概率统计图典型试题
九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
概率统计例题及练习题(答案).

第八讲概率统计【考点透视】1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.5. 掌握离散型随机变量的分布列.6.掌握离散型随机变量的期望与方差.7.掌握抽样方法与总体分布的估计.8.掌握正态分布与线性回归. 【例题解析】考点1. 求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1等可能性事件(古典概型的概率:P (A =((I card A card =n m ;等可能事件概率的计算步骤:①计算一次试验的基本事件总数n ;②设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③依公式(m P A n=求值;④答,即给问题一个明确的答复.(2互斥事件有一个发生的概率:P (A +B =P (A +P (B ; 特例:对立事件的概率:P (A +P (A =P (A +A =1. (3相互独立事件同时发生的概率:P (A ·B =P (A ·P (B ;特例:独立重复试验的概率:P n (k =k n kk n p p C --1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P+P]n 展开的第k+1项. (4解决概率问题要注意“四个步骤,一个结合”:①求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式(((((((((1k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示.[考查目的]本题主要考查概率的概念和等可能性事件的概率求法.[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20提示:51.10020P ==例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g :492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________.[考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51.204=点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误.例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A 454 (B 361 (C 154 (D 158[考查目的] 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A =种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率(0.96P A =. (1求从该批产品中任取1件是二等品的概率p ;(2若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一信号件二等品”的概率(P B .[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](1记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01((P A P A A =+212012(((1C (11.P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去.(2记0B 表示事件“取出的2件产品中无二等品”,则0B B =.若该批产品共100件,由(1知其中二等品有1000.220⨯=件,故28002100C 316(C 495P B ==.00316179((1(1.495495P B P B P B ==-=-=例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示.[考查目的] 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135.例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.(Ⅰ若n=3,求取到的4个球全是红球的概率;(Ⅱ若取到的4个球中至少有2个红球的概率为43,求n.[考查目的]本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.[标准解答](错误!未找到引用源。
概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。
本文将提供一套概率统计的试题及答案,以供学习和复习之用。
一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。
答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。
答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。
答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。
答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。
答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。
概率统计练习题答案

概率统计练习题答案一、选择题1.答案:B2.答案:C3.答案:A4.答案:D5.答案:C6.答案:A7.答案:B8.答案:D9.答案:C10.答案:B11.答案:A12.答案:C13.答案:B14.答案:D15.答案:A二、填空题1.答案:0.252.答案:0.93.答案:0.154.答案:25.答案:0.046.答案:137.答案:0.3338.答案:0.849.答案:0.62510.答案:0.8三、解答题1.答案:设事件A为随机抽取的球为红球,事件B为随机抽取的球为蓝球。
根据条件概率公式,P(A|B) = P(AB)/P(B)。
已知P(A) = 0.6,P(B) = 0.4,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.4 = 0.6。
所以,答案为0.6。
2.答案:设事件A为选手射中靶心,事件B为选手准确报告靶心位置。
根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)。
已知P(A|B1) = 0.8,P(A|B2) = 0.6,P(A|B3) = 0.4,P(B1) = 0.3,P(B2) = 0.4,P(B3) = 0.3,代入公式可得P(A) = 0.8*0.3 + 0.6*0.4 + 0.4*0.3 = 0.62。
所以,答案为0.62。
3.答案:设事件A为选手拿到奖品,事件B为选手答对问题。
根据条件概率公式,P(A|B) = P(AB)/P(B)。
已知P(A) = 0.4,P(B) = 0.6,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.6 = 0.4。
所以,答案为0.4。
4.答案:设事件A为抽取的学生是男生,事件B为抽取的学生是高中生。
根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2)。
已知P(A|B1) = 0.6,P(A|B2) = 0.4,P(B1) = 0.7,P(B2) = 0.3,代入公式可得P(A) = 0.6*0.7 + 0.4*0.3 = 0.54。
概率统计大题综合(解析版)

概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r =n i =1x i −x y i −y n i =1x i −x 2 n i =1y i −y 2 =ni =1x i y i −nx yn i =1x i 2−nx 2ni =1y i 2−ny2r >0,正相关;r <0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K 2=n ad -bc 2a +b c +d a +c b +d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M 对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M 上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M 上场的概率.【答案】(1)740(2)711【分析】(1)设事件A i =“种子选手M 第i 局上场”i =1,2,3 ,事件B =“甲队最终2:1获胜且种子选手M 上场”,求出P A i 、P B A i i =1,2,3 的值,利用全概率公式可求得P B 的值;(2)设事件A 0=“种子选手M 未上场”,事件C =“甲队2:1获得胜利”,计算出P C 、P A 0C 的值,利用贝叶斯公式可求得P A 0C 的值.【详解】(1)解:设事件A i =“种子选手M 第i 局上场”i =1,2,3 ,事件B =“甲队最终2:1获胜且种子选手M 上场”.由全概率公式知,P B =P B A 1 ⋅P A 1 +P B A 2 ⋅P A 2 +P B A 3 ⋅P A 3因为每名队员上场顺序随机,故P A i =15i =1,2,3 ,P B A 1 =34×12×12+14×12×12=14,P B A 2 =12×34×12+12×14×12=14,P B A 3 =C 12⋅12×12×34=38.所以P B =∑3i =1P B A i P A i =14×15+14×15+38×15=740,所以甲队最终2:1获胜且种子选手M 上场的概率为740.(2)解:设事件A 0=“种子选手M 未上场”,事件C =“甲队2:1获得胜利”,P A 0 =A 34A 35=25,P A 0 =1-25=35,P C A 0 =C 12×12×12×12=14,P C =P B +P C A 0 ⋅P A 0 =740+14×25=1140,因为P A 0 C =P A 0CP C.由(1)知P A 0 C =P B =740,所以P A 0 C =P A 0 C P C =7401140=711.所以,已知甲队2:1获得最终胜利,种子选手M 上场的概率为711.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p 1,p 2,且p 1+p 2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?【答案】(1)分布列见解析,E (ξ)=54(2)11轮【分析】(1)根据超几何分布列分布列计算数学期望即可;(2)先求每轮答题中取得胜利的概率的最大值,再应用独立重复实验数学期望的范围求出最少轮数.【详解】(1)由题意可知ξ的可能取值有0、1、2、3,P (ξ=0)=C 37C 312=744,P (ξ=1)=C 15C 27C 312=2144,P (ξ=2)=C 17C 25C 312=722,P (ξ=3)=C 35C 312=122所以,随机变量ξ的分布列如下表所示:ξ0123P7442144722122所以E (ξ)=0×744+1×2144+2×722+3×122=54.(2)他们在每轮答题中取得胜利的概率为Q =C 12p 11-p 1 C 22p 22+C 22p 21C 12p 21-p 2 +C 22p 21C 22p 22=2p 1p 2p 1+p 2 -3p 1p 2 2=83p 1p 2-3p 1p 2 2,由0≤p 1≤1,0≤p 2≤1,p 1+p 2=43,得13≤p 1≤1,则p1p2=p143-p1=43p1-p21=-p1-232+49,因此p1p2∈13,49,令t=p1p2∈13,49,Q=83t-3t2=-3t-492+1627,于是当t=49时,Q max=1627.要使答题轮数取最小值,则每轮答题中取得胜利的概率取最大值16 27.设他们小组在n轮答题中取得胜利的次数为X,则X∼B n,16 27,E(X)=1627n,由E(X)≥6,即1627n≥6,解得n≥10.125.而n∈N*,则n min=11,所以理论上至少要进行11轮答题.3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)【答案】(1)列联表见解析(2)2.5%(3)分布列见解析,数学期望为1.6【分析】(1)根据表中的数据完成列联表即可;(2)由公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)计算K2,然后根据临界值表进行判断;(3)由题意可得ξ的值可能为0,1,2,3,4,求出相应的概率,从而可求得ξ的分布列与期望.【详解】(1)列联表补充如下:患病末患病总计服用药物104555末服用药物203050总计3075105(2)K2=105×(10×30-20×45)230×75×55×50=33655≈6.109>5.024.∵P K2≥5.024=0.025,∴认为“药物对预防疾病有效”犯错误的概率是2.5%.(3)根据题意,10只未患病动物中,有6只服用药物,4只未服用药物,所以ξ的值可能为0,1,2,3,4,则P (ξ=0)=C 46C 410=15210,P (ξ=1)=C 36C 14C 410=80210,P (ξ=2)=C 26C 24C 410=90210,P (ξ=3)=C 16C 34C 410=24210,P (ξ=4)=C 44C 410=1210,ξ的分布列如下:ξ01234P152108021090210242101210则E (ξ)=0×15210+1×80210+2×90210+3×24210+4×1210=1.6.4.(2023·江苏常州·校考一模)设X ,Y 是一个二维离散型随机变量,它们的一切可能取的值为a i ,b j ,其中i ,j ∈N *,令p ij =P X =a i ,Y =b j ,称p ij i ,j ∈N * 是二维离散型随机变量X ,Y 的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X ,Yb 1b 2b 3⋅⋅⋅a 1p 11p 12p 13⋅⋅⋅a 2p 21p 22p 23⋅⋅⋅a 3p 31p 32p 33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n ∈N * 个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X ,落入第2号盒子中的球的个数为Y .(1)当n =2时,求X ,Y 的联合分布列,并写成分布表的形式;(2)设p k =nm =0P X =k ,Y =m ,k ∈N 且k ≤n ,求nk =0kp k 的值.(参考公式:若X ~B n ,p ,则nk =0kC k n p k1-p n -k =np )【答案】(1)答案见解析(2)n 3【分析】(1)X 的取值为0,1,2,Y 的取值为0,1,2,分别计算概率即可;(2)计算得p k =Ckn13k23n -k,则n k =0kp k =nk =0kC k n 13k23n -k,最后利用二项分布的期望公式即可得到答案.【详解】(1)若n =2,X 的取值为0,1,2,Y 的取值为0,1,2,则P X =0,Y =0 =132=19,P X =0,Y =1 =C 12×13×13=29,P X =0,Y =2 =132=19,P X =1,Y =0 =C 12×13×13=29,P X =1,Y =1 =C 12×13×13=29,P X =2,Y =0 =132=19,P X =1,Y =2 =P X =2,Y =1 =P X =2,Y =2 =0,故X ,Y 的联合分布列为X ,Y 0120192919129290219(2)当k +m >n 时,P X =k ,Y =m =0,故p k =nm =0P X =k ,Y =m =n -km =0P X =k ,Y =m =n -km =0P C k n C m n -k ⋅13n=C k n 3n n -k m =0C m n -k =C kn 3n 2n -k =C k n13 k23n -k所以nk =0kp k =nk =0kC k n13k23n -k,由二项分布的期望公式可得nk =0kp k =n 3.5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A ,B 两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A 型疾病的人数占男性患者的56,女性患A 型疾病的人数占女性患者的13.A 型病B 型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A 型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m >0 元.该团队研发的疫苗每次接种后产生抗体的概率为p 0<p <1 ,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p =23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K 2=n ad -bc 2a +b c +d a +c b +d,P K 2≥k 0 0.100.050.010.0050.001k 02.7063.8416.6357.87910.828【答案】(1)列联表见解析,被调查的男性患者至少有12;(2)340009m 元【分析】(1)设男性患者有x 人,结合题设写出列联表,应用卡方公式求卡方值,根据独立检验的基本思想列不等式求x 范围,再由x 6∈Z ,x3∈Z 确定x 最小值;(2)由题意试验每人的接种费用为ξ的可能取值为3m ,6m ,独立事件乘法公式求出对应概率,进而求出期望,根据总人数求出总费用的期望即可.【详解】(1)设男性患者有x 人,则女性患者有2x 人,2×2列联表如下:A 型病B 型病合计男5x6x 6x 女2x 34x 32x 合计3x 23x 23x假设H 0:患者所患疾病类型与性别之间无关联,根据列联表中的数据K 2=3x 5x 6⋅4x 3-x 6⋅2x 3 23x 2⋅3x 2⋅2x ⋅x =2x 3,要使在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,则2x 3>7.879,解得x >11.8185,因为x 6∈Z ,x3∈Z ,所以x 的最小整数值为12,因此,男性患者至少有12人.(2)设该试验每人的接种费用为ξ元,则ξ的可能取值为3m ,6m .则P ξ=3m =C 23p 21-p +p 3=-2p 3+3p 2,P ξ=6m =1+2p 3-3p 2,所以E ξ =3m ⋅-2p 3+3p 2 +6m ⋅1+2p 3-3p 2 =3m 2p 3-3p 2+2 ,因为p =23,试验人数为1000人,所以该试验用于接种疫苗的总费用为1000E ξ ,所以1000×3m 2×23 3-3×23 2+2 =340009m 元.6.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X 的分布列和数学期望.附:χ2=n ad -bc 2a +b c +d a +c b +dα0.10.050.010.0050.001x α2.7063.8416.6357.87910.828【答案】(1)有99.9%的把握认为该校学生喜欢足球与性别有关;(2)分布列见解析,数学期望为116.【分析】(1)完善列联表,计算χ2的观测值,再与临界值表比对作答.(2)求出X 的可能值,求出各个值对应的概率,列出分布列并求出期望作答.【详解】(1)依题意,2×2列联表如下:喜欢足球不喜欢足球合计男生6040100女生3070100合计90110200零假设H 0:该校学生喜欢足球与性别无关,χ2的观测值为χ2=200(60×70-30×40)2100×100×90×110≈18.182>10.828=x 0.001,根据小概率值α=0.001的独立性检验,推断H 0不成立,所以有99.9%的把握认为该校学生喜欢足球与性别有关.(2)依题意,X 的可能值为0,1,2,3,P (X =0)=1-23 2×1-12 =118,P (X =1)=C 12×231-23 ×1-12 +1-23 2×12=518,P (X =2)=C 12×231-23 ×12+23 2×1-12 =818=49,P (X =3)=23 2×12=29,所以X 的分布列为:X0123P1185184929数学期望E (X )=0×118+1×518+2×49+3×29=116.7.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i =s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.【答案】(1)0.8(2)256625(3)甲组对A 类APP 的评价更合理.【分析】(1)求出“使用过A 类APP ”和“使用过B 类APP ”的概率,再由对立事件的概率公式求解即可.(2)题意知X ∼B 5,45,由二项分布的数学期望公式可求出E X ,再由二项分布的概率公式即可求出P X =E X .(3)由平均数和方差的公式求解即可得出答案.【详解】(1)设事件A 表示“使用过A 类APP ”,事件B 表示“使用过B 类APP ”,由题意知P A =0.6,P B =0.5.任选一人,该人使用过美颜拍摄类APP 的概率:P =1-P A B=1-0.4×0.5=0.8.(2)由题意知X ∼B 5,45,则X 的数学期望E X =5×45=4.P X =E X =P X =4 =C 4545 4×15=256625.(3)x 1 =94+86+92+96+87+93+90+828=90,x 2 =85+83+85+91+75+90+83+808=84,s 1=1842+-4 2+22+62+-3 2+32+02+-8 2 =19.25≈4.39,s 2=1812+-1 2+12+72+-9 2+62+-1 2+-4 2 =23.25≈4.82,V 1=s 1x 1=4.3990<V 2=s 2x 2=4.8284,故甲组对A 类APP 的评价更合理.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?【答案】(1)分布列见解析,12(2)7214096,3472048,方案二能让故障机器更大概率得到及时维修,使得工厂的生产效率更高.【分析】(1)根据题意得到随机变量X ~B 2,14,结合独立重复试验的概率计算公式求得相应的概率,列出分布列,结合期望的公式,即可求解;(2)根据题意,分别求得方案一和方案二中,结合对立事件和独立重复试验的概率计算公式,分别求得机器发生故障时不能及时维修的概率P 1和P 2,根据大小关系,即可得到结论.【详解】(1)解:由题意,车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,可得方案一中,随机变量X ~B 2,14,则P X=0=342=916,P X=1=C12⋅14⋅34=38,P X=2=142=116,所以随机变量X的分布列为:X012P 91638116所以期望为E X=2×14=12.(2)解:对于方案一:“机器发生故障时不能及时维修”等价于“甲、乙、丙三人中,至少有一人负责的2台机器同时发生故障”,设机器发生故障时不能及时维修的概率为P1,则其概率为P1=1-1-P X=23=1-1-1 163=7214096.对于方案二:设机器发生故障时不能及时维修的概率为P2,则P2=1-346-C16⋅14⋅34 5-C26⋅14 2⋅34 4=1-36+6×35+15×344096=3472048,可得P2<P1,即方案二能让故障机器更大概率得到及时维修,使得工厂的生产效率更高.9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.828【答案】(1)列联表见解析,“健身达人”与年龄无关(2)施行方案1投资较少,理由见解析【分析】(1)根据题意计算相关数据填好列联表,利用公式计算χ2,对照参考数据得出结论;(2)按分层抽样计算方案1奖励的总金额ξ1;方案2中,设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,100,300,计算对应概率,得出分布列,数学期望Eη ,进而计算按照方案2奖励的总金额ξ2,比较ξ1,ξ2即可得出答案.【详解】(1)根据年轻人标准结合图1可得年轻人占比为80%,则年轻人人数为100×80%=80,非年轻人为20人,根据图2表格得健身达人所占比60%,所以其人数为100×60%=60,根据其中年轻人占比56,所以健身达人中年轻人人数为60×56=50,非年轻人为10人;健身爱好者人数为100-60=40,再通过总共年轻人合计为80人,则健身爱好者中年轻人人数为80-50=30,根据非年轻人总共为20人,健身爱好者中非年轻人人数为20-10=10,所以列联表为:年轻人非年轻人合计健身达人501060健身爱好者301040合计8020100零假设为H0:“健身达人”与年龄无关联,根据列联表中的数据,可得χ2=100×(50×10-30×10)280×20×60×40=2524≈1.042<3.841,依据小概率值α=0.05的独立性检验,没有充分证据推断H0不成立,因此可以认为H0成立,即“健身达人”与年龄无关.(2)方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”,则“幸运之星”中的健身爱好者和健身达人的人数分别为18.2%+21.8%×20=8,30.1%+19.2%+10.7%×20=12,按照方案1奖励的总金额为ξ1=8×500+12×800=13600(元).方案2:设η表示参加一次摸奖游戏所获得的奖励金,全部的150名会员中的健身爱好者和健身达人的人数分别为18.2%+21.8%×150=60,30.1%+19.2%+10.7%×150=90,则η的可能取值为0,100,300.由题意,每摸球1次,摸到红球的概率为P =C 12C 15=25,所以P η=0 =C 0335 325 0+C 1335 225 1=81125,P η=100 =C 2335 125 2=36125,P η=300 =C 3335 025 3=8125.所以η的分布列为:η0100300P81125361258125数学期望为E η =0×81125+100×36125+300×8125=48(元),按照方案2奖励的总金额为ξ2=60+3×90 ×48=15840(元),因为由ξ1<ξ2,所以施行方案1投资较少.10.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X,求P X=k最大时的k的值.参考公式:χ2=n ad-bc2a+bc+da+cb+d(其中n=a+b+c+d为样本容量).α0.500.400.250.150.1000.0500.025xα0.4550.708 1.323 2.072 2.706 3.841 5.024【答案】(1)列联表见解析,认为注射疫苗后志愿者产生抗体与指标值不小于60有关;(2)(i)20;(ⅱ)99.【分析】(1)完善列联表,计算χ2的观测值,再与临界值表比对作答.(2)(i)利用对立事件、相互独立事件的概率公式求解作答;(ⅱ)利用二项分布的概率公式,列出不等式组并求解作答.【详解】(1)由频率分布直方图,知200名志愿者按指标值分布为:在[0,20)内有0.0025×20×200=10 (人),在[20,40)内有0.00625×20×200=25(人),在[40,60)内有0.00875×20×200=35(人),在[60,80)内有0.025×20×200=100(人),在80,100内有0.0075×20×200=30(人),依题意,有抗体且指标值小于60的有50人,而指标值小于60的志愿者共有10+25+35=70人,则指标值小于60且没有抗体的志愿者有20人,指标值不小于60且没有抗体的志愿者有20人,所以2×2列联表如下:抗体指标值合计小于60不小于60有抗体50110160没有抗体202040合计70130200零假设H0:注射疫苗后志愿者产生抗体与指标值不小于60无关联,根据列联表中数据,得χ2=200×(50×20-20×110)2160×40×70×130≈4.945>3.841,根据小概率值α=0.05的独立性检验,推断H0不成立,即认为注射疫苗后志愿者产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05.(2)(i)令事件A=“志愿者第一次注射疫苗产生抗体”,事件B=“志愿者第二次注射疫苗产生抗体”,事件C=“志愿者注射2次疫苗后产生抗体”,记事件A,B,C发生的概率分别为P(A),P(B),P(C),则P A=160200=0.8,P B =m40,P C =1-P AP B=1-0.2×1-m40=0.9,解得:m=20,所以m=20.(ⅱ)依题意,随机变量X∼B(110,0.9),P(X=k)=C k110×0.9k×0.1110-k(k∈N,k≤110),显然P(X=0),P(X=110)不是最大的,即当P(X=k)最大时,k∈N∗,k<110,于是P(X=k)≥P(X=k-1)P(X=k)≥P(X=k+1),即C k110×0.9k×0.1110-k≥C k-1110×0.9k-1×0.1111-kC k110×0.9k×0.1110-k≥C k+1110×0.9k+1×0.1109-k,则110!k!(110-k)!×0.9≥110!(k-1)!(111-k)!×0.1110!k!(110-k)!×0.1≥110!(k+1)!(109-k)!×0.9,整理得9(111-k)≥kk+1≥9(110-k),解得98910≤k≤99910,因此k=99,所以P(X=k)最大时,k的值为99.11.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.【答案】(1)8 9(2)E X =1303【分析】(1)根据条件概率求解即可;(2)先求出参加人数的分布列及期望,再根据参加人数与得分的关系求出得分的期望即可.【详解】(1)设事件A为:“至少有一名女生参加活动”,设事件B为:“恰有一名女生参加活动”.则P AB=C14⋅C12C26=815,P A =1-C24C26=35.所以在有女生参加活动的条件下,恰有一名女生的概率为:P B A=P ABP A=89;(2)因为女生参加活动得分为12×10+12×20=15;男生参加活动得分为12×20+12×30=25.设恰有Y名女生参加活动,则有2-Y名男生参加活动,所以P Y=0=C24C26=25,P Y=1=C14⋅C12C26=815,P Y=2=C22C26=115,所以E Y=1×815+2×115=23,又X=15Y+252-Y=50-10Y,所以E X=50-10E Y=50-10×23=1303.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.【答案】(1)189256(2)分布列见解析,3(3)选择小宇,理由见解析【分析】(1)小明至少正确完成其中3道题包含两种情况:一是小明正确完成3道题,二是小明正确完成4道题,然后由互斥事件的概率公式求解即可;(2)由题意得X 的可能取值为2,3,4,然后求各自对应的概率,从而可求出X 的分布列及数学期望;(3)分别计算出他们两人至少完成其中3道题的概率,通过比较概率的大小可得答案.【详解】(1)记“小明至少正确完成其中3道题”为事件A ,则P A =C 3434 314+C 4434 4=189256.(2)X 的可能取值为2,3,4P X =2 =C 22C 26C 48=1570=314,P X =3 =C 12C 36C 48=4070=47,P X =4 =C 02C 46C 48=1570=314,X 的分布列为;X 234P31447314数学期望E X =2×314+3×47+4×314=3.(3)由(1)知,小明进入决赛的概率为P A =189256;记“小宇至少正确完成其中3道题”为事件B ,则P B =47+314=1114;因为P B >P A ,故小宇进决赛的可能性更大,所以应选择小宇去参加比赛.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z ∼N μ,σ2 ,则P μ-σ≤X ≤μ+σ ≈0.6827;P μ-2σ≤X ≤μ+2σ ≈0.9545;P μ-3σ≤X ≤μ+3σ ≈0.9973.【答案】(1)7081。
概率统计试题和答案

概率统计试题和答案题目答案的红色部分为更正部分,请同志们注意下统计与概率1.(2017课标1,理2)如图,正方形ABCD( B ) A.14B.π8C.12D.π42.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次, 表示抽到的二等品件数,则D X = 1.96 。
4.(2016年全国I 理14)5(2)x x +的展开式中,x 3的系数是 10 .(用数字填写答案)5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )(A )13 (B )12 (C )23 (D )345.(2016年全国2理10)从区间随机抽取个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为( C )(A ) (B ) (C ) (D ) 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为[]0,12n 1x 2x nx 1y 2y n y ()11,x y ()22,x y (),n n x y m π4nm 2n m 4m n 2m n50C。
概率统计试题及答案

概率统计试题及答案在概率统计学中,试题和答案的准确性和清晰度非常重要。
下面将给出一系列关于概率统计的试题和详细的解答,以帮助读者更好地理解和应用概率统计的基本概念和技巧。
试题一:基础概率计算某餐厅有3个主菜,每个主菜又有4种不同的配菜。
如果顾客在选择主菜和配菜时是随机的,那么一个顾客会选择哪种搭配的概率是多少?解答一:根据概率统计的基本原理,计算顾客选择搭配的概率可以使用“事件数除以样本空间”的方法。
在这个问题中,总共有3个主菜和4种配菜,所以样本空间的大小为3 × 4 = 12。
而一个顾客选择一种特定的搭配可以有1种选择,因此事件数为1。
因此,顾客选择某种搭配的概率为1/12。
试题二:概率的加法规则某班级有25名男生和15名女生。
从中随机选择一名学生,那么选择一名男生或选择一名女生的概率分别是多少?解答二:根据概率统计的加法规则,选择一名男生或选择一名女生的概率可以通过计算每个事件的概率然后相加来得到。
在这个问题中,男生和女生分别属于两个互斥事件,因此可以直接相加。
男生的概率为25/40,女生的概率为15/40。
因此,选择一名男生或选择一名女生的概率为25/40 + 15/40 = 40/40 = 1。
试题三:条件概率计算某电子产品的退货率是0.05,而该产品是有瑕疵的情况下才会退货。
对于一台已经退货的产品,有0.02的概率是有瑕疵的。
那么一台被退货且有瑕疵的电子产品占所有退货产品的比例是多少?解答三:根据条件概率的定义,求一台被退货且有瑕疵的电子产品占所有退货产品比例的问题,可以用有瑕疵且被退货的产品数除以所有被退货的产品数来得到。
假设有1000台电子产品被退货,根据退货率的定义,有5%的产品会被退货,即退货的产品数为0.05 * 1000 = 50台。
而在这50台退货产品中,有2%有瑕疵,即有瑕疵且被退货的产品数为0.02 * 50 = 1台。
因此,一台被退货且有瑕疵的电子产品占所有退货产品的比例为1/50,即0.02。
概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计图试题一.解答题(共40小题)1.(2016•葫芦岛)某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.2.(2013•常州)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.3.(2013•黔西南州)“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示).(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),那么员工小胡抽到去甲地的车票的概率是多少?(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?4.(2013•海南模拟)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?5.(2013•广东模拟)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.6.(2013•江苏模拟)我们知道,利用两个转盘,做配紫色游戏.如图,红、蓝色区域各占一半,(1)求一个指针指向红,一个指针指向蓝配成紫色获胜的概率;(2)改变图2的红、蓝色区域比例使其扇形面积比为3﹕1,获胜的概率又是多少由此,请进行猜想,写出你猜想的结果.7.(2016•漳州)国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t≤1,C组:1≤t <1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是;(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.8.(2016•南平)国务院办公厅在2015年3月16日发布了《中国足球发展改革总统方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图),请根据图中提供的信息,解答下列问题:(1)被调查的学生共有人.(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为度;(3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?9.(2016•安顺)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).10.(2016•内江)某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B 乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).11.(2016•锦州)九年一班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,小强拿出一个箱子说:“这个不透明的箱子里装有红、白球各1个和若干个黄球,它们除了颜色外其余都相同,谁能同时摸出两个黄球谁就获得一等奖”.已知任意摸出一个球是黄球的概率为.(1)请直接写出箱子里有黄球个;(2)请用列表或树状图求获得一等奖的概率.12.(2016•黔南州)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或;列表的方法进行说明.13.(2016•宿迁)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.14.(2016•梅州)我市某校开展了以“梦想中国”为主题的摄影大赛,要求参赛学生每人交一(1)表中x的值为,y的值为;(直接填写结果)(2)将本次参赛作品获得A等级的学生依次用A1、A2、A3…表示.现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,则恰好抽到学生A1和A2的概率为.(直接填写结果)15.(2016•烟台)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.16.(2016•随州)国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=,b=,且补全频数分布直方图;(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.17.(2016•西宁)随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)2015年国庆期间,西宁周边景区共接待游客万人,扇形统计图中“青海湖”所对应的圆心角的度数是,并补全条形统计图;(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.18.(2016•抚顺)某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为,“综艺节目”在扇形统计图中所对应的圆心角的度数为;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.19.(2016•兰州)小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.20.(2016•黔西南州)2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数分布表中a=,b=,c=(2)补全频数分布直方图(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.频数分布表21.(2016•常州)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.22.(2016•宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.23.(2016•枣庄)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户具名的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了①,②,③;(2)如果家庭月均用水量在5≤x<8范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)记月均用水量在2≤x<3范围内的两户为a1,a2,在7≤x<8范围内的3户b1、b2、b3,从这5户家庭中任意抽取2户,试完成下表,并求出抽取出的2户家庭来自不同范围的①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.25.(2016•新疆)某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有人;在扇形图中,m=;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.26.(2016•常德)今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?27.(2016•本溪)为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的),学校随机抽取了部分学生进行调查,将调查结果整理后绘制成如下两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人,扇形统计图中m=;(2)将条形统计图补充完整;(3)若该校有1800名学生,估计全校最喜爱“校长信箱”栏目的学生有多少人?(4)若从3名最喜爱“校长信箱”栏目的学生和1名最喜爱“时事政治”栏目的学生中随机抽取两人参与校园网站的编辑工作,用列表或画树状图的方法求所抽取的两人都最喜爱“校长信箱”栏目的概率.28.(2016•青海)我省某地区为了了解2016年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)(1)填空:该地区共调查了名九年级学生;(2)将两幅统计图中不完整的部分补充完整;(3)若该地区2016年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.29.(2016•潍坊)今年5月,某大型商业集团随机抽取所属的m 家商业连锁店进行评估,将各连锁店按照评估成绩分成了A 、B 、C 、D 四个等级,绘制了如图尚不完整的统计图表. 根据以上信息解答下列问题:(1)求m 的值;(2)在扇形统计图中,求B 等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.30.(2016•南宁)在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2),根据图表中的信息解答下列各题:(1)请求出九(2)全班人数;(2)请把折线统计图补充完整;(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a=,b=,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?32.(2016•湖北襄阳)襄阳市文化底蕴深厚,旅游资源丰富,古隆中、习家池、鹿门寺三个景区是人们节假日玩的热点景区,张老师对八(1)班学生“五•一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1)八(1)班共有学生人,在扇形统计图中,表示“B类别”的扇形的圆心角的度数为;(2)请将条形统计图补充完整;(3)若张华、李刚两名同学,各自从三个景区中随机选一个作为5月1日游玩的景区,则他们同时选中古隆中的概率为.33.(2016•包头)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为2/3.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)34.(2016•新疆)某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C 朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次调查的学生共人,a=,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.35.(2016•淮安)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.36.(2016•东营)“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.37.(2016•陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.38.(2016•邵阳)为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.。