第六章数据的分析教案练习
第六章数据的分析-离散程度综合测试离散程度综合测试261

《数据的离散程度》综合测试2【教材训练】5分钟1.极差、方差、标准差的概念(1)一组数据的最大数据与最小数据的差叫这组数据的极差.(2)方差是各个数据与其平均数差的平方的平均数.(3)标准差是方差的算术平方根.2.判断训练(打“√”或“×”)(1)极差是刻画数据离散程度的最简单的统计量.()(2)一组数据:-1,5,9,7的极差是8.()(3)在样本容量相同的情况下,方差越小,说明数据的波动越大,越不稳定.( )(4)一组数据5,5,5,4,6,则这组数据的方差是0,标准差是0.()(5)已知,一组数据x1,x2,…,x n的平均数是10,方差是2,则数据x1+3,x2+3,…,x n+3的平均数是10,方差是2.( )【课堂达标】20分钟训练点一:极差、方差、标准差的计算1.(3分)若一组数据1,2,3,x的极差为6,则x的值是()** B.8 C.9 D.7或-32.(3分)在方差的计算公式s2=×[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示的意义可以是()A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据的方差和平均数3.(3分)在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:植树株树(株) 5 6 7小组个数 3 4 3则这10个小组植树株数的方差是________.4.(3分)已知数据0,1,2,3,4的方差为2,则数据10,11,12,13,14的方差为____________,标准差为__________.5.(4分)甲、乙两位同学五次数学测验成绩如下表:测验(次) 1 2 3 4 5 平均分方差甲(分) 75 90 96 83 81乙(分) 86 70 90 95 84请你在表中的空白处填上适当的数,用学到的统计知识对两位同学的成绩进行分析,并写出一条合理化建议.训练点二:极差、方差、标准差的简单应用1.(3分)已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动不能比较2.(3分)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同,方差分别为=8.5,=2.5,=10.1,=7.4,二月份白菜价格最稳定的市场是()A.甲B.乙C.丙D.丁3.(3分)已知一组数据:3,4,5,6,5,7,那么这组数据的方差是()A. B. C. D.4.(5分)在某旅游景区上山的一条路上,有一些断断续续的台阶,如图是其中的甲、乙两段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:图中的数字表示每一级台阶的高度(单位:cm),并且数据15,16,16,14,14,15的方差:,数据11,15,18,17,10,19的方差:.(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.【课后作业】30分钟一、选择题(每小题4分,共8分)1.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是()A.甲、乙的众数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙射中的总环数相同2.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定二、填空题(每小题4分,共12分)3.如图是一组数据的折线统计图,这组数据的极差是________.4.已知一组数据x1,x2,…,x n的方差是s2,则新的一组数据ax1+1,ax2+1,…,ax n+1(a为常数,a≠0)的方差是________(用含a,s2的代数式表示).(友情提示:s2=[(x1-)2+(x2-)2+…+(x n-)2])5.如图是甲、乙两名射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差,之间的大小关系是________.三、解答题(共30分)6.(8分)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:命中环数7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?7.(10分)已知A组数据如下:0,1,-2,-1,0,-1,3.(1)求A组数据的平均数.(2)从A组数据中选取5个数据,记这5个数据为B组数据.要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.你选取的B组数据是________,请说明理由.【注:A组数据的方差的计算式是:=[(x1-)2+(x2-)2+(x3-)2+(x4-)2+(x5-)2+(x6-)2+(x7-)2]】8.(12分)(能力拔高题)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1)请填写下表:平均数方差中位数命中9环以上的次数(包括9环)甲7 **1乙**(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).参考答案【教材训练】2.(1)√ (2)√ (3)× (4)× (5)×【课堂达标】训练点11【解析】选D.由题意可得x的值为-3或7.故选D.2【解析】选C.由方差的计算公式知10个数据,平均数为20.3【解析】先求得平均数为=6,然后套用方差公式得s2=0.6.答案:0.64【解析】因为第二组数据在第一组数据的基础上都加上了10,数据波动情况没有发生变化,故方差不变,依然是2,标准差是.答案:25【解析】平均分方差**甲85**乙85从上述数据可以看出,两人的成绩的平均分相等,乙同学的数学成绩不够稳定,波动较大,希望乙同学在学习上查缺补漏,稳定自己的成绩.训练点21【解析】选B.方差大的数据波动大,方差小的数据波动小.故选B.2【解析】选B.根据数据方差的意义,方差越小说明二月份白菜的价格越稳定.因为=2.5最小,所以乙市场的价格最稳定.3【解析】选A.因为==5,所以s2=×[(3-5)2+(4-5)2+(5-5)2+(6-5)2+(5-5)2+(7-5)2]=.故选A.4【解析】(1)=×(15+16+16+14+14+15)=15,=×(11+15+18+17+10+19)=15,甲路段的中位数为15;乙路段的中位数为16.甲路段的极差为16-14=2;乙路段的极差为19-10=9.又=,=,所以:相同点:两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差、极差不同.(2)甲段台阶路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均修为15cm,使得方差为0.【课后作业】1【解析】选A.因为两人各射击10次,平均数都是8环,所以两人的总环数都是80环,因而D正确;又因为甲的方差小于乙的方差,说明甲的成绩比较稳定,乙的成绩波动较大,所以B,C正确;而通过方差和平均数不能确定数据的众数,所以A不正确.2【解析】选A.由于甲、乙两位学生在军训打靶训练中,打靶的总次数相同,所中环数的平均数也相同,由于甲的成绩稳定,说明他的成绩波动性较小,所以他的方差也小.3【解析】极差是最大值与最小值的差:59-28=31.答案:314【解析】设数据x1,x2,…,x n的平均数为,方差为s2,则=,[(x1-)2+(x2-)2+…+(x n-)2]=s2,所以==a+1.新的一组数据ax1+1,ax2+1,…,ax n+1(a为常数,a≠0)的方差是s′2=[(ax1+1-a-1)2+(ax2+1-a-1)2+…+(ax n+1-a-1)2]=[(ax1-a)2+(ax2-a)2+…+(ax n-a)2]={[a(x1-)]2+[a(x2-)]2+…+[a(x n-)]2}={[a2(x1-)2]+[a2(x2-)2]+…+[a2(x n-)2]}=a2·[(x1-)2+(x2-)2+…+(x n-)2]=a2s2.即新的一组数据ax1+1,ax2+1,…,ax n+1(a为常数,a≠0)的方差是a2s2.答案:a2s25【解析】根据图象可以看出甲的成绩波动比乙的成绩波动要小.故<.答案:<6【解析】甲、乙两人射击成绩的平均成绩分别为:=×(7×2+8×2+10×1)=8,=×(7×1+8×3+9×1)=8,=×[2×(7-8)2+2×(8-8)2+(10-8)2]=1.2,=×[(7-8)2+3×(8-8)2+(9-8)2]=0.4,因为<,所以乙同学的射击成绩更稳定些.7【解析】(1)=×(0+1-2-1+0-1+3)=0.(2)答案不唯一,如选取1,-2,-1,-1,3.因为=×(1-2-1-1+3)=0,所以=.因为=×[02+12+(-2)2+(-1)2+02+(-1)2+32]=,=×[12+(-2)2+(-1)2+(-1)2+32]=.所以>,所以数据1,-2,-1,-1,3符合题意.8【解析】(1)平均数方差中位数命中9环以上次数(包括9环)甲7 **7 1乙7 ** **3(2)①因为平均数相同,<所以甲的成绩比乙稳定.②因为平均数相同,甲的中位数<乙的中位数,所以乙的成绩比甲好些.③因为平均数相同,命中9环以上的次数甲比乙少,所以乙的成绩比甲好些.④甲的成绩在平均数上下波动;而乙处于上升势头,从第4次以后就没有比甲少的情况发生,乙较有潜力.。
北师大版八年级上册 第六章 数据的分析 复习教案

第六章数据的分析复习教案教学目的知识与技能:1.掌握众数、中位数、极差、方差的定义.2.掌握加权平均数的意义及其求法.过程与方法:通过详细问题的分析和解决来稳固对知识的综合掌握.情感态度与价值观:增强学以致用的意识.教学重难点【重点】1.众数、中位数、极差、方差的定义.2.加权平均数的意义及其求法.【难点】根据计算的数据结果对问题进展分析和判断.知识总结专题讲座专题一平均数【专题分析】统计初步在中考中所占的比重越来越大,题型由填空题、选择题开展到分值较高的解答题,有关平均数的计算题,也由单一的数字计算转化为与时代开展严密相连的应用题,特别是加权平均数的计算更是热点.教师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:学生平时作业单元测验期中考试期末考试小丽80 75 71 88小明76 80 70 90请你通过计算比拟谁的学期总评成绩高.〔解析〕10%,30%,25%,35%说明平时作业、单元测验、期中考试、期末考试四项在总成绩中的重要程度,是四项成绩的权,权的和为1.解:小丽的总评成绩为80×10%+75×30%+71×25%+88×35%=79.05(分).小明的总评成绩为76×10%+80×30%+70×25%+90×35%=80.6(分).因为80.6>79.05,所以小明的学期总评成绩高.[规律方法]实际生活中,一组数据中各个数据的“重要程度〞不总是一样的,即“权〞是不同的,所以我们一般选择计算其加权平均数作为衡量“平均程度〞的标准.【针对训练1】水是生命之源,为了让市民珍惜水资源,节约用水,从2021年5月1日起,武汉市居民生活用水供水价格实行三级收费标准:户籍人口4人及以下的用户,每户每月用水量中,25 m3(含25 m3)以内的局部为第一级,价格为1.90元/m3;25 m3至33 m3(含33 m3)的局部为第二级,价格为2.45元/m3;超过33 m3的局部为第三级,价格为3.00元/m3.小李家户籍人口3人,在2021年连续5个月的同一日对他家的水表作了如下记录:时间1月1日2月1日 3月1日4月1日5月1日水表/m3128 149 169 187 208请你利用所学统计知识解答以下问题(不考虑季节性用水量的差异):(1)估计2021年小李家平均每月用水量大约为多少立方米;(2)小李家从2021年5月1日起采取节水措施,假设每月用水量平均节约2 m3,且每月用水量均在第一级,那么小李家2021年余下的8个月的水费大约是多少元?〔解析〕水表与电表有相似之处,可比照解题.解:(1)208−128=20(m3).4答:2021年小李家平均每月用水量约为20 m3.(2)8×(20-2)×1.90=273.60(元).答:小李家2021年余下8个月的水费大约是273.60元.专题二中位数、众数【专题分析】本专题知识在近几年中考中所占的百分比有逐年上升的趋势,大多是利用数学知识解决实际问题的题目,切合新课改的方向,主要考察利用统计图表获取信息的才能.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量,如下表所示:每人销售件数180510 250 210 150 120人数 1 1 3 5 3 2(1)这15位销售人员该月销售量的平均数为件,中位数为件,众数为件;(2)假设销售部经理把每位销售人员的月销售量定为210件,你认为是否合理?为什么?〔解析〕(1)根据平均数、中位数和众数的定义求解.(2)经观察可知销售210件为大多数人能到达的程度.解:(1)320210210(2)合理.因为销售210件以上(包含210件)的人数有10人,能代表大多数人的销售程度,所以销售部经理把每位销售人员的月销售量定为210件合理.[易错提示]平均数、中位数和众数是从不同的角度描绘一组数据的集中趋势.平均数的大小与一组数据中的每个数据都有关系.众数是一组数据中出现次数最多的数,其大小只与局部数据有关.中位数是一组数据按大小顺序排列后,最中间的数(或中间两个数的平均数).【针对训练2】某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表:部门人数每人所创年利润/万元A 1 20B 1 5C 2 2.5D 4 2.1E 2 1.5F 2 1.5G 3 1.2根据表中提供的信息答复:(1)该公司每人所创年利润的平均数为万元;(2)该公司每人所创年利润的中位数为万元;(3)我认为应采用数来描绘该公司每人所创年利润的一般程度.〔解析〕(1)可直接求加权平均数;(2)只需取最中间的那个数据(即第8个数据2.1万元)作为该公司每人所创年利润的中位数;(3)因为用“平均数〞表示该公司员工的“平均程度〞显然过高,所以这里用中位数表示较为合理.〔答案〕(1)3.2(2)2.1(3)中位专题三极差、方差【专题分析】本专题知识是中考中一个比拟重要的考点,题型有选择题、填空题和解答题,主要考察对极差、方差、标准差的意义的理解,公式掌握的灵敏性以及计算的准确性.当今市场竞争剧烈,产品质量是企业生存的命根子,永安厂和天星厂为争取鼓楼南路扩建用砖的市场,展开了竞争,工程队以质量择优为宗旨,对两家产品的抗断强度进展了测定,下面是检测的两组数据(单位:千克/平方厘米):永安厂:32.50,29.66,31.64,30.00,31.77,31.01,30.75,31.24,31.87,31.05;天星厂:31.00,29.56,32.02,33.00,29.32,30.37,29.98,31.35,32.86,32.04.试评定两厂消费质量的优劣.〔解析〕通常,产品的优劣通过平均程度来衡量,假设平均抗断强度高,那么质量优,在平均抗断强度一样的情况下,通常比拟产品稳定性的好坏.解:两家产品的平均抗断强度分别为:x ̅永安=110×(32.50+29.66+…+31.05)=110×311.49≈31.15; x ̅天星=110×(31.00+29.56+…+32.04)=110×311.5=31.15. s 永安2=110×[(32.50-31.15)2+(29.66-31.15)2+…+(31.05-31.15)2]≈110×6.7=0.67,s 天星2=110×[(31.00-31.15)2+(29.56-31.15)2+…+(32.04-31.15)2]≈110×15.81=1.581,因为s 永安2<s 天星2,所以永安厂产品的抗断强度比天星厂产品的抗断强度稳定,即永安厂产品的质量优于天星厂产品质量.[规律方法]极差是刻画数据离散程度的一个统计量,极差越大说明这组数据的离散程度也越大;方差和标准差是衡量一组数据波动大小的量,方差、标准差越大,数据的波动越大,方差、标准差越小,这组数据就越稳定.【针对训练3】某校要从九年级一班和二班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下(单位:厘米): 一班:168167170165168166171168167170 二班:165167169170165168170171168167(1)完成下面的统计分析表;班级平均数方差中位数一班168 168二班168 3.8(2)请选一个适宜的统计量作为选择标准,说明哪一个班能被选取.解:(1)3.2168(2)选方差作为选择标准,∵一班同学身高的方差小于二班同学身高的方差,∴一班能被选取.[解题策略]方差是反映一组数据的波动大小的一个量.方差越大,那么它与其平均值的离散程度越大,稳定性越差;反之,那么它与其平均值的离散程度越小,稳定性越好.专题四数形结合思想【专题分析】数形结合思想是指将数(或量)与形(图形)结合起来对问题进展研究,本章中许多题目的信息都是通过统计图表给出的,有的问题将数据表如今图表上,更能直观地反映数据的特点.我们要能把抽象的数据和直观的图形结合起来,使问题化难为易,化抽象为直观.如下图的是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).求这些车行驶速度的平均数、中位数和众数.〔解析〕观察条形图可得车速为50千米/时的有2辆;车速为51千米/时的有5辆;车速为52千米/时的有8辆;车速为53千米/时的有6辆;车速为54千米/时的有4辆;车速为55千米/时的有2辆;车辆总数为27.根据这些信息可求出平均数、中位数和众数.×(50解:由图知共有27辆车,所以这些车行驶速度的平均数为127×2+51×5+52×8+53×6+54×4+55×2)≈52.4(千米/时).将这27个数据按从小到大的顺序排列,其中第14个数是52,故这些车行驶速度的中位数是52千米/时.这27个数据中,52出现了8次,出现的次数最多,故这些车行驶速度的众数是52千米/时.【针对训练4】如以下图所示,有两条石级路,哪条路走起来更舒适些?(图中数据表示每一级的高度,单位:厘米)〔解析〕上台阶是否舒适,就看台阶起伏情况如何,因此需要计算两条石级路的台阶高度的平均数、极差、方差.解:通过计算可知台阶的平均高度一样,都是15厘米,上台阶是否舒适,就看台阶的上下起伏情况如何.左边石级路台阶高度的极差为16-14=2(厘米),方差为:16×[(15-15)2+(14-15)2+(14-15)2+(16-15)2+(16-15)2+(15-15)2]=23;右边石级路台阶高度的极差为19-10=9(厘米),方差为: 16×[(19-15)2+(10-15)2+(17-15)2+(18-15)2+(15-15)2+(11-15)2]=353.由此可见,左边石级路的极差、方差都比右边石级路的小,所以左 边石级路的起伏小,走起路来舒适些.专题五 方程思想【专题分析】方程思想是指把详细问题中数量之间的关系用方程加以刻画,并运用方程的知识进展研究、解决.一次数学测试,某班40名学生的成绩统计如下表:成绩/分50 60 70 80 90 100人数 2 ◆10 ◆ 4 2表中测试成绩为60分和80分的人数不小心被墨水污染后已经看不清楚了,如今只知道这次数学测试中,该班的平均分是69分.恳求出测试成绩为60分和80分的人数.〔解析〕根据“平均分是69分〞和“总人数为40人〞可建立二元一次方程组求解.解:设测试成绩为60分的有x人,测试成绩为80分的有y人, 根据题意,得:{2+x+10+y+4+2=40,50×2+60x+70×10+80y+90×4+100×2=69×40,解这个方程组,得{x=18,y=4.所以测试成绩为60分的有18人,测试成绩为80分的有4人.【针对训练5】某班进展个人投篮比赛,受污损的表记录了在规定时间内投进n个球的人数分布情况.假设进球3个或3个以上的人平均每个人投进3.5个球,进球4个或4个以下的人平均每个人投进2.5个球,请你根据上述条件及表中数据求出进球3个和4个的人数.进球数n0 1 2 3 4 5投进n个球的人数 1 2 7 2解:设投进3个球的人数为x ,投进4个球的人数为y.根据题意,得方程组{3x+4y+5×2x+y+2=3.5,0×1+1×2+2×7+3x+4y 1+2+7+x+y =2.5,解得{x =9,y =3.答:投进3个球的人数为9,投进4个球的人数为3.。
第六章_数据的分析单元(教案)

(3)数据分析与解释:学生需要学会如何从统计图中读取信息,并进行合理的分析和解释。
-难点解释:如何从图表中提取有用信息,并结合实际情况进行判断和推理。
-举例:从体重变化的折线图中分析出同学们的体重增长趋势,并结合健康知识进行解释。
(4)数据应用:学生需要将数据分析的结果应用于实际问题,提出解决方案。
二、核心素养目标
本章节的核心素养目标主要包括:
1.培养学生运用数学语言表达现实世界中的数据关系,提高数据描述与概括能力。
2.培养学生通过收集、整理、分析数据,发现数据背后的规律和联系,发展数据分析观念。
3.培养学生运用统计图表进行信息传递和问题解决,提高数据可视化与解释能力。
4.引导学生运用数据分析的方法解决实际问题,培养数学应用意识和解决问题的能力。
-难点解释:如何将原始数据转化为易于分析的表格或图表。
-举例:将同学们的生日按照月份整理,制作出月份分布的条形图。
(2)统计图的绘制技巧:学生需要学会如何准确地绘制统计图,包括坐标轴的刻度、图例的添加等。
-难点解释:绘制过程中需要注意的细节,如条形图的高度、折线图的点与线的连接、饼状图的百分比计算。
5.培养学生团队合作意识,学会在小组讨论中倾听、表达、交流,提高沟通能力。
三、教学难点与重点
1.教学重点
(1)数据的收集与整理:学会从实际情境中收集数据,并能用适当的方式整理数据,这是进行数据分析的基础。
-举例:调查班级同学的身高、体重,整理成表格。
(2)条形统计图、折线统计图和饼状图的理解与应用:掌握不同统计图的特点和制作方法,能够根据数据特点选择合适的统计图进行展示。
-难点解释:如何将分析结果转化为具体的行动计划或建议。
河北省邯郸市肥乡县八年级数学上册 第六章 数据的分析复习教案 (新版)北师大版

第6章数据的分析授8,10,10,4,8,10(单位:元),这组数据的众数是()A.10 B.9 C.8 D.43.在2016年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1B.18,17.5,3C.18,18,3D.18,17.5,14.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,35.若1,2,3,x的平均数是6.且1,2,3,x,y的平均数是7,则y的值为()A.7 B.9 C.11 D.136.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据不发生变化的是()A.平均数 B.众数 C.方差 D.中位数7.为了解某公司员工的年工资情况,小王随机调查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是()A.方差 B.众数 C.中位数 D.平均数8.一组数据3,4,0,1,2的平均数与中位数之和是____.9.某大学生招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,已知小明数学得分为95分,物理得分为90分,那么小明的综合得分是____分.10.跳远运动员李刚对训练进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为____(精确到0.001).如果李刚再跳两次,成绩分别为7.7,7.9,则李刚这8次跳远成绩的方差____(填“变大”、“不变”或“变小”).11.学校广播站要招收一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%,计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?选手项目形象知识面普通话李文70 80 88孔明80 75 x二、能力提升12.某校一年级学生的平均年龄为7岁,方差为3,5年后该校六年级学生的年龄中()A.平均年龄为7岁,方差改变 B.平均年龄为12岁,方差不变C.平均年龄为12岁,方差改变 D.平均年龄不变,方差不变13.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位的同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学分数的()A.平均数 B.中位数 C.众数 D.方差14.已知一个样本1,3,2,2,a,b,c的众数为3,平均数为2,则该样本的方差为____.15..商场对每个营业员在当月某种商品销售件数统计如下:解答下列问题:(1)设营业员的月销售件数为x(单位:件),商场规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25时为称职;当x≥25时为优秀.试求出优秀营业员人数所占百分比;(2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数;(3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励,如果要使得所有优秀和称职的营业员中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?并简述理由.三、课外拓展16.自然数4,5,5,x,y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x,y中,x+y的最大值是()A.3 B.4 C.5 D.617.某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有____人,投进4个球的有____人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 218.甲、乙两人在相同的条件下各射靶10次,每次射靶的成绩情况如图.(1)请填写下表:平均数方差中位数命中9环及以上次数甲 1.2 7 1乙7 5.4 3(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力)小谈谈你这节课有什么收获.结作业习题2.1布置板书.设计课后反思。
北师大版八年级上册数学第6章《数据的分析》教案

第六章数据的分析1 平均数【学习目标】1.掌握算术平均数、加权平均数的概念. 2.会求一组数据的算术平均数及加权平均数. 【学习重点】算术平均数的概念及计算. 【学习难点】加权平均数的概念及其计算.一、情景导入 生成问题在篮球比赛中,队员的身高、年龄都是影响球队实力的因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队的更高”?怎样理解“甲队队员比乙队更年轻”?中国男子篮球职业联赛2011-2012赛季冠、亚军球队队员身高、年龄如下表:北京金隅队 广东东莞银行队号码 身高/cm 年龄/岁 号码 身高/cm 年龄/岁 3 188 35 3 205 31 6 175 28 5 206 21 7 190 27 6 188 23 8 188 22 7 196 29 9 196 22 8 201 29 10 206 22 9 211 25 12 195 29 10 190 23 13 209 22 11 206 23 20 204 19 12 212 23 21 185 23 20 203 21 25 204 23 22 216 22 31 195 28 30 180 19 32 211 26 32 207 21 51 200 26 0 183 27 55 227 29上述两支篮球队中,哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?与同伴进行交流.二、自学互研 生成能力知识模块一 算术平均数的概念及计算1.阅读教材第136页下面的内容,归纳平均数的定义.在日常生活中,我们常用平均数描述一组数据的集中趋势.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n (x 1+x 2+ …+x n )叫做这n 个数的算术平均数,简称平均数,记为x -=1n(x 1+x 2+…+x n ).2.想一想:小明是这样计算北京金隅队队员的平均年龄的:年龄/岁19 22 23 26 27 28 29 35相应的队员数1 42 2 1 2 2 1平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷(1+4+2+2+1+2+2+1)=25.4(岁).你能说说小明这样做的道理吗?【说明】 通过思考,分析小明的计算方法与以前学过的算术平均数的计算方法有何区别.通过学生的讨论、探究以及教师的引导让学生对加权平均数的计算有个初步的认识了解.知识模块二 加权平均数的概念及计算师生合作完成教材第137页例题的学习与探究.例 某广告公司欲招聘广告策划人员一名,对A 、B 、C 三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:测试项目测试成绩/分A B C 创新 72 85 67 综合知识 50 74 70 语言884567(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4∶3∶1的比例确定各人的测试成绩,此时谁将被录用?(3)(1),(2)问的结果一样吗?说明了什么?【归纳结论】 实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.例如在例题中4,3,1分别是创新,综合知识,语言三项测试成绩的权.则72×4+50×3+88×14+3+1为A 的三项测试成绩的加权平均数.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 算术平均数的概念及计算 知识模块二 加权平均数的概念及计算四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________2 中位数与众数【学习目标】1.认识中位数和众数,并会求一组数据的众数和中位数.2.了解平均数、中位数、众数在描述数据时的差异,并能灵活应用这三个数据代表解决实际问题.【学习重点】掌握中位数、众数这两种数据代表的概念.【学习难点】灵活运用平均数、中位数、众数,分析数据信息,做出决策.一、情景导入生成问题某公司员工的月工资如下:员工经理经理副职员A 职员B 职员C 职员D 职员E 职员F 杂工G月工资7000 4400 2400 2000 1900 1800 1800 1800 1200 (元)问题:这个公司员工的月平均工资是多少?这个公司员工收入到底怎样?你如何看待?【说明】为学生提供一个活生生的生活情境和值得深思的问题,激起学生认知的矛盾.因为疑问是构建数学的起点,对学生的心理智力产生刺激,让他们从问题中发现,有利于建立新的认知结构.二、自学互研生成能力知识模块一中位数与众数的概念观察:(1)这个公司员工的工资是按从高到低排列的,哪一位员工工资处在“正中间”?(2)9个员工当中,哪一种月工资出现的次数最多?【说明】这两个问题的提出让学生在心目中对于中位数和众数有了初步的认识,为下面正确理解它们的概念打下了基础.【归纳结论】一般地,几个数据按大小顺序排列,处于最中间位置的一个数据(或最中间的两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.讨论:(1)在上面的问题中,你认为用平均数、中位数和众数中哪个数据描述该公司员工收入的集中趋势更合适?(2)为什么该公司员工收入的平均数比中位数高得多?【说明】在同一个问题中分别求平均数、中位数和众数,这是为了比较三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的联系与区别,体现了它们各自在日常生活中的指导意义,培养了学生的迁移能力.知识模块二平均数、中位数和众数的应用与同伴合作完成下面问题的学习.做一做:(1)2011~2012赛季北京金隅队队员身高的平均数、中位数和众数分别是多少?(2)你课前调查的20位男同学所穿运动鞋尺码的平均数、中位数和众数分别是多少?你认为学校商店应多进哪种尺码的运动鞋?【说明】通过这几个问题的设置,其目的就是让学生根据不同情况从不同的角度灵活运用这三个数据代表处理问题.(3)平均数、中位数和众数都是描述数据集中趋势的统计量,它们各自有哪些特征呢?【说明】学生讨论得出结果,进一步加深了对平均数、中位数和众数的理解,认清了它们各自存在的优劣以及如何利用这三种数据解决实际问题.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一中位数与众数的概念知识模块二平均数、中位数和众数的应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________3从统计图分析数据的集中趋势【学习目标】1.进一步认识平均数、众数、中位数都是数据的代表,了解它们在描述数据时的差异.2.会从扇形、折线和条形等统计图中获取信息.【学习重点】对统计图进行分析计算,应用平均数、中位数、众数解决实际问题.【学习难点】灵活运用这三个数据代表解决问题.一、情景导入生成问题教师引导学生研读教材第145页“议一议”上方的内容.【说明】在同一个问题中求出众数,从而估计平均数,这是为了体现这两个量在描述一组数据集中趋势时之间的相互联系.体现了众数在日常生活中的指导意义,培养了学生的迁移能力.二、自学互研生成能力知识模块一从条形统计图分析数据的集中趋势先阅读教材第145页“议一议”的内容,再独立完成书中设置的3个问题,然后与同伴进行交流.【说明】利用统计图让学生在同一个问题中分别求出平均数、众数和中位数,主要是为了比较这三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的区别和联系.知识模块二从扇形统计图分析数据的集中趋势先阅读教材第145页“做一做”和第146页“想一想”的内容,并独立完成书中设置的问题,然后与同伴进行交流.【说明】在扇形统计图中很容易看出众数,从统计图中获取信息求加权平均数,巩固了以前学过的知识,加深了对这个知识点的理解.教师引导学生完成教材第146页例题的学习与探究.仿例:为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题.(1)本次接受随机抽样调查的学生人数为____,图①中m 的值为____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 解:(1)40;15;(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本的众数为35;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都为36,∴中位数为36+362=36;(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 从条形统计图分析数据的集中趋势 知识模块二 从扇形统计图分析数据的集中趋势四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________4 数据的离散程度【学习目标】1.知道极差、方差、标准差的概念.2.会求一组数据的极差、方差、标准差,并会用它们表示数据的离散程度. 【学习重点】 方差的概念和计算. 【学习难点】应用方差对数据的波动情况进行比较、判断.一、情景导入 生成问题教师引导学生研读教材第149页的内容,找到极差的概念,并完成书中设置的问题.【说明】 应用实例并提问启发思考,导入极差的概念,自然而又有探索性.【归纳结论】 实际生活中,除了关心数据的集中趋势外,人们往往还关注数据的离散程度,即它们相对于集中趋势的偏离情况.一组数据中最大数据与最小数据的差(称为极差),就是刻画数据离散程度的一个统计量.二、自学互研 生成能力知识模块一 方差与标准差的概念先阅读教材第150页“做一做”的内容,并完成书中设置的前两个问题.【说明】 通过问题的分析以及阅读指导的再认识,让学生认识到方差是衡量一组数据的离散程度的常用方法.【归纳结论】 数学上,数据的离散程度还可以用方差或标准差刻画.方差(v ariance )是各个数据与平均数差的平方的平均数,即s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].其中,x -是x 1,x 2,…,x n 的平均数,s 2是方差.而标准差(standard de v iation )就是方差的算术平方根. 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定. 知识模块二 用计算器计算方差和标准差先自学自研教材第150页“做一做”和上方的例题,然后与同伴进行交流.【说明】 让学生学会用计算器求方差,加深对公式的理解,体会现实生活中常常根据方差考虑数据波动大小,从而作出正确的选择和判断.知识模块三 平均数与方差的综合运用师生合作完成教材第152页的图象问题及教材第153页的“议一议”和“做一做”的内容.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 方差与标准差的概念 知识模块二 用计算器计算方差和标准差 知识模块三 平均数与方差的综合运用四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________本章复习小结【学习目标】1.掌握数据的集中趋势和数据离散程度所表示的意义,并会利用它们解决实际问题.2.通过对本章知识的整理,回顾解决问题中所涉及的转化思想,数形结合的思想,从特殊到一般的思想,加深对知识的理解.【学习重点】掌握平均数、中位数、众数、极差、方差、标准差的概念及各自的计算公式;会利用计算器求平均数,会用极差、方差、标准差来研究数据波动的大小.【学习难点】理解数据代表的意义和方差、标准差代表的意义.一、情景导入 生成问题师生共同回顾本章知识点,构建知识结构图,让学生对本章知识有个整体把握,体会各知识之间的联系与区别,教学时要有的放矢.数据的分析⎩⎪⎪⎪⎨⎪⎪⎪⎧数据的集中趋势⎩⎪⎨⎪⎧平方数⎩⎨⎧算术平均数:x =1n(x 1+x 2+…+x n )加权平均数:x =x 1f 1+x 2f 2+…+x n fnf 1+f 2+…+fn中位数:一般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)众数:一组数据中出现次数最多的那个数据数据的离散程度⎩⎪⎨⎪⎧极差:一组数据中最大数据与最小数据的差方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n-x )]标准差:方差的算术平方根从统计图中分析数据二、自学互研 生成能力知识模块一 知识清单 加深理解 1.求加权平均数求算术平均数是求加权平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权重相等时,就变成了算术平均数.2.求中位数求一组数据的中位数时,要把这些数据按从小到大(或从大到小)的顺序排列起来,然后求中位数,不可直接取中间的数为中位数.3.方差在平均数相差不多的情况下,方差是衡量一组数据波动大小的量,方差越小,数据的波动就越小,证明数据越接近平均数.知识模块二 典例引路 全面复习例1:某鞋店为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20名女生的鞋号组成的一组数据的平均数是________,中位数是________,众数是________,鞋厂最感兴趣的是________数.分析:平均数可用加权平均数公式计算:x =21.5×3+22×4+22.5×4+23×7+23.5×1+24×120=45120=22.55(cm ).中位数是第10个和第11个两个数据的平均数,而这两个数据均是22.5.众数是出现次数最多的数据,同时也证明这种号码的鞋是学生中穿得最多的,也是厂家销售得最好的,是这组数据中最重要的.解:22.5,22.5,23,众.例2:某样本x 1+1,x 2+1,…x n +1的平均数为10,方差为2,求样本x 1+2,x 2+2…,x n +2的平均数及方差.分析:由平均数及方差的性质可知,若x 1,x 2,x 3…,x n 的平均数为x ,方差为s 2,则ax 1+b ,ax 2+b ,ax 3+b ,…,ax n +b 的平均数为ax +b ,方差为a 2s 2.解:由题意可知:1n [(x 1+1)+(x 2+1)+(x 3+1)+…+(x n +1)]=10,1n [(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2,所以样本x 1+2,x 2+2,x 3+2,…,x n +2的平均数和方差分别为:x =1n [(x 1+2)+(x 2+2)+…+(x n+2)]=1n [(x 1+1)+(x 2+1)+…+(x n +1)]+n n =10+1=11.s 2=1n [(x 1+2-x)2+(x 2+2-x)2+…+(x n +2-x)2]=1n [(x 1+2-11)2+(x 2+2-11)2+…+(x n +2-11)2]=1n[(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 知识清单 加深理解 知识模块二 典例引路 全面复习四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
初中数学湘教版七年级下册第6章 数据的分析6.1 平均数、中位数、众数-章节测试习题(12)

章节测试题1.【答题】为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是()A. 众数是9B. 中位数是9C. 平均数是9D. 锻炼时间不低于9小时的有14人【答案】D【分析】此题根据众数,中位数,平均数的定义解答.【解答】由图可知,锻炼9小时的有18人,∴9在这组数中出现18次为最多,∴众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,∴中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,∴平均数是9.由以上可知A、B、C都对,故D错.选D.2.【答题】已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A. a<13,b=13B. a<13,b<13C. a>13,b<13D. a>13,b=13【答案】A【分析】根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.【解答】∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;选A.3.【答题】某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁)12 13 14 15人数 1 4 4 1则这10名同学年龄的平均数和中位数分别是()A. 13.5,13.5B. 13.5,13C. 13,13.5D. 13,14【答案】A【分析】根据中位数及平均数的定义求解即可.【解答】将各位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.选A.4.【答题】在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A. 7B. 8C. 9D. 10【答案】B【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.选B.5.【答题】为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.选B.6.【答题】一次数学模考后,李老师统计了20名学生的成绩.记录如下:有6人得了85分,有5人得了80分,有4人得了65分,有5人得了90分.则这组数据的中位数和平均数分别是()A. 82.5,82.5B. 85,81C. 82.5,81D. 85,82.5【答案】B【分析】根据中位数、平均数的定义分别列出算式,再进行计算即可.【解答】解:∵共有20个数,∴中位数是第10、11个数的平均数,∴中位数是(85+85)÷2=85;平均数是(85×6+80×5+65×4+90×5)=81;选B.7.【答题】一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10B. 10,12.5C. 11,12.5D. 11,10【答案】D【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.8.【答题】一组数据:0,1,2,3,3,5,5,10的中位数是()A. 2.5B. 3C. 3.5D. 5【答案】B【分析】根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.【解答】将这组数据从小到大排列为:0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3;选B.9.【答题】在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()A. 47B. 48C. 48.5D. 49【答案】C【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,由此计算即可.【解答】解:这组数据的中位数为=48.5.10.【答题】7位同学中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是()A. 6B. 8C. 9D. 10【答案】B【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】把这组数据从小到大排序后为6,7,8,8,9,9,10,其中第四个数据为8,∴这组数据的中位数为8.选B.11.【答题】数字1、2、5、3、5、3、3的中位数是()A. 1B. 2C. 3D. 5【答案】C【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.选C.12.【答题】数据0,1,1,3,3,4的中位数和平均数分别是()A. 2和2.4B. 2和2C. 1和2D. 3和2【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.选B.13.【答题】七(1)班的6位同学在一节体育课上进行引体向上训练时,统计数据分别为7,12,10,6,9,6则这组数据的中位数是()A. 6B. 7C. 8D. 9【答案】C【分析】将该组数据按从小到大依次排列,找到位于中间位置的两个数,求出其平均数即为正确答案.【解答】解:将该组数据按从小到大依次排列为6,6,7,9,10,12,位于中间位置的数为7,9,其平均数为x==8,故中位数为8.选C.14.【答题】为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的中位数是()A. 4小时B. 4.5小时C. 5小时D. 5.5小时【答案】C【分析】中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【解答】由统计表可知:统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.选C.15.【答题】下列数据3,2,3,4,5,2,2的中位数是()A. 5B. 4C. 3D. 2【答案】C【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】题目中数据共有7个,把数据按从小到大的顺序排列为2,2,2,3,3,4,5,故中位数是按从小到大排列后第4个数是3,故这组数据的中位数是3.选C.16.【答题】某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.【解答】解:8,9,8,7,10的平均数为×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8.选B.17.【答题】一组数据:-1、2、1、0、3,则这组数据的平均数和中位数分别是()A. 1,0B. 2,1C. 1,2D. 1,1【答案】D【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】平均数=(-1+2+1+0+3)÷5=1;把这组数据按从大到小的顺序排列是:-1,0,1,2,3,故这组数据的中位数是:1.选D.18.【答题】爱华中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是()A. 200B. 210C. 220D. 240【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】题目中数据共有5个,按从小到大排列后为:200、200、210、220、240,位于最中间的一个数是210,∴这组数据的中位数是210;选B.19.【答题】一组数据:75、95、85、100、125的中位数是()A. 85B. 95C. 96D. 100【答案】B【分析】根据中位数的定义计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】按从小到大的顺序排列为:75,85,95,100,125,根据中位数的定义得;中位数是95.选B.20.【答题】一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()A. 37B. 35C. 33.8D. 32【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】先对这组数据按从小到大的顺序重新排序:28,32,35,37,37,位于最中间的数是35,∴这组数的中位数是35.选B.。
北师大版八年级数学上册《第六章数据的分析》同步训练题-附答案

北师大版八年级数学上册《第六章数据的分析》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________时间:60分钟满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数分别为6,10,5,3,4,8,4,这组数据的中位数是()A.4B.7C.5D.32.(2022·广东深圳龙华区期末)某运动品牌旗舰店统计了某款运动服11月份的销售情况,绘制成了如图所示的统计图,经过分析,该店店长决定12月份采购该款式更多的蓝色型号运动服,这一决定主要依据销售数据中的()A.众数B.方差C.中位数D.平均数3.(2022·山东济南莱芜区期末)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差s2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()甲乙丙丁x6776s211.111.6A.甲B.乙C.丙D.丁4.甲、乙、丙三种糖果售价分别为每千克10元、16元、18元,若将甲种糖果3 千克、乙种糖果5千克、丙种糖果2 千克混在一起,则售价应定为每千克() A.14.2元 B.14.5元C.14.6元D.14.8元5.(2022·河北邯郸永年区期末)小明在计算一组数据的方差时,列出的算式如[2(7-x)2+3(8-x)2+(9-x)2],根据算式信息,这组数据的众数是() 下:s2=16A.3B.6C.7D.86.(2022·四川成都成华区期末)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如下表,则这些被调查学生睡眠时间的众数和中位数分别是()睡眠时间/时78910人数69114A.9,8.5B.9,9C.10,9D.11,8.57.(2022·江苏苏州工业园区期中)某篮球队5名场上队员的身高(单位:cm)是184,188,190,190,194.现用两名身高分别为185 cm和188 cm的队员换下场上身高为184 cm和190 cm的队员.与换人前相比,场上队员的身高()A.平均数变小,众数变小B.平均数变小,众数变大C.平均数变大,众数变小D.平均数变大,众数变大8.为了解八(1)班学生的体温情况,小明对这个班所有学生测量了一次体温(单位:℃),并将测量结果绘制成统计表和如图所示的扇形统计图.体温/℃36.136.236.336.436.536.6人数48810x2下列说法错误的是()A.这些体温的众数是36.5 ℃B.这些体温的中位数是36.35 ℃C.这个班有40人D.x=89.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表.星期日一二三四五六个数11121312其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据的唯一众数是13,平均数是12,那么这组数据的方差是()A.107B.97C.87D.110.(2022·山东曲阜期末)有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数.下列说法:①两组样本数据的样本平均数相同;②两组样本数据的样本中位数相同;③两组样本数据的样本方差相同;④两组样本数据的样本极差相同.正确说法的序号是()A.①②B.③④C.②④D.①③二、填空题(共5小题,每小题4分,共20分)11.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是.(填“甲”或“乙”)12.(2022·辽宁沈阳期末改编)北京冬奥会的开幕式惊艳了世界,在这背后离不开志愿者们的默默奉献.某高校为积极响应号召,组织了志愿者选拔活动,并规定总成绩由面试、体能测试和专业技能三部分成绩组成,各部分所占比例如图所示.若某位志愿者的面试、体能测试和专业技能三项成绩得分依次为88分,80分,85分,则这位志愿者的总成绩是分.[(6-7)2+(10-7)2+(a-7)2+(b-13.(2022·山东烟台期中)已知一组数据的方差s2=1n7)2+(8-7)2](a,b为常数),则a+b的值为.14.(2021·山东枣庄台儿庄区期末)已知3,a,b,5与a,4,2b的平均数都是3,若将这两组数据合并为一组新数据,则这组新数据的众数为.15.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.三、解答题(共4小题,共50分)16.(11分)(2022·山东济南济阳区期末改编)甲、乙两名运动员参加射击训练,他们射击10次的成绩情况统计如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环方差甲8.5b0.85乙a8.5c(1)求出表格中a,b,c的值;(2)分别运用表中的三个统计量,简要分析这两名运动员的射击训练成绩,若选派其中一名参赛,你认为应选哪名运动员?17.(12分)(2022·山东寿光期末)青年歌手大奖赛的决赛在甲、乙两名歌手之间进行,9位评委的评分(10分为满分)情况如下表所示(单位:分).评委编号123456789甲的得分8.89.58.69.67.28.98.88.88.8乙的得分8.59.18.59.19.98.59.28.68.3(1)分别求出甲、乙两名歌手得分的平均数(精确到0.01)、中位数和众数;(2)由(1)的结果,分析甲、乙两名歌手中谁的演唱水平较高;(3)如果以平均分为标准区分比赛的名次,那么制订怎样的计分规则比较合理?18.(13分)(2021·江苏南京期末)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中队和高中队进行复赛,两个队学生的复赛成绩如图所示.(1)根据图示填表:平均数中位数众数方差初中队8.5分0.7高中队8.5分10分(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.19.(14分)(2021·重庆沙坪坝区期末)为贯彻《关于全面加强新时代大中小学劳动教育的意见》的方针政策,各学校都在深入开展劳动教育.某校为了解七、八年级学生一学期参加课外劳动时间(单位:时)的情况,从该校七、八年级中随机各抽查了20名学生进行问卷调查,并将调查结果进行整理、描述和分析(A:0≤t<20,B:20≤t<40,C:40≤t<60,D:60≤t<80,E:80≤t<100),下面给出了部分信息.七年级抽取的学生在C组的课外劳动时间为40,40,50,55.八年级抽取的20名学生的课外劳动时间为10,15,20,25,30,35,40,40,45,50,50,50,55,60,60,75,75,80,90,95.七年级抽取的学生的课外劳动时间的扇形统计图如图所示.七、八年级抽取的学生的课外劳动时间的统计量如下表.平均数众数中位数方差七年级5035a580八年级50b50560根据以上信息,解答下列问题:(1)直接写出a,b,m的值.(2)根据以上数据,在该校七、八年级中,你认为哪个年级参加课外劳动的情况较好?请说明理由(一条即可).(3)若该校七、八年级分别有学生400人,试估计该校七、八年级学生一学期参加课外劳动时间不少于60小时的人数之和.参考答案12345678910C A C CD A A A C B11.乙12.8413.1114.315.4.8或5或5.21.C2.A在决定下个月进该型号运动服时多进一些蓝色的,主要考虑的是各色运动服的销量,而且蓝色上周销量最大.由于众数是数据中出现次数最多的数,因此考虑的是各色运动服的销量的众数.3.C 因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.4.C 根据题意售价应定为10×3+16×5+18×23+5+2=14.6(元/千克).5.D ∵在这6个数中,8出现了3次,出现的次数最多,∴这组数据的众数是8.6.A 被调查学生的人数为6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时.将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+92=8.5,因此中位数是8.5小时.7.A 原数据的平均数为15×(184+188+190+190+194)=189.2,众数是190;新数据的平均数为15×(185+188+188+190+194)=189,众数是188.∵189<189.2,188<190,∴平均数变小,众数变小.8.A 由题中扇形统计图可知,体温为36.1 ℃的学生人数所占的百分比为36360×100%=10%,则八(1)班学生总数为410%=40(人),故C 中说法正确;x=40-(4+8+8+10+2)=8,故D 中说法正确;由题中表格可知这些体温的众数是36.4 ℃,故A 中说法错误;由题中表格可知这些体温的中位数是36.3+36.42=36.35(℃),故B中说法正确.故选A.9.C ∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖的三天的个数的和=84-(11+12+13+12)=36.∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为10,13,13,∴s 2=17[(11-12)2+(12-12)2+(10-12)2+(13-12)2+(13-12)2+(13-12)2+(12-12)2]=87.10.B 对于①,两组数据的平均数的差为c ,故①错误;对于②,两组样本数据的样本中位数的差是c ,故②错误;对于③,∵方差s 2(y i )=s 2(x i +c )=s 2(x i ),∴两组样本数据的样本方差相同,故③正确;对于④,∵y i =x i +c (i=1,2,…,n ),c 为非零常数,x 的极差为x max -x min ,y 的极差为(x max +c )-(x min +c )=x max -x min ,∴两组样本数据的样本极差相同,故④正确.故选B .11.乙 观察题中日平均气温统计图可知,乙地的日平均气温波动较小,比较稳定,则乙地的日平均气温的方差较小,即日平均气温的方差较小的是乙. 12.84 这位志愿者的总成绩是88×25%+80×35%+85×40%=84(分). 13.11 根据题意知,数据6,10,a ,b ,8的平均数为7,∴a+b=7×5-(6+10+8)=11.14.3 由题意得{3+a +b +5=3×4,a +4+2b =3×3,解得{a =3,b =1,所以这两组数据为3,3,1,5和3,4,2,将这两组数据合并成一组新数据,在这组新数据中,出现次数最多的是3,因此这组新数据的众数是3.15.4.8或5或5.2 (分类讨论思想)∵数据1,3,5,12,a 的中位数是整数a ,∴a=3或a=4或a=5.当a=3时,这组数据的平均数为1+3+3+5+125=4.8;当a=4时,这组数据的平均数为1+3+4+5+125=5;当a=5时,这组数据的平均数为1+3+5+5+125=5.2.故该组数据的平均数是4.8或5或5.2.16.【参考答案】(1)乙的平均成绩a=(8+9+7+8+10+7+9+10+7+10)÷10=8.5 将甲的射击成绩按从小到大的顺序排列为7,7,8,8,9,9,9,9,9,10,所以甲的射击成绩的中位数b=(9+9)÷2=9乙的射击成绩的方差为c=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45. 故a=8.5,b=9,c=1.45.(6分) (2)从平均成绩看,甲、乙两人的平均成绩相等,均为8.5环.从中位数看,甲的中位数大于乙的中位数.从方差看,甲的成绩比乙的成绩稳定. (9分) 综合以上因素,若选派一名运动员参加比赛,应选甲参赛. (11分)(答案合理即可)17.【参考答案】(1)将甲歌手的得分按从小到大的顺序排列为7.2,8.6,8.8,8.8,8.8,8.8,8.9,9.5,9.6,甲歌手得分的平均数为(7.2+8.6+8.8×4+8.9+9.5+9.6)÷9≈8.78(分),中位数是8.8分,众数是8.8分. (3分) 将乙歌手的得分按从小到大的顺序排列为8.3,8.5,8.5,8.5,8.6,9.1,9.1,9.2,9.9 乙歌手得分的平均数为(8.3+8.5×3+8.6+9.1×2+9.2+9.9)÷9≈8.86(分),中位数是8.6分,众数是8.5分.(6分)(2)由(1)的结果可知,甲、乙两名歌手中甲的演唱水平较高.理由:虽然甲歌手得分的平均数比乙低,但是甲的中位数、众数均比乙的高,所以甲的演唱水平较高.(9分) (3)比赛规则为9位评委打分,去掉一个最高分和一个最低分后,所剩数据取平均数,即为选手的最后得分,这样的计分规则比较合理. (12分)18.【参考答案】(1)补全表格如下.平均数 中位数 众数 方差初中队 8.5分 8.5分 8.5分 0.7高中队8.5分8分10分1.6(4分) 解法提示:由题中条形统计图知,初中队成绩数据为7.5,8,8.5,8.5,10高中队成绩数据为7,7.5,8,10,10所以初中队成绩的平均数为7.5+8+8.5+8.5+10=8.5(分),众数为8.5分;5×[(7-8.5)2+(7.5-8.5)2+(8-8.5)2+2×(10-高中队成绩的中位数为8分,方差为158.5)2]=1.6.(2)小明是初中队的学生.(6分) 理由:根据(1)可知,初中、高中队成绩的中位数分别为8.5分和8分因为8<8.5所以小明是初中队的学生.(8分) (3)初中队的成绩好些.(10分) 因为两个队成绩的平均数相同,初中队成绩的中位数高,而且初中队成绩的方差小于高中队成绩的方差所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.(13分) 19.【参考答案】(1)455030 (6分) 解法提示:七年级B组所占百分比为1-10%-20%-25%-15%=30%,所以m=30.根据题中扇形统计图可知,七年级A组有2人,B组有6人,C组有4人,D组有5人,E 组有3人,中位数是第10个和第11个数据的平均数,第10个数据是40,第11个数据是50,则中位数是(40+50)÷2=45,所以a=45.八年级数据中,50出现了3次,出现的次数最多,所以b=50.(2)八年级学生参加课外劳动的情况较好,理由如下:因为七、八年级被抽取的学生的课外劳动时间的平均数都是50,而八年级学生的课外劳动时间的中位数50高于七年级学生的课外劳动时间的中位数45,所以八年级学生参加课外劳动的情况较好.(用数据说明,合理即可)(10分)=300(人).(13分) (3)400×(15%+25%)+400×720答:估计该校七、八年级学生一学期参加课外劳动时间不少于60小时的人数之和为300人.(14分)。
初中数学湘教版七年级下册第6章 数据的分析6.1 平均数、中位数、众数-章节测试习题(8)

章节测试题1.【答题】在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:这些运动员跳高成绩的众数是()A. 1.55B. 1.60C. 1.65D. 1.70【答案】D【分析】根据众数的定义找出出现次数最多的数即可.【解答】∵1.70出现了5次,出现的次数最多,∴这些运动员跳高成绩的众数是1.70;选D.2.【答题】小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数据的众数是()A. 28B. 31C. 32D. 33【答案】C【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】在这一组数据中32是出现次数最多的,故众数是32.选C.3.【答题】一组数据:2,6,2,8,4,2的众数是()A. 8B. 6C. 4D. 2【答案】D【分析】众数是指一组数据中出现次数最多的数据.【解答】数据2,6,2,8,4,2中,2出现了3次,出现的次数最多,∴这组数据的众数是2.选D.4.【答题】某学习小组7个男同学的身高(单位:米)为:1.66,1.65,1.72,1.58,1.64,1.66,1.70,那么这组数据的众数为()A. 1.65B. 1.66C. 1.67D. 1.70【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】1.66出现两次,出现的次数最多,1.66为众数.选B.5.【答题】学业考试体育测试结束后,某班体育委员将本班50名学生的测试成绩制成如下的统计表.这个班学生体育测试成绩的众数是()A. 30分B. 28分C. 25分D. 10分【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】总共50个数据,出现次数最多的有28分为10人次,因此众数为28分.选B.6.【答题】数据:1,2,2,3,5的众数是()A. 1B. 2C. 3D. 5【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】众数是一组数据中出现次数最多的数,此题中1,3,5各出现了一次,2出现了两次,∴这组数据的众数是2.选B.7.【答题】在数据1、3、5、5、7中,中位数是()A. 3B. 4C. 5D. 7【答案】C【分析】根据中位数的概念求解.【解答】这组数据按照从小到大的顺序排列为:1、3、5、5、7,则中位数为:5.选C.8.【答题】数据4,5,8,6,4,4,6的中位数是()A. 3B. 4C. 5D. 6【答案】C【分析】根据中位数的概念求解.【解答】这组数据按照从小到大的顺序排列为:4,4,4,5,6,6,8,则中位数为:5.选C.9.【答题】从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A. 1B. 2C. 3D. 4【答案】C【分析】首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些学生分数的中位数.【解答】总人数为6÷10%=60(人),则2分的有60×20%=12(人),4分的有60-6-12-15-9=18(人),第30与31个数据都是3分,这些学生分数的中位数是(3+3)÷2=3.选C.10.【答题】气候宜人的省级度假胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:℃),这组数据的中位数是()A. 24B. 22C. 20D. 17【答案】C【分析】先把这组数据从小到大排列,再找出最中间的数即可.【解答】把这组数据从小到大排列为:17、17、20、22、24,最中间的数是20,则这组数据的中位数是20;选C.11.【答题】在开展“爱心捐助雅安灾区”的活动中,某团支部8名团员捐款分别为(单位:元):6,5,3,5,6,10,5,5,这组数据的中位数是()A. 3元B. 5元C. 6元D. 10元【答案】B【分析】根据中位数的定义,结合所给数据即可得出答案.【解答】将数据从小到大排列为:3,5,5,5,5,6,6,10,中位数为:5.选B.12.【答题】孔明同学参加暑假军事训练的射击成绩如下表:射击次序第一次第二次第三次第四次第五次成绩(环)9 8 7 9 6则孔明射击成绩的中位数是()A. 6B. 7C. 8D. 9【答案】C【分析】将数据从小到大排列,根据中位数的定义即可得出答案.【解答】将数据从小到大排列为:6,7,8,9,9,中位数为8.选C.13.【答题】如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:2009年恩施州各县市的固定资产投资情况表:(单位:亿元)单位恩施市利川县建始县巴东县宜恩县咸丰县来凤县鹤峰县州直投资额60 28 24 23 14 16 15 5下列结论不正确的是()A. 2009年恩施州固定资产投资总额为200亿元B. 2009年恩施州各单位固定资产投资额的中位数是16亿元C. 2009年来凤县固定资产投资额为15亿元D. 2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°【答案】D【分析】利用建始县的投资额÷所占百分比可得总投资额;利用总投资额减去各个县市的投资额可得来凤县固定资产投资额,再根据中位数定义可得2009年恩施州各单位固定资产投资额的中位数;利用360°×可得圆心角,进而得到答案.【解答】解:A、24÷12%=200(亿元),故此选项不合题意;B、来凤投资额:200-60-28-25-23-14-16-15-5=15(亿元),把所有的数据从小到大排列:60,28,24,23,16,15,15,14,5,位置处于中间的数是16,故此选项不合题意;C、来凤投资额:200-60-28-25-23-14-16-15-5=15(亿元),故此选项不合题意;D、360°×=108°,故此选项符合题意;选D.14.【答题】端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A. 22B. 24C. 25D. 27【答案】B【分析】根据中位数的定义把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:20,22,22,24,25,26,27,最中间的数是24,则中位数是24;选B.15.【答题】如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()A. 27B. 29C. 30D. 31【答案】C【分析】根据中位数的定义求解即可.【解答】将这组数据从小到大排列为;26,27,30,31,31,∴这组数据的中位数是30,选C.16.【答题】某中学篮球队13名队员的年龄情况如下:则这个队队员年龄的中位数是()A. 15.5B. 16C. 16.5D. 17【答案】B【分析】根据中位数的定义,把13名同学按照年龄从小到大的顺序排列,找出第7名同学的年龄就是这个队队员年龄的中位数.【解答】根据图表,第7名同学的年龄是16岁,∴,这个队队员年龄的中位数是16.选B.17.【答题】数据5,7,5,8,6,13,5的中位数是()A. 5B. 6C. 7D. 8【答案】B【分析】将该组数据按从小到大排列,找到位于中间位置的数即可.【解答】将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.选B.18.【答题】我们知道:一个正整数p(p>1)的正因数有两个:1和p,除此之外没有别的正因数,这样的数p称为素数,也称质数.如图是某年某月的日历表,日期31个数中所有的素数的中位数是()A. 11B. 12C. 13D. 17【答案】C【分析】先根据素数的定义找出日历表中的素数,然后根据中位数的概念求解即可.【解答】根据素数的定义,日历表中的素数有:2、3、5、7、11、13、17、19、23、29、31,共11个,∴这组数据的中位数是13.选C.19.【答题】王先生在“六一”儿童期间,带小孩到凤凰古城游玩,出发前,他在网上查到从5月31日起,凤凰连续五天的最高气温分别为:24,23,23,25,26(单位:℃),那么这组数据的中位数是()A. 23B. 24C. 25D. 26【答案】B【分析】根据中位数的求法,将5个数字从大到小排列,找出中间的数即为中位数.【解答】将5个数字从大到小排列为23、23、24、25、26,最中间为24.∴中位数为24.选B.20.【答题】数据2,-l,0,1,2的中位数是()A. 1B. 0C. -1D. 2【答案】A【分析】将数据按从小到大依次排列,由于数据有奇数个,故中间位置的数即为中位数.【解答】解:将数据2,-l,0,1,2按从小到大依次排列为-l,0,1,2,2,中位数为1.选A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新征程教育辅导讲义年 级: 初二 第 6 课时学生姓名: 辅导科目: 数学 教师: 课 题 第六章、数据分析授课时间:备课时间:教学目标1、经历数据收集、整理、分析等活动过程,形成用数据说话的习惯2、能根据实际需要,选择恰当的方法分析数据、解决问题3、会计算一组数据的平均数、中位数、众数、方差等,在实际背景中体会它们的含义重点、难点能根据给出的数据求相应的统计量考点及考试要求众数,中位数,平均数,方差教学内容1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数2、平均数(1)平均数:一般地,对于n 个数,,,,21n x x x 我们把)(121n x x x n+++ 叫做这n 个数的算术平均数,简称平均数,记为x 。
(2)加权平均数: 在实际问题中,一组数据的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4、3、1分别是创新、综合知识、语言三项测试成绩的权(weight),而称134188350472++⨯+⨯+⨯为A 的三项测试成绩的加权平均数.3、众数一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
5、极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值,极差能够反映数据的变化范围,实际生活中我们经常用到极差6、刻画数据离散程度的统计量是方差和标准差7、方差与标准差方差是反映一组数据的整体波动大小的特征的量,它是指一组数据中各个数据与 这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值得情况。
方差越大,数据的波动越大;方差越小,数据的波动越小。
求一组数据的方差可以简记先求平均数,再求差,然后平方,最后求平均数。
一组数据n x x x x 、、、、...321的平均数为x ,则改组数据方差的计算公式为: ()()()[]2222121x x x x x x ns n -++-+-=,而标准差就是方差的算术平方根。
课后练习: 题型一:平均数1、数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.2、一组数据的平均数是3,将这组数据每个数都扩大2倍,则所得一组新数据的平均数是( ) A. 3 B. 5 C. 6 D. 无法确定3、如果一组数据5, -2, 0, 6, 4, x 的平均数为6,那么x 等于( ) A. 3 B. 4 C. 23 D. 64、某市的7月下旬最高气温统计如下气温 35度 34度 33度 32度 28度 天数23221(1)在这十个数据中,34的权是 ,32的权是______.(2)该市7月下旬最高气温的平均数是 ,这个平均数是_________平均数.5、一个班级40人,数学老师第一次统计这个班级的平均成绩为85分,在复查时发现漏记了一个学生的成绩80分,那么这个班级学生的实际平均成绩应为 ( )6、小明骑自行车的速度是15km/h ,步行的速度是5km/h.(1)如果小明先骑自行车1h ,然后又步行了1h ,那么他的平均速度是 . (2)如果小明先骑自行车2h ,然后又步行了3h ,那么他的平均速度是 .7、在一次知识竞赛中,10名学生的得分如下:80,84,78,76,88,97,82,67,75,71,则他们的平均成绩为 。
8、一个地区某月前两周从星期一到星期五各天的最低气温依次是(单位:℃):x 1, x 2, x 3, x 4, x 5和x 1+1, x 2+2, x 3+3, x 4+4, x 5+5,若第一周这五天的平均最低气温为7℃,则第二周这五天的平均最低气温为 。
9、有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是( )A.12 B. 15 C. 13.5 D. 1410、八年级一班有学生50人,八年级二班有学生40人,一次考试中,一班的平均分是81,二班的平均分是90,则这两个班的90位学生的平均分是( )A.85 B.85.5 C.86 D.8711、将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A. 50B. 52C. 48D. 212、某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%。
小颖的上述三项成绩依次为92分、80分、84分,则小颖这学期的体育成绩是多少?13、一名射击运动员射靶若干次,平均每次射中8.5环,以知每次射中10环,9环,8环的次数分别为2,4,4,其余都是射中7环的数,则射中7环的次数和射靶总次数分别是多少?题型二:众数、中位数1、对于数据组2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别为( )A. 4,4,4.5B. 4,6,4.5C. 4,4,4.5D. 5,6,4.52、用中位数去估计总体时,其优越性是( )A. 运算简便B. 不受较大数据的影响C. 不受较小数据的影响D. 不受个别数据较大或较小的影响3、对于数据3,3,2,6,3,10,3,6,3,2。
(1) 众数是3; (2) 众数与中位数的数值不等; (3) 中位数与平均数的数值相等;(4) 平均数与众数相等,其中正确的结论是( )A. (1)B. (1) (3)C. (2)D. (2) (4)4、某班10名学生体育测试的成绩分别为(单位:分)58,60,59,52,58,55,57,58,49,57(体育测试这次规定满分为60分),则这组数据的众数,中位数分别是( )A. 58, 57.5B. 57, 57.5C. 58, 58D. 58, 575、数据-1,2,3,5,1的平均数与中位数之和是。
6、某地一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,3l,这组数据中的众数为,中位数为。
7、若数据10,12,9,-1,4,8,10,12,x的众数是12,则x= 。
8、某班10位同学将平时积攒的零花钱捐献给贫困地区的失学儿童。
每人捐款金额(单位:元)依次为:10,12,20,14,15,12,16,18,12,15。
这10名同学平均捐款元,捐款金额的中位数是元,众数是元。
9、某厂生产一批男衬衫,经过抽样调查70名中年男子,得知所需衬衫型号的人如下表所示:型号(单位:cm) 70 72 74 76 78人数8 12 15 26 9(1)哪一种型号衬衫的需要量最少?(2)这组数据的平均数是多少?这组数据的中位数是多少?这组数据的众数是多少?10、已知一组数据从小到大依次为-1,0,4,x,6,15,其中位数为5,则其众数为( )A. 4B. 5C. 5.5D. 611、若数据11,12,12,19,11,x的众数是12,则x的值是()A. 12B. 11C. 11.5D. 1912、一组数据8,8,x,6的众数与平均数相同,那么这组数据的中位数是()A. 6B. 8C.7D. 1013、某中学在一次健康知识竞赛活动中,抽取了一部分同学测试的成绩,绘制的成绩统计图如图所示,请结合统计图回答下列问题:(1)本次测试中,抽取了的学生有人;(2)若这次测试成绩80分以上(含80分)为优秀,则请你估计这次测试成绩的优秀率不低于。
题型三:从统计图分析数据的集中趋势1、观察课本P145图6-1回答下列问题:本次检测的10个面包质量的众数是,平均数是.2、观察课本P145图6-2回答下列问题:(1)甲队队员年龄的众数是,中位数是,平均数是.(2)乙队队员年龄的众数是,中位数是,平均数是.(3)丙队队员年龄的众数是,中位数是,平均数是.3、观察课本P145图6-3回答下列问题:(1)本次调查的20名同学,本学期计划购买课外书的花费的众数是,平均数是.(2)在上面的问题中,如果不知道调查的总人数,你还能求平均数吗?4、光明中学八年级(1)班在一次测试中,某题(满分为5分)的得分情况如右图,计算这题得分的众数、中位数和平均数.5、某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下:西瓜质量(单位:千克) 5.5 5.4 5.0 4.9 4.6 4.3 西瓜个数(单位:个)123211(1)这10个西瓜的平均质量是 千克.(2)根据计算结果你估计这亩地的西瓜产量约是 千克. 6、某校在一次考试中,甲乙两班学生的数学成绩统计如下:请根据表格提供的信息回答下列问题:(1)甲班众数为 分,乙班众数为 分,从众数看成绩较好的是 班; (2)甲班的中位数是 分,乙班的中位数是 分; (3)若成绩在80分以上为优秀,则成绩较好的是 班;(4)甲班的平均成绩是 分,乙班的平均成绩是 分,从平均分看成绩较好的是 班. 4、甲、乙两人在相同的条件下各射靶10次,成绩如图: (1)请计算甲、乙两入射靶的平均成绩各是多少? (2)请说出甲、乙两入射靶的中位数各是多少? (3)请说出甲、乙两人射靶的众数各是多少?(4)如果你是教练,将选谁去参加比赛?说说你的理由.题型四:极差、方差、标准差1、甲、乙两支仪仗队队员的身高(单位:cm )如下:甲队:178,177,179,179,178,178,177,178,177,179;分数50 60 70 80 90 100 人数甲161211155乙351531311乙队:178,177,179,176,178,180,180,178,176,178;甲队队员的平均身高是 ,甲队队员身高的方差是 ;乙队队员的平均身高是 ,乙队队员身高的方差是 ; 对更为整齐.2.人数相等的甲、乙两班学生参加了同一次数学测验, 班级平均分和方差如下:平均分都为110,甲、乙两班方差分别为340、280,则成绩较为稳定的班级为( )A .甲班B .乙班C . 两班成绩一样稳定D .无法确定 3. 一组数据13,14,15,16,17的标准差是( ) A .2 B .10 C .0 D .24. 在方差的计算公式()()()22221210120202010s x x x ⎡⎤=-+-+⋅⋅⋅+-⎣⎦中,数字10和20分别表示的意义可以是( )A .数据的个数和方差B .平均数和数据的个数C .数据的个数和平均数D .数据组的方差和平均数 5、如图是某一天A 、B 两地的气温变化图。
问: (1)这一天A 、B 两地的平均气温分别是多少? (2)A 地这一天气温的极差、方差分别是多少?B 地呢? (3)A 、B 两地的气候各有什么特点?151719212325159131721时刻气温/℃151719212325159131721时刻气温/℃6、某校从甲、乙两名优秀选手中选一名参加全市中学生运动会跳远比赛.预先对这两名选手测试了10次,他们的成绩(单位:cm )如下: 1 2 3 4 5 6 7 8 9 10 甲的成绩 585 596 610 598 612 597 604 600 613 601 乙的成绩613618580574618593585590598624(1)甲、乙的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少? (3)这两名运动员的运动成绩各有什么特点?A 地B 地(4)历届比赛表明,成绩达到596cm就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?(5)如果历届比赛表明,成绩达到610cm就能打破记录,你认为为了打破记录应选谁参加这项比赛?7、某校从甲乙两名优秀选手中选一名选手参加全市中学生田径百米比赛(100米记录为12.2秒,通常情况下成绩为12.5秒可获冠军)。