(通用版)2019学高考数学二轮复习 练酷专题 课时跟踪检测(四)函数的图象与性质 理
【高考专题】最新2019年高考数学 函数图象 专题复习(含答案)文理通用版

2019年高考数学函数图象 文理通用一.选择题(共40小题)1.函数4()|41|x x f x =-的图象大致是( ) A . B .C .D .2.已知22(2)(2sin 1)(4)f x x ln x =-,则数()f x 的部分图象大致为( )A .B .C .D . 3.x 为实数,[]x 表示不超过x 的最大整数,()[]f x x x =-,若()f x 的图象上恰好存在一个点与2()(1)(20)g x x a x =+--剟的图象上某点关于y 轴对称,则实数a 的取值范围为( )A .(0,1)B .1(1,)4--C .1(0,1)(1,)4--D .1(0,1](1,]4--⋃ 4.函数sin31cos x y x=+,(,)x ππ∈-图象大致为( ) A . B . C . D .5.函数()cos sin f x x x x =-,[x π∈-,]π的大致图象为( )A .B .C .D .6.函数1(1)y ln x x =-+的图象大致为( ) A . B . C . D .7.函数(1)cos ()1x x e x f x e -=+的部分图象大致为( ) A . B .C . D .8.函数1()(1)x x e f x x e +=-(其中e 为自然对数的底数)的图象大致为( ) A . B . C . D .9.函数2()(1)f x ln x x =+-的图象大致是( )A .B .C .D .10.函数2()sin cos f x x x =+的部分图象符合的是( )A .B .C .D .11.将函数()f x 的图象沿x 轴向左平移1个单位长度,得到奇函数()g x 的图象,则()f x 可能是下列函数中的哪个函数?( )A .1()1f x x =+B .11()x x f x e e --=-C .2()f x x x=+ D .2()log (1)1f x x =++ 12.函数sin y x x π=-的大致图象是( )A .B .C .D .13.如图,在直角坐标系xOy 中,边长为1的正方形OMNP 的两个顶点在坐标轴上,点A ,B 分别在线段MN ,NP 上运动.设PB MA x ==,函数()f x OA BA =,()g x OA OB =,则()f x 与()g x 的图象为( )A .B .C .D .14.函数2()sin f x x x x =+的图象大致为( )A .B .C .D . 15.函数2(1)21ln x y x x +=-+的部分图象大致是( ) A . B . C . D .16.如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T .若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .17.函数3()cos f x x x x =-的大致图象为( )A .B .C .D .18.已知函数2|1()|23x f x x e x -=--+,则()f x 的大致图象是( )A .B .C .D .19.函数()f x =( ) A .B .C .D . 20.函数1(1)y x ln x =-+的图象大致为( ) A . B . C . D .21.函数2()(41)x f x x x e =-+的大致图象是( )A .BC .D .22.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+23.函数1()sin 1x f x x ln x -=+的大致图象为( ) A . B .C .D .24.函数3()||y x x ln x =-的图象是( )A .B .C .D .25.函数||sin 2()2x x f x =的图象大致为( )A .B .C .D .26.函数2()()x f x x tx e =+(实数t 为常数,且0)t <的图象大致是( )A .B .C .D .27.函数2()(2)||f x x ln x =-的图象为( )A .B .C .D .28.函数()1ln xf x x =+,的图象大致是( ) A . B .C . D .29.函数()cos sin f x x x x =-在[3x π∈-,3]π的大致图象为( )A .B .C .D . 30.函数233()sin ()22f x x x x ππ=-剟的图象大致为( ) A . B .C .D .31.函数2||8x y ln x =-的图象大致为( ) A . B . C . D .32.反映函数2()||f x x x -=-基本性质的图象大致为( )A .B .C .D .33.函数433()x xf x x --=的大致图象为( ) A . B . C . D .34.函数2()22x x f x x -=--的图象大致为( )A .B .C .D .35.函数()|1||1|f x ln x ln x =+--的大致图象为( )A .B .C .D .36.函数11x y lnx -=+的图象大致为( ) A . B . C . D .37.设函数2()1xx xe f x e =+的大致图象是( ) A . B .C .D . 38.函数()||cos f x x x =的部分图象为( )A.B.C.D.39.函数()sin2cosf x x x x=+的大致图象有可能是() A.B.C.D.40.函数1()()cosf x x xx=+在[3-,0)(0⋃,3]的图象大致为()A.B.C.D.参考答案一.选择题(共40小题)【解答】解:4()()()|41|x x f x f x f x --=≠≠--, 故()f x 为非奇非偶函数,故排除A ,B .当x →+∞时,()0f x →,当x →-∞时,()f x →+∞,故排除C ,故选:D .【解答】解:2(2)cos2(2)f x xln x =-,令2x t =,则2()cos f t t lnt =-,(0)t ≠2()cos f x xlnx ∴=-,(0)x ≠.cos y x =为偶函数,2y lnt =为偶函数,2()cos f x xlnx ∴=-,(0)x ≠.为偶函数.排除B ,C .当(0,1)x ∈时,cos 0x -<,20lnx <.所以当(0,1)x ∈时,()0f x >,排除A .故选:D .【解答】解:设()h x 与()g x 关于y 轴对称,则2()()(1)h x g x x a =-=--,(02)x 剟.()f x 的图象上恰好存在一个点与2()(1)(20)g x x a x =+--剟的图象上某点关于y 轴对称,可以等价为()f x 与()h x 在[0,2]上有一个交点,①当0a <时,()f x 与()h x 图象如图:当()h x 与()f x 在[1,2]的部分相切时,联立()h x 与()f x 在[1,2]的部分2(1)1y x a y x ⎧=--⎨=-⎩, 得2320x x a -+-=,由△0=得,14a =-, 当1a -…时,()h x 始终在1y =上方,与()f x 无交点.故此时1(1,)4a ∈--. ②0a =时,有两个交点,不成立.③当0a >时,()f x 与()h x 图象如图:要使()f x 与()h x 在[0,2]上有一个交点,需满足:(0)0(2)(0)1h h h ⎧⎨=⎩……,即(0a ∈,1]. 综上,1(0,1](1,]4--⋃. 故选:D .【解答】解:函数sin31cos x y x =+满足sin3()()1cos x f x f x x--==-+,函数为奇函数,排除A , 由于3sin2()121cos 2f πππ==-+,sin ()031cos 3f πππ==+,2sin 2()0231cos 3f πππ==+ 故排除B ,C故选:D .【解答】解:()cos sin (cos sin )()f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除A ,C()cos sin 102222f ππππ=-=-<,排除B , 故选:D .【解答】解:由于函数1(1)y ln x x=-+在(1,0)-,(0,)+∞单调递减,故排除B ,D , 当1x =时,120y ln =->,故排除C ,故选:A .【解答】解:(1)cos()(1)cos ()()11x x x x e x e x f x f x e e ------==-=-++, ∴函数()f x 为奇函数,故排除B ,D ,当x →+∞时,()0f x →,故排除C ,故选:A .【解答】解:当0x >时,1x e >,则()0f x <;当0x <时,1x e <,则()0f x <,所以()f x 的图象恒在x 轴下方,排除B ,C ,D , 故选:A .【解答】解:代0x =,知函数过原点,故排除D .代入1x =,得0y <,排除C .带入0.0000000001x =-,0y <,排除A .故选:B .【解答】解:函数()f x 是偶函数,图象关于y 轴对称,(0)sin0cos01f =+=排除C ,22()sin cos sin 02424f ππππ=+=>,排除A ,D , 故选:B .【解答】解:A .将函数()f x 的图象沿x 轴向左平移1个单位长度得到12y x =+,图象关于原点不对称,不是奇函数,不满足条件. B .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到x x y e e -=-,则此时函数为奇函数,满足条件. C .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到211y x x =+++,(0)1230f =+=≠,则函数不是奇函数,D .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到2log (2)1y x =++,定义域关于原点不对称,不是奇函数,故选:B .【解答】解:()sin (sin )()f x x x x x f x ππ-=-+=--=-,则函数()f x 是奇函数,图象关于原点对称,排除B ,C ,当x →+∞,()f x →+∞,排除A ,故选:D .【解答】解:由已知可得(1,)A x ,(,1)B x ,[0x ∈,1],则(1,1)BA x x =--,(1,)OA x =,(,1)OB x =,所以2()1(1)(1)f x OA BA x x x x ==-+-=-,()2g x OA OB x ==,故选:A .【解答】解:函数2()sin f x x x x =+是偶函数,关于y 轴对称,故排除B , 令()sin g x x x =+,()1cos 0g x x ∴'=+…恒成立,()g x ∴在R 上单调递增,(0)0g =,()()0f x xg x ∴=…,故排除D ,当0x >时,()()f x xg x =单调递增,故当0x <时,()()f x xg x =单调递减,故排除C . 故选:A .【解答】解:当2x =时,f (2)330441ln ln ==>-+,故排除C , 当12x =时,3132()401224lnf ln ==>,故排除D , 当x →+∞时,()0f x →,故排除B ,故选:A .【解答】解:函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快, 故对应的图象为B ,【解答】解:函数33()cos()()cos ()f x x x x x x x f x -=----=-+=-,则函数()f x 是奇函数,图象关于原点对称,排除C ,D ,33()cos ()()022222f πππππ=-=-<,排除B , 故选:A .【解答】解:由题意知2|12|1()|2323|x x f x x e x x x e --=--+=-+-,223y x x =-+对称轴为1x =,|1|x y e -=对称轴为1x =,所以知()f x 的对称轴为1x =,排除B ,D . 代特殊值3x =得0y <,排除C ,选A .故选:A .【解答】解:1(0)02ln f ==,排除C ,Df (1)11)0ln e e -=<+,排除B 故选:A .【解答】解:f (1)1012ln =>-,排除C ,D , 由10(1)y x ln x ==-+,则方程无解,即函数没有零点,排除B , 故选:A .【解答】解:当0x <时,2410x x -+>,0x e >,所以()0f x >,故可排除B ,C ; 当2x =时,f (2)230e =-<,故可排除D .故选:A .【解答】解:由图可知()02f π>,故可排除A ,B ; 对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C .故选:D .【解答】解:111()sin sin sin ()111x x x f x x lnx ln x ln f x x x x --+--=-=-==-+-+,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,C ,f (3)1sin302ln =<,排除B ,【解答】解:3()()||()f x x x ln x f x -=--=-,函数是奇函数,图象关于原点对称,排除B , 函数的定义域为{|0}x x ≠,由()0f x =,得3()||0x x ln x -=,即2(1)||0x ln x -=,即1x =±,即函数()f x 有两个零点,排除D , f (2)620ln =>,排除A ,故选:C .【解答】解:||||sin(2)sin 2()()22x x x x f x f x ----===-,函数()f x 是奇函数,图象关于原点对称,排除A ,B , ||44sin(2)14()0422f ππππ⨯==>,排除C , 故选:D .【解答】解:由()0f x =得20x tx +=,得0x =或x t =-,即函数()f x 有两个零点,排除A ,C , 函数的导数22()(2)())[(2)]x x x f x x t e x tx e x t x t e '=+++==+++,当x →-∞时,()0f x '>,即在x 轴最左侧,函数()f x 为增函数,排除D , 故选:B .【解答】解:22()(2)||(2)||()f x x ln x x ln x f x -=--=-=,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,D ,当x →+∞时,()f x →+∞,排除C ,故选:B .【解答】解:||||()()1||1||ln x ln x f x f x x x --===+-+,则函数()f x 是偶函数,图象关于y 轴对称,排除B ,D f (1)0=,则f (e )1011lne e e ==>++,排除A , 故选:C .【解答】解:()cos sin (cos sin )()f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除B ,D()cos sin 0f πππππ=-=-<,排除C ,故选:A .【解答】解:因为233,()sin ()22x f x x x f x ππ--=-=-剟,所以()f x 为奇函数,图象关于原点对称,排除A ,C , 又因为()333222x f x f πππ⎛⎫- ⎪⎝⎭时剟?,排除B 故选:D .【解答】解:函数的定义域为{|0}x x ≠, 则22()()||||()88x x f x ln x ln x f x --=--=-=,则函数()f x 是偶函数,图象关于y 轴对称,排除B , 当x →+∞时,y →+∞,排除A ,2222()2088e e f e lne =-=-<, ∴函数在0x >时,存在负值,排除C ,故选:D .【解答】解:函数22()||()||()f x x x x x f x ---=---=-=,则()f x 是偶函数,排除C 且在(0,)+∞上是增函数,排除B 、D ,故选:A .【解答】解:443333()()x x x xf x f x x x -----==-=-,则()f x 是奇函数,则图象关于原点对称,排除A , f (1)183033=-=>,排除D , 当x →+∞,3x →+∞,则()f x →+∞,排除C ,故选:B .【解答】解:2()22()x x f x x f x --=--=,则()f x 是偶函数,排除C ,f (3)1798088=--=>,排除A , f (5)112532703232=--=--<,排除D , 故选:B .【解答】解:()|1||1|(|1||1|)()f x ln x ln x ln x ln x f x -=--+=-+--=-,即()f x 是奇函数, 图象关于原点对称,排除A ,C ,f (2)3130ln ln ln =-=>,排除B ,故选:D .【解答】解:当x →+∞时,y →+∞,排除D ,由0y =得101x lnx -=+,得10x -=,即1x =, 即函数只有一个零点,排除A ,B ,故选:C .【解答】解:f (1)201e e =>+,排除D ,122(1)011e ef e e ----==-<++,排除B ,C 故选:A .【解答】解:()||cos()||cos ()f x x x x x f x -=--==,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,B ,1()cos 33362f ππππ==>,故排除D , 故选:C .【解答】解:()sin(2)cos()sin2cos ()f x x x x x x x f x -=--+-=+=,则函数()f x 是偶函数,排除D , 由()2sin cos cos 0f x x x x x =+=,得cos (2sin 1)0x x x +=, 得cos 0x =,此时2x π=或32π, 由2sin 10x x +=得1sin 2x x =-, 作出函数sin y x =和12y x=-,在(0,2)π内的图象,由图象知两个函数此时有两个不同的交点, 综上()f x 在(0,2)π有四个零点,排除B ,C ,故选:A .【解答】解:11()()cos()()cos ()f x x x x x f x x x-=---=-+=-,函数是奇函数,图象关于原点对称,排除B ,D ,f (1)2cos10=>,排除C ,故选:A .。
高中数学课时跟踪检测:函数的图象

高中数学课时跟踪检测:函数的图象一抓基础,多练小题做到眼疾手快1.已知函数f (x )=x 2+1,若0<x 1<x 2,则f (x 1)与f (x 2)的大小关系为________. 解析:作出函数图象(图略),知f (x )在(0,+∞)上单调递增,所以f (x 1)<f (x 2). 答案:f (x 2)>f (x 1)2.(常州一中期末)将函数y =e x 的图象上所有点的横坐标变为原来的一半,再向右平移2个单位,所得函数的解析式为________.解析:将函数y =e x 的图象上所有点的横坐标变为原来的一半,可得y =e 2x ,再向右平移2个单位,可得y =e2(x -2)=e2x -4.答案:y =e 2x -43.(前黄中学月考)设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.解析:y =f (x +1)向右平移1个单位得到y =f (x )的图象,由已知可得f (x )的图象的对称轴为x =1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎨⎧x >1,f x ≤0或⎩⎨⎧x <1,f x ≥0.由图可知符合条件的解集为(-∞,0]∪(1,2]. 答案:(-∞,0]∪(1,2]4.使log 2(-x )<x +1成立的x 的取值范围是________.解析:在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).答案:(-1,0)5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:由题意a =|x |+x 令y =|x |+x =⎩⎨⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解,则a >0.答案:(0,+∞)6.设函数f (x )=⎩⎨⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.解析:函数f (x )的图象如图所示,令t =f (a ),则f (t )≤2,由图象知t ≥-2,所以f (a )≥-2,当a <0时,由a 2+a ≥-2,即a 2+a +2≥0恒成立,当a ≥0时,由-a 2≥-2,得0≤a ≤2,故a ≤ 2.答案:(-∞, 2 ]二保高考,全练题型做到高考达标1.已知f (x )=⎝ ⎛⎭⎪⎫13x,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设g (x )上的任意一点A (x ,y ),则该点关于直线x =1的对称点为B (2-x ,y ),而该点在f (x )的图象上.所以y =⎝ ⎛⎭⎪⎫132-x=3x -2,即g (x )=3x -2.答案:g (x )=3x -22.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0), 则⎩⎨⎧-k +b =0,b =1,解得⎩⎨⎧k =1,b =1.∴当-1≤x ≤0时,f (x )=x +1.当x >0时,设解析式为f (x )=a (x -2)2-1(a >0),∵图象过点(4,0), ∴0=a (4-2)2-1,∴a =14,∴当x >0时,f (x )=14(x -2)2-1=14x 2-x .故函数f (x )的解析式为f (x )=⎩⎨⎧x +1,-1≤x ≤0,14x 2-x ,x >0.答案:f (x )=⎩⎨⎧x +1,-1≤x ≤0,14x 2-x ,x >03.(江阴中学检测)方程x 2-|x |+a =1有四个不同的实数解,则a 的取值范围是________. 解析:方程解的个数可转化为函数y =x 2-|x |的图象与直线y = 1-a 交点的个数,作出两函数的图象如图,易知-14<1-a <0,所以1<a <54. 答案:⎝⎛⎭⎪⎫1,544.(启东中学期中)设奇函数f (x )的定义域为[-5,5],若当 x ∈[0,5]时,f (x )的图象如图,则不等式f xx -1≤0的解集为________. 解析:不等式f xx -1≤0,等价于⎩⎨⎧f x ≥0,x -1<0或⎩⎨⎧f x ≤0,x -1>0.由图象可知:当1<x ≤5时,由f (x )≤0,解得2≤x ≤5. 当0≤x <1时,由f (x )≥0,解得0≤x <1,因为f (x )为奇函数,当-2<x <0时,由f (x )≥0,此时无解, 当-5≤x ≤-2时,由f (x )≥0,解得-5≤x ≤-2, 故不等式的解集为[-5,-2]∪[0,1)∪[2,5]. 答案:[-5,-2]∪[0,1)∪[2,5]5.已知函数f (x )的定义域为R,且f (x )=⎩⎨⎧2-x-1,x ≤0,f x -1,x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为________.解析:x ≤0时,f (x )=2-x -1, 0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1. 故x >0时,f (x )是周期函数, 如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1). 答案:(-∞,1)6.(镇江中学测试)已知函数f (x )=⎩⎨⎧lg x ,0<x ≤10,⎪⎪⎪⎪⎪⎪-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.解析:作出函数f (x )的图象如图所示,不妨设a <b <c ,则b +c =2×12=24,a ∈(1,10),则a +b +c =24+a ∈(25,34). 答案:(25,34)7.(徐州调研)设函数f (x )=⎩⎨⎧x -[x ],x ≥0,f x +1,x <0,其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,若直线y =kx +k (k >0)与函数y =f (x )的图象有三个不同的交点,则k 的取值范围是________.解析:∵函数f (x )=⎩⎨⎧x -[x ],x ≥0,f x +1,x <0,∴作出函数f (x )的图象如图所示.∵y =kx +k =k (x +1),故该直线的图象一定过点(-1,0),若y =kx +k 与y =f (x )的图象有三个不同的交点,则f (x )=kx +k 有三个不同的根, ∵k >0,∴当y =kx +k 过点(2,1)时,k =13,当y =kx +k 过点(3,1)时,k =14,要使f (x )=kx +k 有三个不同的根,则实数k 的取值范围是⎣⎢⎡⎭⎪⎫14,13.答案:⎣⎢⎡⎭⎪⎫14,138.(金陵中学月考)已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域均为[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )·g (x )<0的解集是________.解析:f (x )·g (x )<0⇒f (x )与g (x )在同一区间内符号相反, 由图可知,当x ∈[0,π]时,两者异号的区间为⎝ ⎛⎭⎪⎫π3,π.又f (x )为偶函数,g (x )为奇函数,∴当x ∈[-π,0)时,两者异号的区间为⎝ ⎛⎭⎪⎫-π3,0,∴f (x )·g (x )<0的解集是⎝ ⎛⎭⎪⎫-π3,0∪⎝ ⎛⎭⎪⎫π3,π. 答案:⎝ ⎛⎭⎪⎫-π3,0∪⎝ ⎛⎭⎪⎫π3,π 9.(盐城一中测试)已知函数f (x )=x |m -x |(x ∈R),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. 解:(1)因为f (4)=0,所以4|m -4|=0,即m =4.⎩⎨⎧x x -4,x ≥4,-x x -4,x <4.(2)因为f (x )=x |4-x |=即f (x )=⎩⎨⎧x -22-4,x ≥4,-x -22+4,x <4,所以函数f (x )的图象如图所示. 由图象知函数f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4].(4)从图象上观察可知:不等式f (x )>0的解集为{x |0<x <4或x >4}. (5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4, 所以集合M ={m |0<m <4}. 10.已知函数f (x )=2x ,x ∈R.(1)当m 取何值时方程|f (x )-2|=m 有一个解?两个解? (2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围. 解:(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝ ⎛⎭⎪⎫t +122-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为 (-∞,0].三上台阶,自主选做志在冲刺名校1.对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确命题的个数为________.解析:因为函数f (x )=lg(|x -2|+1), 所以函数f (x +2)=lg(|x |+1)是偶函数;由y =lg x――――――――――→图象向左平移1个单位长度y =lg(x +1)――――――――――――――――――――――――――→去掉y 轴左侧的图象,以y 轴为对称轴,作y 轴右侧的对称图象y =lg(|x |+1)――――――――――→图象向右平移2个单位长度y =lg(|x -2|+1),如图,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值为0.所以①②正确.答案:22.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,所以y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+a x =x +a +1x, g ′(x )=1-a +1x 2. 因为g (x )在(0,2]上为减函数, 所以1-a +1x 2≤0在(0,2]上恒成立, 即a +1≥x 2在(0,2]上恒成立, 所以a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).。
2019高考数学二轮复习课时跟踪检测02三角函数的图象与性质小题练 理数(含答案)

[ ] ( ) π π
π
ωπ
2π π
区间 , 32
上单调递减,所以 g 3
=sin
4
=1 且 ω ≥ 3 ,所以Error!所以 ω=2,故
选 C.
课时跟踪检测(二) 三角函数的图象与性质 (小题练)
A 级——12+4 提速练
一、选择题
( )π
1.函数 f(x)=sin(ωx+φ) x ∈ R,ω > 0,|φ| < 的部 2
分图象如图所示,则函数 f(x)的解析式为( )
( )π
A.f(x)=sin 2x+ 4
( )π
B.f(x)=sin 2x- 4
[ ] kπ π kπ 5π
A. - , + (k∈Z) 2 12 2 12
( ) kπ π kπ 5π
B. - , + (k∈Z) 2 12 2 12
( ) π
2π
C. kπ+ ,kπ+ (k∈Z)
6
3
[ ] π
5π
D. kπ- ,kπ+ (k∈Z)
12
12
ππ
π
kπ π kπ 5π
解析:选 B 由 kπ- <2x- <kπ+ (k∈Z)得, - <x< + (k∈Z),所
4
4
( )π
π
6.(2018·唐山模拟)把函数 y=sin 2x- 的图象向左平移 个单位长度后,所得
6
6
函数图象的一条对称轴的方程为( ) A.x=0
π B.x=
2
π C.x=
6
π D.x=-
12
( )π
π
解析:选 C 将函数 y=sin 2x- 的图象向左平移 个单位长度后得到 y=sin
2019高考数学二轮复习含解析27套

高考数学二轮复习考点知识讲解与提升练习09 函数的图象

高考数学二轮复习考点知识讲解与提升练习考点知识09 函数的图象1.(2022年甲卷理科第5题文科第7题)函数x y x x cos )33(--=在区间]2,2[ππ-的图象大致为【答案】A【解析】设x x f x x cos )33()(--=,)()cos()33()(x f x x f x x -=--=--,所以)(x f 为奇函数,排除BD ,令1=x ,则01cos )33()1(1>-=-f ,排除C ,故选A.2.(2022年乙卷文科第8题)右图是下列四个函数中的某个函数在区间[3,3]-的大致图象,则函数是A. 3231x x y x -+=+B.321x xy x -=+ C.22cos 1x x y x =+ D.22sin 1xy x =+【答案】A【解析】由图象可知函数是奇函数,且1x =,0y >,排除B .由3x =,0y <,排除D .由3x =-,2y >,排除C .故选A .3.(2022年浙江卷第6题)为了得到2sin 3y x =的图象,只要把函数2sin 35y x π⎛⎫=+ ⎪⎝⎭图象上所有点A .向左平移5π个单位长度 B . 向右平移5π个单位长度 C . 向左平移15π个单位长度 D . 向右平移15π个单位长度【答案】D【解析】函数图象平移满足左加右减,2sin 32sin 3515y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因此需要将函数图象向右平移15π个单位长度,可以得到2sin 3y x =的图象。
故本题选D .1.函数图象的识辨:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特征点,排除不合要求的图象. 2.函数图象的画法(1)直接法:函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征找出图象的关键点直接作出图象;(2)转化法:含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数来画图象;(3)变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注图象变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换的顺序对变换单位及解析式的影响。
2019高考数学(浙江)二轮复习练习:课时跟踪检测(二) 小题考法——三角函数的图象与性质

2019年4月课时跟踪检测(二) 小题考法——三角函数的图象与性质A 组——10+7提速练一、选择题1.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 详细分析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. 2.为了得到函数y =3sin 2x +1的图象,只需将y =3sin x 的图象上的所有点( ) A .横坐标伸长2倍,再向上平移1个单位长度 B .横坐标缩短12倍,再向上平移1个单位长度C .横坐标伸长2倍,再向下平移1个单位长度D .横坐标缩短12倍,再向下平移1个单位长度详细分析:选B 将y =3sin x 的图象上的所有点的横坐标缩短12倍得到y =3sin 2x 的图象,再将y =3sin 2x 的图象再向上平移1个单位长度即得y =3sin 2x +1的图象,故选B.3.函数f (x )=sin(ωx +φ)⎝⎛⎭⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解+析式为( )A .f (x )=sin ⎝⎛⎭⎫2x +π4 B .f (x )=sin ⎝⎛⎭⎫2x -π4 C .f (x )=sin ⎝⎛⎭⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎫4x -π4 详细分析:选A 由题图可知, 函数f (x )的最小正周期为T =2πω=⎝⎛⎭⎫3π8-π8×4=π,所以ω=2,即f (x )=sin(2x +φ).又函数f (x )的图象经过点⎝⎛⎭⎫π8,1,所以sin ⎝⎛⎭⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z ),解得φ=2k π+π4(k ∈Z ),又|φ|<π2,所以φ=π4,即函数f (x )=sin ⎝⎛⎭⎫2x +π4,故选A.4.(2018·宁波模拟)将函数y =sin ⎝⎛⎭⎫2x -π3的图象向左平移π4个单位长度,所得函数图象的一条对称轴方程是( )A .x =2π3B .x =-π12C .x =π3D .x =5π12详细分析:选A 将函数y =sin ⎝⎛⎭⎫2x -π3的图象向左平移π4个单位长度,可得y =sin ⎝⎛⎭⎫2x +π2-π3=sin ⎝⎛⎭⎫2x +π6的图象,令2x +π6=k π+π2,求得x =k π2+π6,k ∈Z ,可得所得函数图象的对称轴方程为x =k π2+π6,k ∈Z ,令k =1,可得所得函数图象的一条对称轴方程为x =2π3,故选A. 5.已知函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,A (a,0),B (b,0)是其图象上两点,若|a -b |的最小值是1,则f ⎝⎛⎭⎫16=( )A .2B .-2C .32D .-32详细分析:选B ∵函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,∴φ=π2,f (x )=-4sinωx .∵A (a,0),B (b ,0)是其图象上两点,|a -b |的最小值是1,∴12×2πω=1,∴ω=π,f (x )=-4si n πx ,则f ⎝⎛⎭⎫16=-4sin π6=-2. 6.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24详细分析:选A 法一:由f ⎝⎛⎭⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z ), ① 由f ⎝⎛⎭⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z ), ②由①②得ω=-23+43(k ′-2k ).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π, ∴11π8-5π8=T4(2m +1),m ∈N , ∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝⎛⎭⎫23x +φ. 由2sin ⎝⎛⎭⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z . 又|φ|<π,∴取k =0,得φ=π12.故选A. 7.若把函数y =2cos x (cos x -3sin x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π3B.2π3C.π6D.5π6详细分析:选A 法一:y =2cos x (cos x -3sin x )=2cos 2x -23sin x cos x =1+cos 2x -3sin 2x =1+2sin ⎝⎛⎭⎫2x +5π6,该函数的图象向左平移m 个单位长度后,所得图象对应的函数为y =1+2sin ⎣⎡⎦⎤2(x +m )+5π6=1+2sin ⎝⎛⎭⎫2x +2m +5π6,由题意知2m +5π6=π2+k π,k ∈Z ,解得m =k π2-π6,k ∈Z ,取k =1,得到m 的最小值为π3,故选A.法二:y =2cos x (cos x -3sin x )=2cos 2x -23sin x cos x =1+cos 2x -3sin 2x =1+2sin ⎝⎛⎭⎫2x +5π6,令2x +5π6=k π+π2,k ∈Z ,则x =k π2-π6,k ∈Z ,则原函数的图象在x 轴右侧且离y 轴最近的一条对称轴为直线x =π3.因为原函数的图象向左平移m (m >0)个单位长度后得到的图象关于y 轴对称,所以m 的最小值为π3,故选A.8.(2019届高三·温州期中)设α是三角形的一个内角,在sin α,sin α2,cos α,cos 2α,tan 2α,tan α2中可能为负数的值的个数是( )A .2B .3C .4D .5详细分析:选A ∵α是三角形的一个内角, 若0<α<π2,则0<α2<π4,0<2α<π.∴在sin α,sin α2,cos α,cos 2α,tan 2α,tan α2中可能为负数的是cos 2α与tan 2α;若α=π2,则α2=π4,2α=π.∴在sin α,sin α2,cos α,cos 2α,tan 2α,tan α2中为负数的是cos 2α;若π2<α≤3π4,则π4<α2≤3π8,π<2α≤3π2. ∴在sin α,sin α2,cos α,cos 2α,tan 2α,tan α2中可能为负数的是cos α与cos 2α;若3π4<α<π,则3π8<α2<π2,3π2<2α<2π. ∴在sin α,sin α2,cos α,cos 2α,tan 2α,tan α2中可能为负数的是cos α与tan 2α.∴在sin α,sin α2,cos α,cos 2α,tan 2α,tan α2中可能为负数的值的个数是2个.故选A.9.已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎡⎦⎤-π4,π6上的最小值为( )A .-2B .-1C .- 2D .- 3详细分析:选B f (x )=3sin(2x +φ)+cos(2x +φ)=2sin ⎝⎛⎭⎫2x +π6+φ.∵x =π12是f (x )=2sin ⎝⎛⎭⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z ),即φ=π6+k π(k ∈Z ),∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎫2x +π3,∴g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -3π4+π3=-2sin ⎝⎛⎭⎫2x -π6,则g (x )在⎣⎡⎦⎤-π4,π6上的最小值为g ⎝⎛⎭⎫π6=-1,故选B.10.(2019届高三·浙江六校联考)已知函数f (x )=3sin(ωx +θ)⎝⎛⎭⎫ω>0,-π2<θ<π2的图象的相邻两条对称轴之间的距离为π2,将函数f (x )=3sin(ωx +θ)⎝⎛⎭⎫ω>0,-π2<θ<π2的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P ⎝⎛⎭⎫0,322,则φ的一个可能值是( )A.π4 B.5π4 C.3π2D.7π4详细分析:选D 由函数f (x )=3sin(ωx +θ)⎝⎛⎭⎫ω>0,-π2<θ<π2的图象的相邻两条对称轴之间的距离为π2,得函数f (x )的最小正周期为π,则π=2πω,所以ω=2,函数f (x )=3sin(2x+θ)⎝⎛⎭⎫-π2<θ<π2的图象向右平移φ个单位长度,得到g (x )=3sin(2x +θ-2φ)的图象,因为f (x ),g (x )的图象都经过点P ⎝⎛⎭⎫0,322,所以sin θ=22,sin(θ-2φ)=22,又-π2<θ<π2,所以θ=π4,所以sin ⎝⎛⎭⎫π4-2φ=22,所以π4-2φ=2k π+π4(k ∈Z )或π4-2φ=2k π+3π4(k ∈Z ),所以φ=-k π(k ∈Z )或φ=-k π-π4(k ∈Z ),因为φ>0,所以结合选项知φ的一个可能值是7π4.故选D.二、填空题11.已知函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6=_______. 详细分析:函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝⎛⎭⎫π6=±2. 答案:±212.已知f (x )=sin(ωx +φ)(ω>0,|φ|<π)在区间[2,4]上单调,且f (2)=1,f (4)=-1,则ω=________,f (x )在区间⎣⎡⎭⎫12,3上的值域是________.详细分析:由题意知f (x )的最小正周期T =4,∴ω=π2,∴f (x )=sin ⎝⎛⎭⎫π2x +φ.又f (2)=sin(π+φ)=1, ∴π+φ=π2+2k π,k ∈Z .又|φ|<π,∴φ=-π2,∴f (x )=sin ⎝⎛⎭⎫π2x -π2. 由x ∈⎣⎡⎭⎫12,3,得π2x -π2∈⎣⎡⎭⎫-π4,π, ∴sin ⎝⎛⎭⎫π2x -π2∈⎣⎡⎦⎤-22,1, 即f (x )在区间⎣⎡⎭⎫12,3上的值域为⎣⎡⎦⎤-22,1. 答案:π2 ⎣⎡⎦⎤-22,113.(2018·金华模拟)已知函数f (x )=4sin x sin ⎝⎛⎭⎫x +π3,则函数f (x )的最小正周期T =________,在区间⎝⎛⎭⎫0,π2上的值域为________. 详细分析:函数f (x )=4sin x sin ⎝⎛⎭⎫x +π3=4sin x ⎝⎛⎭⎫sin x cos π3+cos x sin π3=2sin 2x +23sin x cos x =3sin 2x -cos 2x +1=2sin ⎝⎛⎭⎫2x -π6+1, 函数f (x )的最小正周期T =2π2=π.∵x ∈⎝⎛⎭⎫0,π2,∴2x -π6∈⎝⎛⎫-π6,5π6. ∴-12<sin ⎝⎛⎭⎫2x -π6≤1, ∴0<f (x )≤3. ∴值域为(0,3]. 答案:π (0,3]14.设P 为函数f (x )=sin π2x 的图象上的一个最高点,Q 为函数g (x )=cos π2x 的图象上的一个最低点,则|P Q |的最小值是________.详细分析:由题意知两个函数的周期都为T =2ππ2=4,由正、余弦函数的图象知,f (x )与g (x )的图象相差14个周期,设P ,Q 分别为函数f (x ),g (x )图象上的相邻的最高点和最低点,设P (x 0,1),则Q (x 0+1,-1),则|P Q |min =(x 0+1-x 0)2+(-1-1)2= 5.答案: 515.已知函数f (x )=cos x sin x (x ∈R ),则下列四个结论中正确的是________.(填序号) ①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π; ③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 详细分析:因为f (x )=cos x sin x =12sin 2x ,所以f (x )是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x ≤2k π+π2(k ∈Z ),解得k π-π4≤x ≤k π+π4(k ∈Z ),当k=0时,-π4≤x ≤π4,此时f (x )是增函数,所以③正确;由2x =π2+k π(k ∈Z ),得x =π4+k π2(k∈Z ),取k =1,则x =3π4,故④正确.答案:③④16.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 详细分析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值,即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-33217.已知函数f (x )=A cos 2(ωx +φ)+1⎝⎛⎭⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 017)+f (2 018)=________.详细分析:∵函数f (x )=A cos 2(ωx +φ)+1=A ·1+cos (2ωx +2φ)2+1=A2cos(2ωx +2φ)+1+A 2⎝⎛⎭⎫A >0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f (x )的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f (x )的解+析式为f (x )=cos ⎝⎛⎭⎫π2x +π2+2=-sin π2x +2,∴f (1)+f (2)+…+f (2 017)+f (2 018)=-⎝⎛⎭⎫sin π2+sin 2π2+sin 3π2+…+sin 2 017π2+sin 2 018π2+2×2 018=504×0-sin π2-sin π+4 036=0-1-0+4 036=4 035.答案:4 035B 组——能力小题保分练1.曲线y =2cos ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π详细分析:选B y =2cos ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f (x )的图象关于直线x =-2π3对称B .f (x )的图象关于点⎝⎛⎭⎫-5π12,0对称 C .若方程f (x )=m 在⎣⎡⎦⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝⎛⎭⎫2x -π6的图象向左平移π6个单位长度得到函数f (x )的图象 详细分析:选C 由题图可知,A =2,T =4×⎝⎛⎭⎫π3-π12=π,∴ω=2πT =2.又f ⎝⎛⎭⎫π12=2, ∴2sin ⎝⎛⎭⎫π6+φ=2,π6+φ=π2+2k π,k ∈Z , ∵|φ|<π2,∴φ=π3,∴函数f (x )的解+析式为f (x )=2sin ⎝⎛⎭⎫2x +π3, ∴当x =-2π3时,2×⎝⎛⎭⎫-2π3+π3=-π, f ⎝⎛⎭⎫-2π3=2sin(-π)=0, 从而f (x )的图象关于点⎝⎛⎭⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确; 当x =-5π12时,2×⎝⎛⎭⎫-5π12+π3=-π2, ∴f (x )的图象关于直线x =-5π12对称,而不是关于点⎝⎛⎭⎫-5π12,0对称,故B 不正确; 当x ∈⎣⎡⎦⎤-π2,0时,2x +π3∈⎣⎡⎦⎤-2π3,π3,f (x )∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f (x )=m 在⎣⎡⎦⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,-3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎫2x -π6的图象向左平移π4个单位长度得到f (x )的图象,故D 不正确.故选C.3.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f (x )=sin x +cos x ;②f (x )=2(sin x +cos x ); ③f (x )=sin x ;④f (x )=2sin x + 2. 其中互为生成函数的是( )A .①②B .①④C .③④D .②④详细分析:选B 首先化简题中①②两个函数解+析式可得:①f (x )=2sin ⎝⎛⎭⎫x +π4,②f (x )=2sin ⎝⎛⎭⎫x +π4,可知③f (x )=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f (x )=sin x 不与其他函数互为生成函数;同理①f (x )=2sin ⎝⎛⎭⎫x +π4(④f (x )=2sin x +2)的图象与②f (x )=2sin ⎝⎛⎭⎫x +π4的图象也必须经过伸缩变换才能重合,而④f (x )=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f (x )=2sin ⎝⎛⎭⎫x +π4的图象,∴①④互为生成函数,故选B. 4.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f (x )取得最小值,则( )A .f (1)<f (-1)<f (0)B .f (0)<f (1)<f (-1)C .f (-1)<f (0)<f (1)D .f (1)<f (0)<f (-1)详细分析:选C 因为函数f (x )=A sin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f (x )=A sin(2x +φ),因为当x =2π3时,函数f (x )取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f (x )=A sin ⎝⎛⎭⎫2x +π6,所以f (-1)=A sin ⎝⎛⎭⎫-2+π6<0,f (1)=A sin ⎝⎛⎭⎫2+π6>0,f (0)=A sin π6=12A >0,故f (-1)最小.又sin ⎝⎛⎭⎫2+π6=sin ⎝⎛⎭⎫π-2-π6=sin ⎝⎛⎭⎫5π6-2>sin π6,故f (1)>f (0).综上可得f (-1)<f (0)<f (1),故选C. 5.若函数f (x )=2sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝⎛⎭⎫|φ|<π2的图象的对称轴完全相同,则函数f (x )的图象的对称轴为________,φ=________.详细分析:因为函数f (x )=2sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝⎛⎭⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f (x )=2sin ⎝⎛⎭⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f (x )的图象的对称轴为x =k π2+π8,k ∈Z .令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m ∈Z ,故函数g (x )的图11 象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k )π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4. 答案:x =k π2+π8,k ∈Z -π46.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的图象与x 轴的一个交点⎝⎛⎭⎫-π12,0到其相邻的一条对称轴的距离为π4,若f ⎝⎛⎭⎫π12=32,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为________. 详细分析:由题意得,函数f (x )的最小正周期T =4×π4=π=2πω,解得ω=2. 因为点⎝⎛⎭⎫-π12,0在函数f (x )的图象上, 所以A sin ⎣⎡⎦⎤2×⎝⎛⎭⎫-π12+φ=0, 解得φ=k π+π6,k ∈Z ,由0<φ<π,可得φ=π6. 因为f ⎝⎛⎭⎫π12=32,所以A sin ⎝⎛⎭⎫2×π12+π6=32, 解得A =3,所以f (x )=3sin ⎝⎛⎭⎫2x +π6. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, 所以sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, 所以f (x )的最小值为-32. 答案:-32。
新高考数学二轮专题复习高频考点强化训练4(附解析)

强化训练4 三角函数的图象与性质——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知角α的顶点与原点θ重合,始边与x 轴的非负半轴重合,终边过点P (m ,4)(m ≠0),且cos α=m5,则tan α=( )A .±43B .43C .±34D .342.[2022·湖南宁乡模拟]将函数f (x )=sin ⎝⎛⎭⎫x -π4 图象上的所有点向左平移π4个单位长度,则所得图象的函数解析式是( )A .y =sin xB .y =cos xC .y =-sin xD .y =-cos x3.[2022·河北张家口三模]已知tan α2 =5 -2,则cos αcos 2αsin α-cos α=( )A .-65B .-35C .35D .654.[2022·湖南师大附中三模]某智能主动降噪耳机工作的原理是利用芯片生成与噪音的相位相反的声波,通过两者叠加完全抵消掉噪音(如图),已知噪音的声波曲线y =A sin (ωx+φ)(其中A >0,ω>0,0≤φ<2π)的振幅为1,周期为2,初相位为π2,则用来降噪的声波曲线的解析式是( )A .y =sin πxB .y =cos πxC .y =-sin πxD .y =-cos πx5.[2022·全国甲卷]将函数f (x )=sin (ωx +π3 )(ω>0)的图象向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A .16B .14C .13D .126.[2022·湖北襄阳二模]函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的图象可以由y =2 sin ωx 的图象( )A .向左平移π3 个单位长度得到B .向左平移5π6 个单位长度得到C .向右平移5π3 个单位长度得到D .向右平移5π6个单位长度得到7.[2022·山东潍坊三模]设函数f (x )=|sin x |,若a =f (ln 2),b =f (log 132),c =f (312),则( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c8.[2022·山东泰安二模]已知函数f ()x =sin ()ωx +φ ⎝⎛⎭⎫ω>0,||φ<π2 的图象,如图所示,则( )A .函数f (x )的最小正周期是2πB .函数f (x )在(π2 ,π)上单调递减C .曲线y =f (x +π12 )关于直线x =-π2 对称D .函数f (x )在⎣⎡⎦⎤3π4,4π3 上的最小值是-1二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.下列四个函数中,以π为周期且在(0,π2)上单调递增的偶函数有( )A .y =cos |2x |B .y =sin 2xC .y =|tan x |D .y =lg |sin x |10.[2022·河北秦皇岛二模]已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π2)图象的一条对称轴方程为x =π6 ,与其相邻对称中心的距离为π4,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .φ=π6D .φ=π311.要得到函数y =sin x 的图象,只需将y =sin (2x +π4)的图象( )A .先将图象向右平移π8 ,再将图象上各点的纵坐标不变,横坐标变为原来的2倍B .先将图象向右平移π2,再将图象上各点的纵坐标不变,横坐标变为原来的2倍C .先将图象上各点的纵坐标不变,横坐标变为原来的2倍,再将图象向右平移π4D .先将图象上各点的纵坐标不变,横坐标变为原来的2倍,再将图象向右平移π812.[2022·山东济南三模]将函数f (x )=cos (2x -π3 )图象上所有的点向右平移π6个单位长度,得到函数g (x )的图象,则下列说法正确的是( )A .g (x )的最小正周期为πB .g (x )图象的一个对称中心为(7π12 ,0)C .g (x )的单调递减区间为⎣⎡⎦⎤π3+k π,5π6+k π (k ∈Z ) D .g (x )的图象与函数y =-sin (2x -π6)的图象重合三、填空题(本题共4小题,每小题5分,共20分)13.[2022·山东枣庄三模]已知α为锐角,且sin α=34,则cos (π-α)的值为________.14.[2022·山东日照三模]已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则φ=________.15.[2022·辽宁沈阳一模]函数f (x )=2cos x -cos 2x 的最大值为________.16.[2022·北京海淀二模]已知f (x )=sin x +cos x 的图象向右平移a (a >0)个单位后得到g (x )的图象,则函数g (x )的最大值为________;若f (x )+g (x )的值域为{0},则a 的最小值为________.强化训练4 三角函数的图象与性质 1.解析:cos α=m m2+42=m 5 ,解得:m =±3,故tan α=4m =±43 .答案:A2.解析:将函数f (x )=sin (x -π4 )图象上的所有点向左平移π4 个单位长度,则所得图象的函数解析式是f (x )=sin (x -π4 +π4 )=sin x. 答案:A3.解析:tan α=2(5-2)1-(5-2)2 =12 ,所以cos αcos 2αsin α-cos α =cos α(cos2α-sin2α)sinα-cos α=cos α(cos α-sin α)(cos α+sin α)sin α-cos α =-cos α(cos α+sin α)=-cos2α+sinαcos αsin2α+cos2α =-1+tanα1+tan2α =-65 .答案:A4.解析:由题意,A =1,φ=π2 且T =2πω =2,则ω=π, 所以y =sin (πx +π2 )=cos πx ,则降噪的声波曲线为y =-cos πx. 答案:D5.解析:通解 将函数f (x )=sin (ωx +π3 )的图象向左平移π2 个单位长度得到y =sin (ωx +π2 ω+π3 )的图象.由所得图象关于y 轴对称,得π2 ω+π3 =kπ+π2 (k ∈Z ),所以ω=2k +13 (k ∈Z ).因为ω>0,所以令k =0,得ω的最小值为13.故选C.快解 由曲线C 关于y 轴对称,可得函数f (x )=sin (ωx +π3 )的图象关于直线x =π2 对称,所以f (π2 )=sin (πω2 +π3 )=±1,然后依次代入各选项验证,确定选C. 答案:C6.解析:由图可知A = 2 ,T =π,则ω=2,所以f (x )= 2 sin (2x +φ).由2×7π12 +φ=3π2 +2kπ(k ∈Z ),|φ|<π2 ,得φ=π3 ,所以f (x )= 2 sin (2x +π3 ).函数y = 2 sin 2x 的图象向右平移5π6 个单位长度,所得图象对应的函数解析式为y = 2 sin ⎣⎢⎡⎦⎥⎤2(x -5π6) = 2 sin (2x -5π3 )= 2 sin (2x +π3 )=f (x ),所以D 正确. 答案:D7.解析:函数f (x )=|sin x|为偶函数且x =π2 为其一条对称轴,故b =f (log 132)=f (log32),显然0<log32=ln 2ln 3 <ln 2<1,故b<a.因为1.7<312 <1.8,1.5<π2 <1.6,ln 2<1<π2 ,所以a<c ,所以b<a<c. 答案:D8.解析:由图可知,14 T =5π12 -π6 =π4 ,∴T =π ,ω=2πT =2 , sin (2×π6 +φ)=0 ,φ=-π3 , ∴f (x )=sin (2x -π3 ) ,对于A ,T =π ,故错误;对于B ,当x ∈(π2 ,π) 时,2x -π3 ∈(2π3 ,5π3 ) ,由函数y =sin x 的性质可知当x ∈(π2 ,3π2 ) 时,单调递减,当x ∈⎣⎢⎡⎦⎥⎤3π2,2π 时单调递增,2π3 ∈(π2 ,3π2 ),5π3 ∈⎣⎢⎡⎦⎥⎤3π2,2π ,故B 错误;对于C ,f (x +π12 )=sin (2x +π6 -π3 )=sin (2x -π6 ) ,将x =-π2 带入上式得f (-π2 +π12 )=sin (-π-π6 )=sin π6≠±1,故C 错误;对于D ,当x ∈⎣⎢⎡⎦⎥⎤3π4,4π3 时,2x -π3 ∈⎣⎢⎡⎦⎥⎤7π6,7π3 ,∴当2x -π3 =3π2 ,即x =11π12 时,f (x ) 取最小值-1,故D 正确. 答案:D9.解析:y =cos |2x|在(0,π2 )上不单调,故A 错误;y =sin 2x 为奇函数,故B 错误; y =|tan x|图象如图:故最小正周期为π,在(0,π2 )上单调递增,且为偶函数,故C 正确; y =|sin x|最小正周期为π,在(0,π2 )上单调递增,且为偶函数,则y =lg |sin x|也是以π为周期且在(0,π2 )上单调递增的偶函数,故D 正确. 答案:CD10.解析:因为f (x )图象相邻的对称中心与对称轴的距离为π4 ,所以最小正周期T =π,故A 正确,B 不正确;因为ω=2πT =2,且2×π6 +φ=π2 +kπ(k ∈Z ),|φ|<π2 ,所以φ=π6 ,故C 正确,D 不正确. 答案:AC11.解析:y =sin (2x +π4 )=sin [2(x +π8 )]向右平移π8 个单位长度,得y =sin 2x ,再将横坐标扩大2倍得到y =sin x ,故A 正确,B 错误;y =sin (2x +π4 )横坐标扩大2倍,得到sin (x +π4 )再向右平移π4 个单位长度得到y =sin x ,故C 正确,D 错误. 答案:AC12.解析:根据题意,g (x )=cos ⎣⎢⎡⎦⎥⎤2(x -π6)-π3 =cos (2x -2π3 ),则周期T =2π2 =π,A 正确;对B ,令2x -2π3 =π2 +kπ(k ∈Z )⇒x =7π12 +kπ2(k ∈Z ),B 正确;对C ,令2kπ≤2x -2π3 ≤π+2kπ(k ∈Z )⇒π3 +kπ≤x≤5π6 +kπ(k ∈Z ),即函数的减区间为⎣⎢⎡⎦⎥⎤π3+kπ,5π6+kπ (k ∈Z ),C 正确;对D ,因为y =-sin (2x -π6 )=-sin (2x -2π3 +π2 )=-cos (2x -2π3 ),D 错误. 答案:ABC13.解析:因为α为锐角,且sin α=34 ,则cos α=1-sin2α =74 ,因此,cos (π-α)=-cos α=-74 .答案:-7414.解析:由T 2 =5π12 -(-π12 )=π2 知,T =π,ω=2ππ =2,由五点法可知,2(-π12 )+φ=0+2kπ(k ∈Z ),即φ=π6 +2kπ(k ∈Z ),又|φ|<π,所以φ=π6 .答案:π615.解析:因为f (x )=2cos x -cos 2x ,所以f (x )=-2cos2x +2cosx +1,令t =cos x ,t ∈[-1,1],所以函数f (x )=2cos x -cos 2x 等价于y =-2t2+2t +1,t ∈[-1,1],又y =-2t2+2t +1=-2(t -12 )2+32 ,t ∈[-1,1],当t =12 时,ymax =32 ,即函数f (x )=2cos x -cos 2x 的最大值为32 .答案:3216.解析:第一空:由f (x )=sin x +cos x = 2 sin (x +π4 )可得g (x )=2 sin (x -a +π4 ),易得g (x )的最大值为 2 ;第二空:若f (x )+g (x )的值域为{0},则f (x )+g (x )= 2 sin (x +π4 )+ 2 sin (x -a +π4 )=0恒成立,即sin (x +π4 )=-sin (x -a +π4 ),又sin (x +π4 )=-sin (x +π4 +π+2kπ),k ∈Z ,故x -a +π4 =x +π4 +π+2kπ,解得a =-π-2kπ,又a>0,故当k =-1时,a 的最小值为π. 答案: 2 π。
2019届高三数学理一轮复习课时跟踪检测四 函数及其表

课时跟踪检测(四) 函数及其表示(一)普通高中适用作业A 级——基础小题练熟练快1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.2.(2018·濮阳检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 解析:选D 由1-2x >0,且x +1≠0,得x <12且x ≠-1,所以函数f (x )=log 2(1-2x )+1x +1的定义域为(-∞,-1)∪⎝⎛⎭⎫-1,12. 3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f ⎝⎛⎭⎫43+ f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .4 C .2D .-4解析:选B 由题意得f ⎝⎛⎭⎫43=2×43=83,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43, 所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=4.5.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .6.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤1,log 3(x -1),x >1,且f (x 0)=1,则x 0=( )A .0B .4C .0或4D .1或3解析:选C 当x 0≤1时,由f (x 0)=2x 0=1,得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1,得x 0-1=3,则x 0=4 (满足x 0>1),故选C.7.函数f (x )=ln(x +1)+(x -2)0的定义域为________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1>0,x -2≠0,解得x >-1且x ≠2,所以该函数的定义域为(-1,2)∪(2,+∞).答案:(-1,2)∪(2,+∞)8.设函数f (x )=⎩⎪⎨⎪⎧1x ,x >1,-x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是_______.解析:∵f (2)=12,∴f (f (2))=f ⎝⎛⎭⎫12=-12-2=-52. 当x >1时,f (x )∈(0,1),当x ≤1时,f (x )∈[-3,+∞), ∴f (x )∈[-3,+∞). 答案:-52[-3,+∞)9.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2>0,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0.依题知a +1=-2,解得a =-3.答案:-310.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=9+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)B 级——中档题目练通抓牢1.(2018·石家庄质检)设函数f (x )=⎩⎪⎨⎪⎧2x +n ,x <1,log 2x ,x ≥1,若f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=2,则实数n 的值为( )A .-54B .-13C.14D.52解析:选D 因为f ⎝⎛⎭⎫34=2×34+n =32+n , 当32+n <1,即n <-12时, f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=2⎝⎛⎭⎫32+n +n =2, 解得n =-13,不符合题意;当32+n ≥1,即n ≥-12时, f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=log 2⎝⎛⎭⎫32+n =2,即32+n =4, 解得n =52,符合题意,故选D.2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A .1个B .2个C .3个D .4个解析:选C 由x 2+1=1,得x =0,由x 2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.3.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x>1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.4.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]5.(2018·锦州模拟)已知函数f (x 2-3)=lg x 2x 2-4,则f (x )的定义域为________.解析:设t =x 2-3(t ≥-3),则x 2=t +3,所以f (t )=lgt +3t +3-4=lg t +3t -1,由t +3t -1>0,得t >1或t <-3,因为t ≥-3,所以t >1,即f (t )=lg t +3t -1的定义域为(1,+∞),故函数f (x )的定义域为(1,+∞).答案:(1,+∞)6.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得{ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.7.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (m)与汽车的车速x (km/h)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (m)与汽车的车速x (km/h)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2 m ,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70 km/h. C 级——重难题目自主选做1.(2017·山东高考)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1.若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2B .4C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则f (3,5)=. 解析:由题表得f (x ,y )=⎩⎪⎨⎪⎧x ,x =y ,x -y ,x >y ,x +y ,x <y .可知f (3,5)=5+3=8.∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x -x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x ≤x +4成立; 当x =2时,2x =4,x +4=6,2x ≤x +4成立; 当x ≥3(x ∈N *)时,2x >x +4. 故满足条件的x 的集合是{1,2}. 答案:8 {1,2}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(通用版)2019学高考数学二轮复习 练酷专题 课时跟踪检测(四)函数的图象与性质 理1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b+c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x-e x )ln 2,由于函数g (x )=e -x 与函数h (x )=-e x都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=πxx 2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=πxx 2=f (x ),∴f (x )为偶函数,排除C 、D ;当x =1时,f (1)=cos π1=-1<0,排除B ,故选A.7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y=3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x-1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x +1为奇函数,则a =________.解析:由题意知f (0)=0,即a -120+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________. 解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数,∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,cos x 2=|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018. 答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12,所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12, 则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24;当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t-8,则S =f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin ∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ). 综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A.3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x -f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b -a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1x f 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|,即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)。