⑤茶烟:指烹茶炉火的烟气。
⑥齐云、落星、井干、丽谯:都是名楼。
6. 解释下列加点词在文中的意思。
(4分)
(1)有仙则名.名:__________ (2)何.陋之有何:__________
(3)因.作小楼二间因:__________ (4)被.鹤氅衣被:__________
7.下列对文中画波浪线部分的断句,正确的一项是( )(3分)
A、止于藏/歌舞非骚人之事/吾所不取
B、止于藏歌舞/非骚人之事/吾所不取
C、止于/藏歌舞非/骚人之事吾所不取
D、止于藏歌/舞非骚人/之事吾所不取
8. 把文中画横线的句子翻译成现代汉语。
(4分)
(1)无丝竹之乱耳,无案牍之劳形。
(2分)
(2)比屋皆然,以其价廉而工省也。
(2分)。