存储器原理介绍
存储器的基本原理及分类

存储器的基本原理及分类存储器是计算机中非常重要的组成部分之一,其功能是用于存储和读取数据。
本文将介绍存储器的基本原理以及常见的分类。
一、基本原理存储器的基本原理是利用电子元件的导电特性实现数据的存储和读取。
具体来说,存储器通过在电子元件中存储和读取电荷来实现数据的储存和检索。
常见的存储器技术包括静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)。
1. 静态随机存取存储器(SRAM)静态随机存取存储器是一种使用触发器(flip-flop)来存储数据的存储器。
它的特点是不需要刷新操作,读写速度快,但容量较小且功耗较高。
SRAM常用于高速缓存等需要快速读写操作的应用场景。
2. 动态随机存取存储器(DRAM)动态随机存取存储器是一种使用电容来存储数据的存储器。
它的特点是容量大,但需要定期刷新以保持数据的有效性。
DRAM相对SRAM而言读写速度较慢,功耗较低,常用于主存储器等容量要求较高的应用场景。
二、分类根据存储器的功能和使用方式,可以将存储器分为主存储器和辅助存储器两大类。
1. 主存储器主存储器是计算机中与CPU直接交互的存储器,用于存储正在执行和待执行的程序以及相关数据。
主存储器通常使用DRAM实现,是计算机的核心部件之一。
根据存储器的访问方式,主存储器可分为随机存取存储器(RAM)和只读存储器(ROM)两种。
- 随机存取存储器(RAM)随机存取存储器是一种能够任意读写数据的存储器,其中包括SRAM和DRAM。
RAM具有高速读写的特点,在计算机系统中起到临时存储数据的作用。
- 只读存储器(ROM)只读存储器是一种只能读取数据而不能写入数据的存储器。
ROM 内部存储了永久性的程序和数据,不随断电而丢失,常用于存储计算机系统的固件、基本输入输出系统(BIOS)等。
2. 辅助存储器辅助存储器是计算机中用于长期存储数据和程序的设备,如硬盘、固态硬盘等。
与主存储器相比,辅助存储器容量大、价格相对低廉,但读写速度较慢。
ram工作原理

ram工作原理
RAM(Random Access Memory,随机存取存储器)是计算机
的主要存储器之一,它的工作原理可以简单概括为以下几个方面:
1. 存储单元:RAM是由一系列存储单元组成的,每个存储单
元可以存储一个二进制位(0或1)。
每个存储单元都有一个
唯一的地址,通过地址可以访问对应的存储单元。
2. 存取速度:RAM是随机存取存储器,它可以以任意顺序访
问存储单元,而不需要按照顺序逐个读取。
这使得RAM的读
写速度非常快,能够满足计算机高速的数据读写需求。
3. 内部组织:RAM通常采用芯片形式,内部由一组存储单元
网格组成。
每个存储单元都有一个感应器,可以根据电信号的高低判断存储单元内部的数据是0还是1。
4. 刷新机制:RAM是一种易失性存储器,断电后存储的数据
会丢失。
为了保持存储的数据,RAM采用了定时刷新的机制,即定期重新将数据写回存储单元,以防止数据丢失。
总体来说,RAM工作原理是通过以任意顺序访问存储单元,
读取或写入二进制数据,并通过定时刷新机制保持存储的数据。
它提供了高速的数据读写能力,是计算机中重要的内存组件之一。
计算机存储器的工作原理及分类

计算机存储器的工作原理及分类计算机存储器是计算机系统中非常重要的组成部分,它承担着存储和读取数据的任务。
在计算机存储器中,数据以二进制形式存储,通过不同类型的存储器进行管理和处理。
本文将深入探讨计算机存储器的工作原理及分类,帮助读者更好地理解这一关键部件。
### 一、工作原理计算机存储器的主要工作原理是通过存储器芯片来存储数据,并通过控制器来控制数据的读写操作。
存储器芯片通常采用半导体材料制成,根据存储方式的不同可分为随机存取存储器(RAM)和只读存储器(ROM)两种类型。
RAM是一种易失性存储器,数据在断电时会丢失,但其读写速度较快。
RAM存储数据的方式是通过电容器来存储电荷,当有电流通过时,电容器充电表示存储1,不通电表示存储0。
ROM是一种非易失性存储器,数据在断电时不会丢失,主要用于存储计算机启动时所需的固件程序等信息。
### 二、存储器分类根据存储器的工作原理和性能特点,可以将存储器分为主存储器和辅助存储器两大类。
1. 主存储器主存储器是计算机系统中最重要的存储器,也称为内存。
主存储器主要用于存储当前运行程序的数据和指令,是CPU能直接访问的存储器。
主存储器的存取速度快,但容量有限,因此常常需要配合辅助存储器使用。
主存储器按照读写速度和容量不同可分为静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)等类型。
2. 辅助存储器辅助存储器主要用于长期存储大量数据和程序,是主存储器的扩展。
辅助存储器的容量通常比主存储器大,但读写速度较慢。
常见的辅助存储器包括硬盘驱动器、固态硬盘、光盘和闪存等。
辅助存储器在计算机系统中扮演着重要的角色,可以提高计算机系统的数据处理和存储能力。
### 三、总结计算机存储器作为计算机系统中至关重要的组件,其工作原理和分类对计算机系统的性能和稳定性具有重要影响。
通过本文的介绍,读者可以更深入地了解计算机存储器的工作原理及分类,为进一步学习计算机硬件和系统架构打下坚实的基础。
存储器的工作原理

存储器的工作原理
存储器是计算机中用于存储数据和程序的设备,其工作原理可以简单地概括为存储和读取两个过程。
存储过程:
1. 写数据:当计算机需要将数据存储到存储器中时,控制器将数据发送给存储器。
这些数据被转换为存储器中的电信号,在存储器的电路中被存储下来。
2. 存储:存储器将数据存储在特定的存储单元中。
这些存储单元包括位、字节、字等,每个单元有一个唯一的地址,通过地址,存储器可以将数据存储在正确的位置。
读取过程:
1. 读取数据:当计算机需要读取存储器中的数据时,控制器会发送请求读取的命令和相应的地址给存储器。
2. 传输数据:存储器接收到读取的命令和地址后,将存储在该地址上的数据传输给控制器。
3. 控制器处理数据:控制器接收到存储器传输的数据后,可以将数据发送给其他设备进行处理,比如CPU进行运算或显示
器进行显示。
存储器的数据存储是通过电子元件来实现的,最常见的是基于半导体的固态存储器,如RAM(随机访问存储器)和ROM (只读存储器)。
存储器的读写速度较快,可以在很短的时间内完成存储和读取操作,因此是计算机中重要的基础设备之一。
计算机存储器的工作原理

计算机存储器的工作原理计算机存储器是计算机的重要组成部分,负责存储数据和程序。
它的工作原理可以分为以下几个步骤:1. 数据输入:计算机需要将数据输入到存储器中,可以通过各种输入设备,如键盘、鼠标等。
输入的数据会被转换成二进制代码,并按照存储器的地址进行存储。
2. 存储数据:一旦数据被输入到计算机存储器中,它将被保存在内存中。
内存可以分为主存和辅助存储设备。
主存通常是计算机中的随机存取存储器(RAM),而辅助存储设备可以是硬盘、光盘等。
3. 数据访问:一旦数据被存储在内存中,计算机可以根据需要随时读取这些数据。
读取数据时,计算机首先根据内存地址找到需要访问的数据所在的位置,然后通过数据总线将数据传送到CPU中进行处理。
4. 数据处理:当数据被传送到CPU中后,计算机开始对其进行处理。
这包括执行各种指令和运算,如加法、减法、逻辑运算等。
计算机处理完数据后,可以将结果存储回存储器中,或者输出到输出设备上。
5. 数据输出:计算机将处理后的数据通过各种输出设备输出出来,如显示器、打印机等。
输出的数据也需要经过一系列的转换,从二进制代码转换成人类可读的形式。
计算机存储器的工作原理可以简单概括为数据输入、存储数据、数据访问、数据处理和数据输出。
通过这些步骤,计算机能够实现数据的存储和处理,为人类提供各种功能和服务。
需要注意的是,计算机存储器的工作原理是非常复杂的,上述所列的步骤只是一个概括,并不详尽。
在实际应用中,还涉及到内存管理、缓存技术、虚拟内存等多个方面的知识。
通过不断学习和研究,我们可以更加深入地了解计算机存储器的工作原理,从而更好地应用于实际生活和工作中。
计算机原理第三章存储器

解:(1)需要26根地址线。
(2)有24根地址线
(3)共用8片。
(4)连线图如下图所示。
〔例6〕半导体存储器容量为7K×8位,其中固化区为4k×8 位,可选用 EPROM芯片:2K×8/片。随机读/写区为3K×8, 可选SRAM芯片:2K×4/片和1K×4/片。地址总线为A15~A0,
为“0”。
★ 注意:读出 “1” 信息后,电容Cs上无电荷,不能再 维持“1”,这种现象称为“破坏性读出”,须进行“恢复”操 作。
(3) 保持,字选线为“0”,T截止,电容Cs无放电 回路,其电荷可暂存数毫秒,即维持“1”数毫秒;无电荷 则保持“0”状态。
★ 注意:保持“1”信息时,电容Cs也要漏电,导致Cs上 无电荷,须定时“刷新”。
写1:数据线I/O=1、 I / O =0,使位线D=1、 D =0;
推出T1截止,T2导通使Q=1、 Q =0,写入“1”。
(2)读出
行选线xi,列选线yj加高电平,使T5 、T6导通和V1 、V2导通。
如果原存信息Q=0,则T1导通,从位线D将通过T5、T1到地 形成放电回路,有电流经D流入T1,使I/O线上有电流流过,经放 大为“0”信号,表明原存信息为“0”。而此时因T2截止,所以D 上无电流。
〔例〕32位地址线的计算机: 232=220×210×22=4千兆=4G 但现在实际配的主存假设为512兆,
即 512兆=220×29
所以,32 位地址线寻址的是逻辑地址, 29位地址线寻址的是物理地址。
3.1.3 存储器的分类
一、根据存储介质来分
1. 半导体存储器:
静态存储器 动态存储器
2. 磁表面存储器:磁盘、磁带等。(磁性材料)
存储器的工作原理

存储器的工作原理一、引言存储器是计算机系统中重要的组成部份,其功能是用于存储和检索数据。
存储器的工作原理是计算机系统中的关键知识点,本文将详细介绍存储器的工作原理。
二、存储器的分类存储器可以根据其工作方式和特性进行分类。
常见的存储器类型包括随机访问存储器(RAM)、只读存储器(ROM)、闪存、磁盘存储器等。
三、随机访问存储器(RAM)的工作原理随机访问存储器是一种易失性存储器,其特点是可以随机访问任意位置的数据。
RAM的工作原理是通过电子元件存储和读取数据。
1. 存储单元RAM由许多存储单元组成,每一个存储单元可以存储一个二进制位(0或者1)。
每一个存储单元都有一个惟一的地址,通过地址可以访问和操作存储单元中的数据。
2. 存储和读取数据当计算机需要存储数据时,RAM会将数据写入到指定地址的存储单元中。
当需要读取数据时,RAM会根据地址找到对应的存储单元,并将存储单元中的数据读取出来。
3. 数据的保持RAM是一种易失性存储器,意味着当电源关闭时,存储在RAM中的数据会丢失。
为了保持数据的持久性,计算机系统通常会使用非易失性存储器(如硬盘)进行数据的备份和恢复。
四、只读存储器(ROM)的工作原理只读存储器是一种非易失性存储器,其特点是只能读取数据,无法写入或者修改数据。
ROM的工作原理是通过硬件电路存储和读取数据。
1. 存储单元ROM由许多存储单元组成,每一个存储单元可以存储一个二进制位(0或者1)。
与RAM不同的是,ROM中的数据是在创造过程中被写入的,无法修改。
2. 数据的读取当需要读取ROM中的数据时,计算机系统会根据地址找到对应的存储单元,并将存储单元中的数据读取出来。
由于ROM中的数据是固化的,所以无法进行写入或者修改操作。
五、闪存的工作原理闪存是一种非易失性存储器,其特点是具有较高的存储密度和较快的读取速度。
闪存的工作原理是通过电子元件存储和读取数据。
1. 存储单元闪存由许多存储单元组成,每一个存储单元可以存储多个二进制位。
存储器的工作原理

存储器的工作原理一、引言存储器是计算机中的重要组成部份,用于存储和检索数据。
它可以分为主存储器和辅助存储器两种类型。
本文将详细介绍存储器的工作原理,包括主存储器和辅助存储器的结构、工作方式以及数据的存储和检索过程。
二、主存储器的工作原理1. 主存储器的结构主存储器通常由一组存储单元组成,每一个存储单元可以存储一个固定大小的数据块。
这些存储单元按照一定的地址顺序罗列,每一个存储单元都有一个惟一的地址。
2. 主存储器的工作方式主存储器采用随机存取存储器(RAM)的工作方式,可以随机访问任意存储单元。
当计算机需要读取或者写入数据时,会根据数据的地址将数据传送到或者从存储单元中读取。
3. 数据的存储和检索过程当计算机需要将数据存储到主存储器时,首先需要将数据的地址传送到存储器控制器。
控制器根据地址选择相应的存储单元,并将数据写入该单元。
当计算机需要读取数据时,同样需要将数据的地址传送到控制器,控制器根据地址选择相应的存储单元,并将存储单元中的数据传送给计算机。
三、辅助存储器的工作原理1. 辅助存储器的结构辅助存储器通常由硬盘、固态硬盘(SSD)或者光盘等设备组成。
这些设备可以存储大量的数据,并且数据的存储是持久的,即在断电后数据仍然可以保持。
2. 辅助存储器的工作方式辅助存储器采用顺序存取存储器(SAM)的工作方式,数据的存储和检索是按照一定的顺序进行的。
当计算机需要读取或者写入数据时,需要将数据的位置信息传送给存储器控制器,控制器根据位置信息将数据读取或者写入相应的位置。
3. 数据的存储和检索过程当计算机需要将数据存储到辅助存储器时,首先需要将数据的位置信息传送给存储器控制器。
控制器根据位置信息将数据写入相应的位置。
当计算机需要读取数据时,同样需要将数据的位置信息传送给控制器,控制器根据位置信息将数据从相应的位置读取。
四、存储器的性能指标1. 存储器的容量存储器的容量指的是存储器可以存储的数据量,通常以字节(Byte)为单位进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每个存储单元类似一个标准MOSFET, 但有两个闸极。在顶 部的是控制闸(Control Gate, CG),如同其他MOS晶体管。 但是它下方则是一个以氧化物层与周遭绝缘的浮闸(Floating Gate, FG)。这个FG(多晶硅等)放在CG与MOSFET通道之 间。由于这个FG在电气上是受绝缘层独立的, 所以进入的 电子会被困在里面。在一般的条件下电荷经过多年都不会 逸散。
EEPROM存储单元原理:
0与1的读写:
以浮栅中是否存有电子来区分逻辑状态0和1(也会以电 荷多少来区分多个逻辑状态比如00、01、10、11等)。 写:当漏极接地,控制栅加上足够高的电压时(大于正 常工作电压),交叠区将产生一个很强的电场,在强电场的 作用下,电子通过绝缘层到达浮栅,使浮栅带负电荷。 擦:反之,当控制栅接地漏极加一正电压,则产生与上 述相反的过程,即浮栅放电。 读:注入浮栅的负电荷,排斥P型硅基层上的电子,抵 消提供给控制栅的电压。也就是说,如果浮置栅中积累了电 荷,则阈值电压(Vth)增高。与浮置栅中没有电荷时的情 况相比,如果不给控制栅提供高电压,则漏极-源极间不会 处于导通的状态。
EEPROM存储单元原理:
EEPROM 存储单元原理:
EEPROM 存储阵列:
EEPROM 芯片内部结构:
EEPROM :
特点: ●可以随机访问和修改任何一个字节; ●具有较高的可靠性; ●电路复杂/单位容量成本高; ●容量小;
Flash Memory (flash erase EEPROM):
同步动态随机存储器
SDRAM: 同步动态随机存储器,同步是指 Memory工作需要同步时钟,内部的 命令的发送与数据的传输都以它为基准;动态是指存储阵列需要不断的刷新来保证 数据不丢失;随机是指数据不是线性依次存储,而是自由指定地址进行数据读写。
SDRAM从发展到现在已经经历了五代,分别是:第一代SDR SDRAM,第二 代DDR SDRAM,第三代DDR2 SDRAM,第四代DDR3 SDRAM,第五代DDR4 SDRAM 。
3D NAND
容量更大、速度更快、价格更便宜、可靠性更高
未来
eMMC: Embedded MultiMedia Card
eMMC: Embedded MultiMedia Card
• 由于NAND Flash芯片的不同厂牌包括三星、东芝 (Toshiba)或海力士(Hynix)、美光(Micron)等,当 手机客户在导入时,都需要根据每家公司的产品 和技术特性来重新设计,过去并没有1个技术能够 通用所有厂牌的NAND Flash芯片。 • eMMC(Embedded MultiMedia Card )为MMC协 会所订立的内嵌式存储器标准规格,主要是针对 手机产品为主;eMMC结构由一个嵌入式存储解决 方案组成,带有MMC(多媒体卡)接口、快闪存储 器设备及主控制器——所有在一个小型的BGA封 装。
第一代SDRAM采用单端(Single-Ended)时钟信号,第二代开始由于工作频率 比较快,所以采用可降低干扰的差分时钟信号作为同步时钟。
DDR SDRAM:Double Data Rate SDRAM
双倍速率的SDRAM
比普通的SDRAM多了两个信号: CLK#与 DQS。 CLK#与正常 CLK 时钟相位相反,形成差分 时钟信号。而数据的传输在 CLK 与 CLK# 的交叉点进行,可见在 CLK 的上升与下降 沿(此时正好是 CLK#的上升沿)都有数据 被触发,从而实现 DDR
SRAM:Static random access memory 静态随机存储器
SRAM是一种具有静止存取功能的内存,不需要刷新电路即能保存它内部存储的数据.
SRAM基本特点和用途:
DRAM:Dynamic random access memory
动态随机存储器
存储的电容器的容 量非常之小,所以不可 能一下子驱动公用数据 线,需要放大。
Flash 存储结构:
Flash 存储结构:
Flash存储阵列的组成:pageblockplanedevice
Nor Flash与Nand Flash 比较:
性能:
NOR的读速度比NAND稍快一些 NAND的写入速度和擦除速度比NOR快很多 NOR可以直接使用,并可在上面直接运行代码 NAND一般不能直接运行程序,需要先拷贝到RAM区,再运行 NOR可以按字节来操作 NAND只能以页或者块为单位操作
接口:
NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节 NAND器件使用复杂的I/O口来串行地存取数据,各个产品或厂商的方法可能各不相同。 NAND flash的单元尺寸几乎是NOR器件的一半,容量密度较高,成本较低;
容量成本:
用途:
NOR主要应用在代码存储介质,方便直接运行代码,如BIOS NAND适合存储大容量数据。
当 DRAM 的电容器存储了电 荷时,对于 FET 来说,形成反偏 置状态,必然会发生漏电流,因此 DRAM 单元的电容器将必然进行 放电。所以,需要定期将单元的状 态恢复为初始状态,这称为刷新操 作。
DRAM单元读过程:
SRAM与DRAM比较:
SDRAM:Synchronous Dynamic random access memory
闪存的速度非常快,台式电脑和笔记本电脑上最新的闪存存储装置使用适当的接口后 读写速度可以达到每秒约500MB。然而,对于智能手机、平板电脑、电子书阅读器等移 动设备来说情况则完全不同,这些设备虽然同样使用闪存作为存储介质,但读取和写入 速度无论如何都无法达到每秒500MB,在大部分移动设备上,闪存的速度甚至每秒只有 约50MB,这是因为移动设备使用的闪存存储器不同于SATA接口的固态硬盘,而是嵌入 式的多媒体存储卡(Embedded Multi Media Card,简称eMMC),它所使用的连接方式速 度要慢很多。 2011年电子设备工程联合委员会(Joint Electron Device En gineering Council,简称 JEDEC)发布了第一代通用闪存存储(Universal Flash Storage,简称UFS)标准,希望能 够替代eMMC。然而,第一代的UFS并不受欢迎,因为相对于不断更新换代的eMMC它似 乎没有提供足够的优势。为此,JEDEC在2013年9月发布了新一代的通用闪存存储标准 UFS 2.0。JEDEC采用了来自 MIPI® 联盟的业界领先规范来建立互联层。UFS2.0版标准继 续这一协作,引用了 M-PHY® 3.0版规范与 UniProSM 1.6版规范。
DDR 差分时钟:起触发时钟校准的作用
由于数据是在 CK 的上下沿触 发,造成传输周期缩短了一半,因 此必须要保证传输周期的稳定以确 保数据的正确传输,这就要求 CK 的上下沿间距要有精确的控制。但 因为温度、电阻性能的改变等原因, CK 上下沿间距可能发生变化,此 时与其反相的 CK#就起到纠正的作 用。
Flash 存储单元:
Flash存储单元由EEPROM过渡而来,核心依旧使用浮栅,但省去了一个控制管。Nor和Nand两种flash 的存储单元排列形式不同。 NOR技术Flash Memory结构,每两个单元共用一个位线接触孔和一条源线线,采用CHE(沟道热电子) 的写入和源极F—N擦除,具有高编程速度和高读取速度的优点。但其编程功耗过 大,在阵列布局上,接触 孔占用了相当的空间,集成度不高。 NAND结构通过多位的直接串联,将每个单元的接触孔减小到1/2 n(n为每个模块中的位数,一般为8 位或1 6位),因此,大大缩小了单元尺寸。NAND采用编F—N写,沟道擦除,其最大缺点是多管串联,读 取速读较其他阵列结构慢。
为了移动系统开发的DDR内存,主要在综合功耗方面做优化。 相对于DDR,LPDDR 在如下几个方面改动: (1). 降低核心工作电压 (2). DLL 省略:DLL (Delay Locked Loop,延时锁定回路) (3). 温度补偿刷新:温度感应,在低温下降低刷新率,降低在自刷新模式 下的功耗 (4). 部分区域的自刷新:提供用户可控的部分区域自刷新,而非整个区域 (5).超低C=NAND falsh+控制器+标准接口(遵循eMMC协议) Samsung eMMC 5.1 provides faster speed compared to eMMC 5.0, eMMC 5.1 achieves 300 MB/s in sequential read, and 140 MB/s in sequential write while eMMC 5.0 provides 260 MB/s in sequential read, and 135 MB/s in sequential write.
MCP存储器:Multi-Chip-Package
MCP存储器,MCP是在一个塑料封装外壳内,垂直堆叠大小不同 的各类存储器或非存储器芯片,是一种一级单封装的混合技术,用此 方法节约小巧印刷电路板PCB空间。 手机中:eMMC+DDR RAM
UFS存储器:Universal Flash Storage
存储器原理介绍
目
录
●半导体存储器分类和原理介绍
●高速存储器的应用
●其他存储类型简介
半导体存储器主要类别
EEPROM存储单元原理:
背景知识:量子隧道效应
经典物理学认为 物体越过势垒,有一阈值能量;粒子能量小于此能量则不能越过,大于此能量则可以越过。例如骑自 行车过小坡,先用力骑,如果坡很低,不蹬自行车也能靠惯性过去。如果坡很高,不蹬自行车,车到 一半就停住,然后退回去。 量子力学则认为 即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好象有 一个隧道,称作“量子隧道”。 1962年,英国剑桥大学实验物理学研究生约瑟夫森(Brian David Josephson,1940~)预言,当两个超 导体之间设置一个绝缘薄层时,电子可以穿过绝缘体从一个超导体到达另一个超导体。约瑟夫森的这 一预言不久就为P.W.安德森和J.M.罗厄耳的实验 观测所证实——电子对通过两块超导金属间的薄绝缘 层(厚度约为10埃)时发生了隧道效应,于是称之为“约瑟夫森效应”。 宏观量子隧道效应确立了微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑 上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道 效应而穿透绝缘层,使器件无法正常工作。因此,宏观量子隧道效应已成为微电子学、光电子学中的 重要理论。