《直线、射线、线段》同步练习题

合集下载

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》 含答案

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》  含答案

2020年人教版七年级上册同步练习:4.2《直线、射线、线段》一.选择题1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短3.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个8.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.109.如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.点A在线段OB上10.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC 的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题13.把一段弯曲的河流改直,可以缩短航程,其理由是.14.如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.15.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.16.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)18.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三.解答题20.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.21.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.22.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.25.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM ﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一.选择题1.解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.2.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.3.解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.4.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.5.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.6.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.7.解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.8.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.9.解:A、点O不在射线AB上,点O在射线BA上,故此选项错误;B、点B是线段AB的一个端点,故此选项错误;C、射线OB和射线AB不是同一条射线,故此选项错误;D、点A在线段OB上,故此选项正确.故选:D.10.解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.11.解:如图1,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB+BN=4+1=5cm;如图2,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB﹣BN=4﹣1=3cm;故选:B.12.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题13.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.14.解:由图可得,最短的路线为从甲经A到乙,因为两点之间,线段最短.故答案为:从甲经A到乙,两点之间,线段最短.15.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.16.解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.17.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.18.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=2(cm),综上所述,AC和BC中点间的距离为4cm或2cm.故答案为:4cm或2cm.19.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.三.解答题20.解:(1)如图所示:;(2)如图所示,(3)如图所示,.21.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.22.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.23.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.24.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.25.解:(1)根据C、D的运动速度知:BD=2PC ∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP =②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.。

《4.2.1直线、射线、线段》练习题1

《4.2.1直线、射线、线段》练习题1

4.2线段、射线、直线一、选择题(每小题4分,共12分)1.如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的是()A.木条是直的B.两点确定一条直线C.过一点可以画无数条直线D.一个点不能确定一条直线2.下列语句正确的是()A.画直线AB=10cmB.确定O为直线l的中点C.画射线OB=3cmD.延长线段AB到点C,使得BC=AB3.三条互不重合的直线的交点个数可能是()A.0,1,3 B.2,3 C.0,1,2,3 D.0,1,2二、填空题(每小题4分,共12分)4.如图,写出其中能用P,A,B,C中的两个字母表示的不同射线.5.如图,将射线OA反向延长得射线,线段CD向延长得直线CD.6.京石高铁运行途中停靠的车站依次是:北京西站、涿州东站、固城东站、保定东站、定州东站、石家庄机场站、新石家庄站,那么要为这列火车制作的火车票有种.三、解答题(共26分)7.(8分)数一数,图中共有多少条线段?并分别写出这些线段.8.(8分)A,B,C,D四点如图所示,读下列语句,按要求作出图形(不写画法): (1)连接AD,并延长线段DA.(2)连接BC,并反向延长线段BC.(3)连接AC,BD,它们相交于点O.(4)DA延长线与BC反向延长线交于点P.【拓展延伸】9.(10分)动手画一画,再数一数.(1)过一点A能画几条直线?(2)过两点A,B能画几条直线?(3)已知平面上共有三个点A,B,C,过其中任意两点画直线,可画几条?(4)已知平面上共有n个点(n为不小于3的整数),其中任意三个点都不在同一直线上,那么连接任意两点,可画多少条直线?答案解析1.【解析】选B.根据两点确定一条直线,故选B.2.【解析】选D.A,直线无限长;B,直线不能度量,没有中点;C,射线可向一方无限延长;D,延长线段AB到点C,使得BC=AB,正确.3.【解析】选C.分四种情况:1.三条直线平行,有0个交点;2.三条直线相交于同一点,有1个交点;3.一条直线截两条平行线有2个交点;4.三条直线两两相交有3个交点.4.【解析】图形中能用P,A,B,C中的两个字母表示的不同射线有:射线PA 、射线PB 、射线PC 、射线AB 、射线BC 、射线BA 、射线CB .答案:射线PA 、射线PB 、射线PC 、射线AB 、射线BC 、射线BA 、射线CB5.【解析】将射线OA 反向延长得射线OB,线段CD 向两方延长得直线CD .答案:OB 两方6.【解析】画一条直线,在直线上依次取A,B,C,D,E,F,G 七个点,它们依次表示北京西站、涿州东站、固城东站、保定东站、定州东站、石家庄机场站、新石家庄站.点A 分别与B,C,D,E,F,G 形成6条线段;点B 分别与C,D,E,F,G 形成5条线段;点C 分别与D,E,F,G 形成4条线段;点D 分别与E,F,G 形成3条线段;点E 分别与F,G 形成2条线段;点F 与G 形成1条线段,所以直线上共有线段的条数是6+5+4+3+2+1=21,考虑往返情况,所以应制作火车票21×2=42(种).答案:42【知识拓展】若一条直线上有n 个点,那么以这n 个点中的任意两点为端点的线段共有(n-1)+(n-2)+…+2+1=21n (n-1)(条). 7.【解析】由图形得:共有10条线段,分别为:线段AB 、线段BC 、线段CD 、线段DA 、线段AC 、线段AO 、线段CO 、线段BD 、线段BO 、线段DO .8.【解析】如图所示.9.【解析】(1)过一点A 能画无数条直线.(2)过两点A,B 只能画一条直线.(3)①若三点共线则可画一条,②若三点不共线则可画三条.故可画1条或3条.(4)根据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任意三点都不在一条直线上的四点的直线有6条,按此规律由特殊到一般可得过任意三个点都不在同一直线上的n 个点共能画21n (n-1)条直线.。

人教版版四年级上册数学《线段 直线 射线》练习题(附答案)

人教版版四年级上册数学《线段 直线 射线》练习题(附答案)

人教版版四年级上册数学线段直线射线练习题(附答案)一、单选题1.一条()长300米.A. 射线B. 直线C. 线段2.经过平面上的任意两点,可以画()条直线。

A. 1B. 2C. 无数D. 不确定3.把线段的一端无限延长,就得到一条()。

A. 垂线B. 射线C. 线段D. 直线4.下面图形中有条线段.()A. 3B. 6C. 10D. 155.下图中共有()线段。

A. 4条B. 5条C. 6条D. 8条二、判断题6.直线比射线长,射线比线段长.()7.一条直线长25厘米。

()8.一条直线长10分米.()9.线段有两个端点,是直线的一部分。

()三、填空题10.三角形由________条线段围成,长方形由________条线段围成。

11.在横线上填“经过”或“不经过”。

线段AB经过点C吗?________12.正方形是由________条线段围成的,三角形是由________条线段围成的.13.下图是由________条线段组成的,有________个直角。

14.手电筒发出的光是一条________。

四、解答题15.用两种不同的方法数出框中一共有()条线段,并在图中画出你数线段的方法。

16.画一条比4厘米短5毫米的线段,并给这条线段标上长度。

五、作图题17.过AB两点画一条直线,并量出线段AB的长度。

线段AB长()毫米。

答案一、单选题1. C2. A3. B4. C5. C二、判断题6. 错误7. 错误8. 错误9. 正确三、填空题10. 3;4 11. 不经过12. 4;3 13. 9;614. 射线四、解答题15. 解:,5+4+3+2+1=15(条)答:数出框中一共有15条线段。

16.五、作图题17.量得线段AB的长度是2厘米,即线段AB长20毫米。

人教版小学四年级数学上册《线段、直线、射线》同步练习(含答案)

人教版小学四年级数学上册《线段、直线、射线》同步练习(含答案)

人教版小学四年级数学上册同步练习3.1线段、直线、射线(含答案)一、填空题1.通过纸上一点,能画( )条直线,通过纸上两点,能画( )条直线。

2.下图中有( )条直线,有( )条射线,有( )条线段。

3.在直线、射线和线段中,( )有一个端点,( )有两个端点,( )没有端点。

4.手电筒发出的光束,舞台上的光束,都给人一种( )的形象。

5.两点之间的所有连线中( )最短,将它的一端无限延长,形成一条( ),将另一端也无限延长,形成一条( )。

二、选择题6.4个点可以连成()条线段。

A.6B.5C.77.()的长度是有限的。

A.直线B.射线C.线段8.经过一点画射线,可以画()射线。

A.1条B.2条C.无数条9.下列线中,()是直线。

A.B.C.D.10.直线与射线相比较,()。

A.直线更长B.射线更长C.一样长D.无法比较11.小丽画了一条12厘米长的()。

A.直线B.线段C.射线12.下面说法错误的是()。

A.射线比直线短B.5时整,钟面上的时针与分针成钝角C.边长200米的正方形麦田的面积是4公顷D.角的大小与角两边的长短无关三、判断题13.一条直线长1.5米。

( )14.线段是有限长的。

( )15.直线的长度是射线长度的一半。

( )16.线段和射线都是直线的一部分,所以线段和射线都比直线长。

( ) 17.直线和射线都可以无限延伸。

( )四、解答题18.先画一画,再回答问题。

(1)如图1所示过点A可以画几条直线?(2)如图1所示以点A为端点可以画几条射线?(3)如图2所示每两点之间画一条线段,如下四点可以画几条线段?参考答案:1.无数 1 一2. 1 一 6 六 3 三3.射线线段直线4.射线5.线段射线直线6.A7.C8.C9.A10.D11.B12.A13.×14.√15.×16.×17.√18.(1)一条(2)无数条(3)六条答案第1页,共1页。

射线直线线段练习题

射线直线线段练习题

射线、直线、线段练习题一、选择题1. 下列说法正确的是:A. 射线有一个端点,无限长B. 直线有两个端点,有限长C. 线段有一个端点,有限长D. 射线与直线长度相等2. 在下列图形中,哪个是线段?A. 两条平行线B. 一个端点,向一方无限延伸C. 两个端点,有限长D. 一个端点,向两边无限延伸A. 两个端点,有限长B. 一个端点,向一方无限延伸C. 两个端点,无限长D. 无端点,无限长二、填空题1. 线段是由两个______和它们之间的______组成的。

2. 射线有一个______,向一方______延伸。

3. 直线无______,______延伸。

三、判断题1. 射线的长度大于线段的长度。

()2. 直线比射线更长。

()3. 线段有两个端点,有限长。

()四、连线题请将下列射线、直线、线段的定义与相应的图形连线:1. 直线:______2. 射线:______3. 线段:______五、作图题1. 画出一条线段,长度为5厘米。

2. 画出一条射线,从一个端点出发,经过点A。

3. 画出一条直线,使它与线段AB平行。

六、简答题1. 请简要说明射线、直线和线段的特点。

2. 如何用直尺和三角板画出一条指定长度的线段?3. 在日常生活中,你能找到哪些射线、直线和线段的例子?请分别列举。

七、应用题1. 在平面直角坐标系中,点A(2,3)和点B(5,3)是线段AB的两个端点,求线段AB的长度。

2. 已知射线OC从点O(0,0)出发,经过点C(4,0),求射线OC上距离点O 6个单位长度的点D的坐标。

3. 在直角坐标系中,直线l经过点P(1,2)和点Q(4,6),请写出直线l的方程。

八、拓展题1. 如果一条射线逆时针旋转90度,它变成了什么?2. 在平面上,两条直线相交,形成的四个角中,有几个角是相等的?3. 有一根无限长的直线,你在上面任意取两点,这两点之间的是什么?九、探究题1. 如何证明两条平行线之间的距离处处相等?2. 在同一平面内,如果两条直线不相交,那么它们一定是平行的吗?3. 请设计一个实验,证明线段的长度是可以通过测量得到的。

直线、射线、线段同步练习题已整理

直线、射线、线段同步练习题已整理

《直线、射线、线段》同步练习题1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.2.如图1,图中共有______条线段,它们是_________.1()2()3()3.如图2,图中共有_______条射线,指出其中的两条________.4.线段AB=8cm,C 是AB 的中点,D 是BC 的中点,A 、D 两点间的距离是_____cm.5.如图3,在直线I 上顺次取A 、B 、C 、D 四点,则AC=______+BC=AD-_____, AC+BD- BC=________.6.下列语句准确规范的是( )A.直线a 、b 相交于一点mB.延长直线ABC.反向延长射线AO(O 是端点)D.延长线段AB 到C,使BC=AB 7.下列四个图中的线段(或直线、射线)能相交的是( )1()2()3()4()A.(1)B.(2)C.(3)D.(4) 8.如果点C 在AB 上,下列表达式①AC=12AB;②AB=2BC;③AC=BC;④AC+BC=AB 中,能表示C 是AB 中点的有( )A.1个B.2个C.3个D.4个9.如图,从A 到B 有3条路径,最短的路径是③,理由是( )A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短10.如图,平面上有四个点A 、B 、C 、D,根据下列语句画图(1)画直线AB 、CD 交于E 点; (2)画线段AC 、BD 交于点F; (3)连接E 、F 交BC 于点G; (4)连接AD,并将其反向延长;(5)作射线BC;(6)取一点P,使P 在直线AB 上又在直线CD 上.11.在一条直线上取两上点A 、B,共得几条线段?在一条直线上取三个点A 、B 、 C,共得几条线段?在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段?B A线段、直线、射线1、关于线段,下列判断正确的是 ( ) A.只有一个端点; B.有两个以上的端点; C.有两个端点; D.没有端点。

北师版七上数学《1 线段、射线、直线》同步练习含答案解析

北师版七上数学《1 线段、射线、直线》同步练习含答案解析

北师版七上数学第四章1线段、射线、直线同步练习一、选择题1.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上答案:B解析:解答:因为线段有两个端点,所以线段可以向两方延长,所以点C不在线段AB上,点C在直线AB上,故A、C错误,B正确,因为直线没有端点,可以向两方无限延伸,直线没有延长线的说法,故D错误.故选B.分析:本题根据直线、线段、以及射线的概念来解答即可.2.如图,图中共有线段的条数是()A.4B.5C.6D.7答案:C解析:解答:图中的线段有AB、AC、AD、BC、BD、CD;故选:C.分析:根据图示数出线段即可.3.下列各直线的表示法中,正确的是()A.直线AB.直线ABC.直线abD.直线Ab答案:B解析:解答:表示一条直线,可以用直线上的两个点表示,一般情况用两个大写字母表示;故选B.分析:此题考查直线的表示方法.4.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直答案:A解析:解答:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.分析:根据公理“两点确定一条直线”来解答即可.5.如图,点A、B、C在一直线上,则图中共有射线()A.1条B.2条C.4条D.6条答案:D解析:解答:根据射线的定义,这条直线上的每个点可以有两条射线,故图中共有射线6条.故选:D.分析:根据射线的定义,一条直线上的每个点可以有两条射线,分析图形可得答案.6.平面内的三个点A、B、C能确定的直线的条数是()A.1条B.2条C.3条D.1条或3条答案:D解析:解答:∵若平面内的三个点A、B、C不在同一直线上,则能确定的直线的条数是:3条;若平面内的三个点A、B、C在同一直线上,则能确定的直线的条数是:1条.∴平面内的三个点A、B、C能确定的直线的条数是:1条或3条.故选D.分析:分别从若平面内的三个点A、B、C不在同一直线上与若平面内的三个点A、B、C在同一直线上去分析,则可求得答案.7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个答案:C解析:解答:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选C.分析:结合图形,区别各概念之间的联系.8.如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上答案:C解析:解答:2008÷6=334…4,所以在射线OD上.故选C.分析:根据规律,所写数字按6个一组循环,用2008除以6余数是几就在第几条线.9.如下图,直线l、射线PQ、线段MN中能相交的是()A.B.C.D.答案:D解析:解答:根据线段不延伸,而射线只向一个方向延伸即可得到:正确的只有D.故选D.分析:根据线段与射线的定义,以及延伸性即可作出判断.10.将线段AB延长至C,再将线段AB反向延长至D,则共有线段()条.A.8B.7C.6D.5答案:C解析:解答:线段上有4个点时,线段总条数是3+2+1条,即6条.故选C.分析:因为将线段AB延长至C,再将线段AB反向延长至D,线段上有4个点,则共有线段条数可求.11.下列说法中正确的是()A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长答案:C解析:解答:A.射线可无限延长,不可测量,所以画一条3厘米长的射线是错误的;B.直线是无限长的,直线是不可测量长度的,所以画一条3厘米长的直线是错误的;C.线段有两个端点,有限长度,可以测量,所以画一条5厘米长的线段是正确的;D.直线、射线都是无限延长,不可测量,不能比较长短,只有线段可以比较长短,所以在线段、射线、直线中直线最长是错误的.故选:C.分析:利用直线、射线、线段的意义和特点,逐项分析,找出正确答案即可.12.下列说法正确的是()A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短答案:B解析:解答:A.过一点P可以作无数条直线;故A错误.B.直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故B正确.C.射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故C 错误.D.射线和直线不能进行长短的比较;故D错误.故选B.分析:过一点可以做无数条直线,根据直线的表示方法,AB和BA是表示同一条直线.而射线AB和射线BA表示不同的射线,射线与直线不能进行长短的比较.13.下列说法正确的是()A.经过两点有且只有一条线段B.经过两点有且只有一条直线C.经过两点有且只有一条射线D.经过两点有无数条直线答案:B解析:解答:A.线段有长短,例如过A、B两点的线段不止一条,故本选项错误;B.经过两点有且只有一条直线,是直线公理,正确;C.射线有一个端点,例如过B、C两点的射线有射线AB、射线BC,故本选项错误;D.因为两点确定一条直线,所以本选项错误.故选B.分析:根据两点确定一条直线的公理和直线、射线、线段的性质对各选项分析判断后利用排除法求解.14.“两条直线相交,有且只有一个交点”的题设是()A.两条直线B.交点C.两条直线相交D.只有一个交点答案:C解析:解答:两条直线相交,有且只有一个交点这一命题题设是两条直线相交,结论是有且只有一个交点,故选C.分析:本题考查两直线相交,有且只有一个交点的命题,题设和结论要搞清楚.15.如图,给出的直线、射线、线段,根据各自的性质,能相交的是()A.B.C.D.答案:D解析:解答:A.射线延伸后两直线不能相交,故本选项错误;B.直线延伸后两直线不能相交,故本选项错误;C.射线和直线延伸后两直线不能相交,故本选项错误;D.射线延伸后两直线能相交,故本选项正确;故选D.分析:根据直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸即可得出答案.二、填空题16.直线上有n个点,我们进行如下操作:在每相邻两点间插入2个点.经过2次这样的操作后,直线上共有______个点.(用含n的代数式表示)答案:9n-8解析:解答:第一次操作,共有n+(n-1)×2=3n-2个点,第二次操作,共有(3n-2)+(3n-2-1)×2=9n-8个点,故答案为:9n-8.分析:根据n个点中间可以有(n-1)个空插入,从而找出规律并得解.17.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=______.答案:4解析:解答:∵平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴a+b=4.故答案为:4.分析:分析可得:平面内三条直线两两相交,最多有3个交点,最少有1个交点,则即可求得a+b的值.18.乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A、B两站之间需要安排不同的车票______种.(友情提示:A到B与B到A车票不同.)答案:20解析:解答:设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()515102-⨯=条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为;20.分析:本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.19.一条直线上立有10根距离相等的标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5s,则当他走到第10杆时所用时间是______.答案:11.7s解析:解答:从第1根标杆到第6根标杆有5个间隔,所以,每个间隔行进6.5÷5=1.3s,从第1根标杆到第10根标杆共有9个间隔,所以,行进9个间隔共用1.3×9=11.7s.故答案为:11.7s.分析:根据到第6杆时有5个间隔求出走1个间隔的时间,再求出到第10杆有9个间隔,然后列式计算即可得解.20.平面上有五条直线相交(没有互相平行的),则这五条直线最多有______个交点,最少有______个交点.答案:10|1解析:解答:最多时54102⨯=,相交于同一个点时最少,有1个交点.分析:直线交点最多时,根据公式()12n n-,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.故答案为:10;1.三、解答题20.按要求画一画,再填空(1)延长AB到C,使BC=AB;(2)延长BA到D,使AD=2AB;答案:(3)根据画图过程,推想下列线段之间具有的等量关系,并将倍数填在横线上:CD=______BC,BD=______B C=______AC.答案:4|3|32.解析:解答:(1)(2)如图:;(3)∵BC=AB,AD=2AB,∴CD=4BC,BD=3BC=32 AC.故答案为:4;3;32.分析:(1)(2)根据题意画出图形即可;(3)根据图形得出线段之间的数量关系即可.22.①如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段②如图2直线l上有3个点,则图中有______条可用图中字母表示的射线,有______条线段;答案:4|3③如图3直线上有n个点,则图中有______条可用图中字母表示的射线,有______条线段;答案:2n-2|()12n n-;④应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需______场比赛. 答案:65152⨯=. 解析:解答:②射线有:12A A 、23A A 、21A A 、31A A 共4条,线段有:12A A 、13A A 、23A A 共3条;③2n -2,()1 2n n -; ④65152⨯=. 分析:②写出射线和线段后再计算个数;③根据规律,射线是每个点用两次,但第一个和最后一个只用一次;线段是从所有点中,任取两个;④代入③中规律即可.23.如图,C 是线段AB 外一点,按要求画图:(1)画射线CB ;(2)反向延长线段AB ;(3)连接AC ,并延长AC 至点D ,使CD =AC .答案:解答:根据题意画图:解析:分析:根据作图的步骤即可画出图形.24.已知平面上四点A、B、C、D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F.(5)延长AC至M,使CM等于2AC.答案:解答:如图:解析:分析:利用直线,射线及线段的定义画图即可.25.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC;(6)取一点P,使P在直线AB上又在直线CD上.答案:解析:解答:如图所示.分析:分别根据直线、射线、线段的定义作出图形即可.。

北师大七年级上《4.1线段、射线、直线》课时练习含答案解析

北师大七年级上《4.1线段、射线、直线》课时练习含答案解析

北师大版数学七年级上册第四章4.1线段、射线、直线同步练习一、选择题1.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上答案:B解析:解答:因为线段有两个端点,所以线段可以向两方延长,所以点C不在线段AB上,点C在直线AB上,故A、C错误,B正确,因为直线没有端点,可以向两方无限延伸,直线没有延长线的说法,故D错误.故选B.分析:本题根据直线、线段、以及射线的概念来解答即可.2.如图,图中共有线段的条数是()A.4B.5C.6D.7答案:C解析:解答:图中的线段有AB、AC、AD、BC、BD、CD;故选:C.分析:根据图示数出线段即可.3.下列各直线的表示法中,正确的是()A.直线AB.直线ABC.直线abD.直线Ab答案:B解析:解答:表示一条直线,可以用直线上的两个点表示,一般情况用两个大写字母表示;故选B.分析:此题考查直线的表示方法.4.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直答案:A解析:解答:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.分析:根据公理“两点确定一条直线”来解答即可.5.如图,点A、B、C在一直线上,则图中共有射线()A.1条B.2条C.4条D.6条答案:D解析:解答:根据射线的定义,这条直线上的每个点可以有两条射线,故图中共有射线6条.故选:D.分析:根据射线的定义,一条直线上的每个点可以有两条射线,分析图形可得答案.6.平面内的三个点A、B、C能确定的直线的条数是()A.1条C.3条D.1条或3条答案:D解析:解答:∵若平面内的三个点A、B、C不在同一直线上,则能确定的直线的条数是:3条;若平面内的三个点A、B、C在同一直线上,则能确定的直线的条数是:1条.∴平面内的三个点A、B、C能确定的直线的条数是:1条或3条.故选D.分析:分别从若平面内的三个点A、B、C不在同一直线上与若平面内的三个点A、B、C 在同一直线上去分析,则可求得答案.7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个答案:C解析:解答:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.分析:结合图形,区别各概念之间的联系.8.如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上答案:C解析:解答:÷6=334…4,所以在射线OD上.故选C.分析:根据规律,所写数字按6个一组循环,用除以6余数是几就在第几条线.9.如下图,直线l、射线PQ、线段MN中能相交的是()A.B.C.D.答案:D解析:解答:根据线段不延伸,而射线只向一个方向延伸即可得到:正确的只有D.分析:根据线段与射线的定义,以及延伸性即可作出判断.10.将线段AB延长至C,再将线段AB反向延长至D,则共有线段()条.A.8B.7C.6D.5答案:C解析:解答:线段上有4个点时,线段总条数是3+2+1条,即6条.故选C.分析:因为将线段AB延长至C,再将线段AB反向延长至D,线段上有4个点,则共有线段条数可求.11.下列说法中正确的是()A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长答案:C解析:解答:A.射线可无限延长,不可测量,所以画一条3厘米长的射线是错误的;B.直线是无限长的,直线是不可测量长度的,所以画一条3厘米长的直线是错误的;C.线段有两个端点,有限长度,可以测量,所以画一条5厘米长的线段是正确的;D.直线、射线都是无限延长,不可测量,不能比较长短,只有线段可以比较长短,所以在线段、射线、直线中直线最长是错误的.故选:C.分析:利用直线、射线、线段的意义和特点,逐项分析,找出正确答案即可.12.下列说法正确的是()A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短解析:解答:A.过一点P可以作无数条直线;故A错误.B.直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故B正确.C.射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故C 错误.D.射线和直线不能进行长短的比较;故D错误.故选B.分析:过一点可以做无数条直线,根据直线的表示方法,AB和BA是表示同一条直线.而射线AB和射线BA表示不同的射线,射线与直线不能进行长短的比较.13.下列说法正确的是()A.经过两点有且只有一条线段B.经过两点有且只有一条直线C.经过两点有且只有一条射线D.经过两点有无数条直线答案:B解析:解答:A.线段有长短,例如过A、B两点的线段不止一条,故本选项错误;B.经过两点有且只有一条直线,是直线公理,正确;C.射线有一个端点,例如过B、C两点的射线有射线AB、射线BC,故本选项错误;D.因为两点确定一条直线,所以本选项错误.故选B.分析:根据两点确定一条直线的公理和直线、射线、线段的性质对各选项分析判断后利用排除法求解.14.“两条直线相交,有且只有一个交点”的题设是()A.两条直线B.交点C.两条直线相交D.只有一个交点解析:解答:两条直线相交,有且只有一个交点这一命题题设是两条直线相交,结论是有且只有一个交点,故选C.分析:本题考查两直线相交,有且只有一个交点的命题,题设和结论要搞清楚.15.如图,给出的直线、射线、线段,根据各自的性质,能相交的是()A.B.C.D.答案:D解析:解答:A.射线延伸后两直线不能相交,故本选项错误;B.直线延伸后两直线不能相交,故本选项错误;C.射线和直线延伸后两直线不能相交,故本选项错误;D.射线延伸后两直线能相交,故本选项正确;故选D.分析:根据直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸即可得出答案.二、填空题16.直线上有n个点,我们进行如下操作:在每相邻两点间插入2个点.经过2次这样的操作后,直线上共有______个点.(用含n的代数式表示)答案:9n-8解析:解答:第一次操作,共有n+(n-1)×2=3n-2个点,第二次操作,共有(3n-2)+(3n-2-1)×2=9n-8个点,故答案为:9n-8.分析:根据n个点中间可以有(n-1)个空插入,从而找出规律并得解.17.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=______.解析:解答:∵平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴a+b=4.故答案为:4.分析:分析可得:平面内三条直线两两相交,最多有3个交点,最少有1个交点,则即可求得a+b的值.18.乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A、B两站之间需要安排不同的车票______种.(A到B与B到A车票不同.)答案:20解析:解答:设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()515102-⨯=条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为;20.分析:本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.19.一条直线上立有10根距离相等的标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5s,则当他走到第10杆时所用时间是______.答案:11.7s解析:解答:从第1根标杆到第6根标杆有5个间隔,所以,每个间隔行进6.5÷5=1.3s,从第1根标杆到第10根标杆共有9个间隔,所以,行进9个间隔共用1.3×9=11.7s.故答案为:11.7s.分析:根据到第6杆时有5个间隔求出走1个间隔的时间,再求出到第10杆有9个间隔,然后列式计算即可得解.20.平面上有五条直线相交(没有互相平行的),则这五条直线最多有______个交点,最少有______个交点.答案:10|1解析:解答:最多时54102⨯=,相交于同一个点时最少,有1个交点.分析:直线交点最多时,根据公式()12n n-,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.故答案为:10;1.三、解答题20.按要求画一画,再填空(1)延长AB到C,使BC=AB;(2)延长BA到D,使AD=2AB;答案:(3)根据画图过程,推想下列线段之间具有的等量关系,并将倍数填在横线上:CD=______BC,BD=______B C=______AC.答案:4|3|32.解析:解答:(1)(2)如图:;(3)∵BC=AB,AD=2AB,∴CD=4BC,BD=3BC=32 AC.故答案为:4;3;32.分析:(1)(2)根据题意画出图形即可;(3)根据图形得出线段之间的数量关系即可.22.①如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段②如图2直线l上有3个点,则图中有______条可用图中字母表示的射线,有______条线段;答案:4|3③如图3直线上有n个点,则图中有______条可用图中字母表示的射线,有______条线段;答案:2n -2|()1 2n n -;④应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需______场比赛.答案:65152⨯=. 解析:解答:②射线有:12A A 、23A A 、21A A 、31A A 共4条,线段有:12A A 、13A A 、23A A 共3条;③2n -2,()1 2n n -; ④65152⨯=. 分析:②写出射线和线段后再计算个数;③根据规律,射线是每个点用两次,但第一个和最后一个只用一次;线段是从所有点中,任取两个;④代入③中规律即可.23.如图,C 是线段AB 外一点,按要求画图:(1)画射线CB ;(2)反向延长线段AB ;(3)连接AC ,并延长AC 至点D ,使CD =AC .答案:解答:根据题意画图:解析:分析:根据作图的步骤即可画出图形.24.已知平面上四点A、B、C、D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F.(5)延长AC至M,使CM等于2AC.答案:解答:如图:解析:分析:利用直线,射线及线段的定义画图即可.25.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC;(6)取一点P,使P在直线AB上又在直线CD上.答案:解析:解答:如图所示.分析:分别根据直线、射线、线段的定义作出图形即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 2 -
《直线、射线、线段》同步练习题
轻松入门
1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.
2.如图1,图中共有______条线段,它们是_________.

1
C
B

A

2
B
A

3

CDBA

3.如图2,图中共有_______条射线,指出其中的两条________.
4.线段AB=8cm,C是AB的中点,D是BC的中点,A、D两点间的距离是_____cm.
5.如图3,在直线I上顺次取A、B、C、D四点,则AC=______+BC=AD-_____,AC+BD- BC=________.
6.下列语句准确规范的是( )
A.直线a、b相交于一点m B.延长直线AB
C.反向延长射线AO(O是端点) D.延长线段AB到C,使BC=AB
7.下列四个图中的线段(或直线、射线)能相交的是( )

1
C
D

BA
2CDBA 3CDBA 4CDBAA.(1) B.(2) C.(3)

D.(4)
8.如果点C在AB上,下列表达式①AC=12AB;②AB=2BC;③AC=BC;④AC+BC=AB中, 能表示C是
AB中点的有( ) A.1个 B.2个 C.3个 D.4个
9.如图,从A到B有3条路径,最短的路径是③,理由是( )
A.因为③是直的 B.两点确定一条直线
C.两点间距离的定义 D.两点之间,线段最短
10.如图,平面上有四个点A、B、C、D,根据下列语句画图
(1)画直线AB、CD交于E点;
(2)画线段AC、BD交于点F;
(3)连接E、F交BC于点G;
(4)连接AD,并将其反向延长;
(5)作射线BC;
(6)取一点P,使P在直线AB上又在直线CD上.
11.在一条直线上取两上点A、B,共得几条线段?在一条直线上取三个点A、B、 C,共得几条
线段?在一条直线上取A、B、C、D四个点时,共得多少条线段? 在一条直线上取n个点时,
共可得多少条线段?

CBBA
A
C
D

BA

答案
1.无数;一,只有一 2.3条,线段AC,AB,CB 3.4,射线BA,射线AB 4.6 5. AB,CD,AD
6.D 7.A 8.C 9.D 11.2个点时1条线段,3个点时有2+1=3条线段;4个点时有3+2+1=6



C
D

B
A
- 2 -

条线段;n 个点时有(n-1)+(n-2)+……+3+2+1=(1)2nn条线段.
线段、直线、射线
[基础训练]
1、关于线段,下列判断正确的是 ( )
A.只有一个端点; B.有两个以上的端点; C.有两个端点; D.没有端点。
2、下列说法不正确的是 ( )
A.射线是直线的一部分; B.线段是直线的一部分;
C.直线是无限延长的; D.直线的长度大于射线的长度。
3、下列说法中,正确的是 ( )
A.延长射线的OA; B.延长直线AB; C.延长线段CD D.反向延长直线AB
4、经过一点的直线有 条;经过两点的直线有 条,并且只有 条,经
过不在同一直线上的三点最多可画 条直线。
5、探照灯射出的光线,给我们的印象似 。
6、笔直的窗帘轨,至少需要 个钉子才能将它固定,理由是
7、观察如图,指出图形中有多少条线段,请用字母表示出来。

8、画出下列语句表达的图形:
(1)点A在直线a上,点B在直线a外;
(2)直线a、b、c相交于点M;
(3)直线a、b相交于点A,直线b、c相交于点B,直线a、c相交于点c。

[综合提高]
一、选择题:
1、数轴是一条: ( )
(A)射线 (B)直线 (C)线段 (D)以上都是
2、下列说法中,正确的个数有 ( )
(1)射线AB与射线BA一定不是同一条射线;(2)直线AB与直线BA一定是同一条直线;
(3)线段AB与线段BA一定是同一条线段。
(A)0个 (B)1个 (C)2个 (D)3个
3、任意画3条直线,则交点的个数是 ( )
(A)1个 (B)1个或3个 (C)1个或2个或3个 (D)0个或1个或2个或3

4、在直线上取两点A、B则这条直线上共有射线 ( )
(A)1条 (B)2条 (C)3条 (D)4条
5、下列说法正确的是 ( )
(A)线段没有长度; (B)射线上有无数个端点;
(C)两条相同端点的射线连结在一起就是一条直线; (D)直线没有端点。
6、下列写法正确的是 ( )
(A)直线A、B相交于点M (B)过A、B、C三点画直线L
(C)直线a、b相交于点M (D)直线a、b相交于点n
7、如图,下列说法正确的是
( )
(A)点A在线段BO上;(B)点A在射线BO上;

E
C A B
D

A B O
- 2 -

(C)点A在线段BO的延长线上;(D)点A在线段BO的反向延长线上。
8、在同一平面内有4个点,过每两点画一条直线,则直线的条数是 ( )
(A)1条 (B)4条(C)6条 (D)1条或4条或6条
二、填空题
9、如图,以0为端点的射线有 条,它们分别是
图中线段有 条。
10、同一平面内三条线直线两两相交,最少有 个交点,最多有 个交点。
11、如图,以A、B、C、D为端点的射线有 条,
线段有 条。

12、观察自己身边的物品,举出几种常见的线段 。
13、看图写话,用语言描述下列图形:
(1) (2)

描述: 描述:
14、经过平面上三点可以画 条直线。

三、解答题:
15、根据下列要求画图:
(1)连接线段AB;
(2)画射线OA,射线OB;
(3)在线段AB上取一点C,在射线OA上取一点D(点C、D不与点A重合),画直线CD,
使直线CD与射线OB交于点E。
16,数线段,找规律:
下列各图中,线段上的点依次增加,请你填写图中相应的线段数,

条线段; 条线段; 条线段; 条线段;
(1) 请猜想,当线段AB上有10个点时(含A、B两点),有几条线段?
(2)n个点呢(n≧2)
[学练点拨]
每增加一个点,可以发现增加线段条数与原来线段上点的个数关系。
[探究创新]
设平面上有5个点,任何三点不在一条直线上,那么过这些点中每两点画直线,可画 条
线,如果是n个点,可以画 条直线。
参考答案
基础训练:
1 . C 2 .D 3 .C 4、无数、1、2、3 ; 5.射线 6 .2,两点确定一条直线 ; 7.

D C B O A ·
B
M NA C

D

A
·
a
P

a

b
A · B · O ·

D
CEBCBABACBAA
- 2 -

8条 ; 8. 略 综合提高:选择题:1 .B 2 .D 3 .D 4 .D 5 .D 6 .C 7 .D 8. D
填空题:9. 4, 射线OA,射线OB, 射线OC, 射线OD; 8. 10、1,3; 11、 8, 6; 12. 略
13 (1)点A在直线a上,(2)直线a, b 相交于点p 14. 1 或3
解答题:15.略 16 . 1,3,6,10 ;(1)45条 (2)n(n-1)/2
探究创新: 1. 10条 , n(n-1)/2 2. 能,图略

相关文档
最新文档