高三数学离散型随机变量的分布列
高考数学复习点拨:离散型随机变量的分布列、期望与方差

离散型随机变量的分布列、期望与方差虽然在各省市模拟题中,以统计的题目较少,但是在近一,两年中考查离散型随机变量的运用有明显加强之势,其原因在于,若说概率与现实生活联系紧密的话,那么离散型随机变量的分布列,期望与方差则是以概率为基础,专门为解决问题提供了保障.例1 某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.(I )求第一天通过检查的概率;(II )求前两天全部通过检查的概率;(III )若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、2天分别得1分、2分.求该车间在这两天内得分的数学期望.分析 (1)由于第一天只有一件次品,所以抽到抽到正品的有49C ,而总的抽法为410C ,(2)欲要求出第二天通过的概率,要第二天生产的产品数,次品数,通过检查的概率,又因第一,二天是相互独立的,(3)欲求其期望,则首先应求出其分布列,再运用期望公式求解.解:(I )∵随意抽取4件产品检查是随机事件,而第一天有9件正品,∴第一天通过检查的概率为 53410491==C C P … (II )同(I ),第二天通过检查的概率为.31410482==C C P 因第一天,第二天是否通过检查相互独立.所以,两天全部通过检查的概率为:.51315321=⨯==P P P (II )记得分为ξ,则ξ的值分别为0,1,2,.1543252)0(=⨯==∴ξP .15852313253)1(=⨯+⨯==ξP .513153)2(=⨯==ξP 因此,.151451215811540=⨯+⨯+⨯=ξE 探究 求离散随机变量的期望,一般要先求出其分布列,再求期望.例2 从汽车东站驾车至汽车西站的途中要经过8个交通岗,假设某辆汽车在各交通岗遇到红灯的事件是独立的,并且概率都是31.求(1)这辆汽车首次遇到红灯前,已经过了两个交通岗的概率;(2)这辆汽车在途中遇到红灯数ξ的期望与方差.分析 由于汽车在途中遇到红灯是相互独立的,且满足二项分布,由二项分布有关性质不难求解.解析 (1)∵这辆汽车在第一、二个交通岗均未遇到红灯,而第三个交通岗遇到红灯,27431)311)(311(=--=∴P 概率 (2)ξΘ∽),31,8(B 916)311(318,38318=-⨯⨯==⨯=∴ξξD E 方差期望 探究 在解答有关期望和方差问题时,有时也不一定非得求出其分布列,如本题,汽车遇到红灯满足二项分布,直接应用离散型随机变量ξ服从二项分布B (n,p )的期望公式np E =ξ,和方差公式为ξD =npq.进行求解,所以在解答问题时,看清楚离散型随机变量是满足的何种分布,有无必要求出其分布列.。
高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列知识点1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质(1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11=∑=ni ip3.常见的离散型随机变量的分布列 (1)两点分布若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.题型一离散型随机变量的理解【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数XB .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度XC .某超市一天中来购物的顾客数XD .小马登录QQ 找小胡聊天,设X =⎩⎪⎨⎪⎧1,小胡在线0,小胡不在线【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ;(2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数.【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6D .ξ≤5【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25【过关练习】1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度.2.某人射击的命中率为p (0<p <1),他向一目标射击,若第一次射中目标,则停止射击,射击次数的取值是( ) A .1,2,3,…,n B .1,2,3,…,n ,… C .0,1,2,…,nD .0,1,2,…,n ,…3.同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________.4.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.5.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ, (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.题型二 离散型随机变量分布列的求法及性质【例1】某一随机变量ξ的概率分布列如表,且m +2n =1.2,则m -n2的值为( )A.-0.2 C .0.1D .-0.1【例2】已知离散型随机变量X 的分布列如下:则P (X =10)A.239 B.2310 C.139 D.1109 【例3】已知随机变量X 只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围为________.【过关练习】1.随机变量ξ的分布列如下:则ξ为奇数的概率为2.若离散型随机变量X 的分布列为:则常数c 的值为( ) A.23或13 B.23 C.13D .13.由于电脑故障,随机变量X 的分布列中部分数据丢失,以代替,其表如下: 0.50.1根据该表可知题型三 两种特殊分布的应用【例1】某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X 表示4人中的团员人数,则P (X =3)=( ) A.421 B.921 C.621 D.521【例2】一个袋中有形状、大小完全相同的3个白球和4个红球.从中任意摸出两个球,用“X =0”表示两个球全是白球,用“X =1”表示两个球不全是白球,求X 的分布列.【过关练习】1.从装有除颜色外其余均相同的3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,随机变量ξ的概率分布列如下:则x 1,x 2,x 3的值分别为________.2.在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.课后练习【补救练习】1.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( ) A .6 B .7 C .10D .252.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________.3.在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X 的分布列.【巩固练习】1.设实数x ∈R ,记随机变量ξ=⎩⎪⎨⎪⎧1,x ∈(0,+∞),0,x =0,-1,x ∈(-∞,0).则不等式1x≥1的解集所对应的ξ的值为( )A .1B .0C .-1D .1或02.若P (ξ≤n )=1-a ,P (ξ≥m )=1-b ,其中m <n ,则P (m ≤ξ≤n )等于( ) A .(1-a )(1-b ) B .1-a (1-b ) C .1-(a +b )D .1-b (1-a )3.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)4.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab ,则这名运动员投中3分的概率是________5.在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场. (1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.【拔高练习】1.随机变量ξ的概率分布列为P (ξ=n )=an (n +1),n =1,2,3,4,其中a 是常数,则P ⎝⎛⎭⎫12<ξ<52的值为( ) A.23 B.34 C.45D.562.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复设奖),每个问题回答正确与否相互之间没有影响,用X 表示小王所获奖品的价值,写出X 的所有可能取值及每个值所表示的随机试验的结果.。
示范课《离散型随机变量的分布列》说课稿

离散型随机变量的分布列MOSS北京市海淀实验中学数学组卢道明CONTENTS一教材分析二学情分析三教学内容设计四教学反思高中概率课程简述:必修概率选修Ⅰ概率选修Ⅱ概率延伸拓展延伸拓展1、随机事件与概率2、随机事件的独立性1、随机事件的条件概率2、离散型随机变量及其分布列3、正态分布1、连续型随机变量及其概率分布2、二维随机变量及其联合分布离散型随机变量的分布列地位内涵揭示核心分解必然事件规律数字特征奠基数学素养载体离散型随机变量分布列是人教B 版选修内容,是必修统计概率知识的延伸,也是概率部分承上启下的核心内容。
一个必然事件分解成若干个互斥事件的概率的另一种表示形式。
从整体上研究随机现象,不仅能清楚地反映随机变量所取的一切可能的值,而且能清楚地看到每一个值所对应的概率大小,反映了随机变量的概率分布,揭示了离散型随机变为离散型随机变量的数学期望和方差及连续型随机变量及其分布的学习奠定基础。
培养学生关心自己身边的数学问题,促使学生在学习和实践体验中形成和发展数学应用意识,更是提高数学抽象、逻辑推理和数据分析等学生认知情况上一节课学习了离散型随机变量的概念;以前学习了映射、统计与概率(必修)、计数原理,都为学习这节课做了充分准备。
实验班的学生求知欲、主动探究意识比较强。
高二的学生具有了一定的发现、分析、解决问题的能力,抽象、概括能力和逻辑思维能力,但对于分布列的概念归纳和作用会产生一定的障碍,需要教师的铺垫和引导。
1.理解离散型随机变量的分布列的概念,理解分布列是整体把握随机现象规律的手段。
2.会求简单的离散型随机变量的分布列。
3.渗透由特殊到一般的数学思想。
通过对抽奖方案的比较、评价,展现问题数学化过程,形成概念。
发展学生的抽象概括和逻辑推理能力。
在方案设计过程中,感受数学与实际生活的联系,又可以指导解决生活中一些问题,进而发展学生的数学抽象、逻辑推理和数据分析的素养,真正体现用数学的眼光观察世界,用数学思维分析世界,用数学的语言表达世界。
2020年高考数学专题复习离散型随机变量及其分布列

离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的离散型随机变量分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即:其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) (6)由下表给出的随机变量X 的分布列服从两点分布.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√ (6)×(教材习题改编)设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12 C .14D .18解析:选D.由分布列的性质,得12+14+18+p 4=1,所以p 4=18.设随机变量X 的分布列为P (X =k )=k 15,k =1,2,3,4,5,则P ⎝ ⎛⎭⎪⎫12<X <52=________.解析:P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=115+215=15. 答案:15在含有3件次品的10件产品中任取4件,则取到次品数X 的分布列为________. 解析:由题意知,X 服从超几何分布,其中N =10,M =3,n =4,所以分布列为P (X =k )=C k3·C 4-k7C 410,k =0,1,2,3.答案:P(X =k )=C k 3·C 4-k7C 410,k =0,1,2,3离散型随机变量的分布列的性质设离散型随机变量X 的分布列为求:(1)2X +1的分布列; (2)|X -1|的分布列.【解】 由分布列的性质知:0.2+0.1+0.1+0.3+m =1, 解得m =0.3. (1)2X +1的分布列为(2)|X -1|的分布列为在本例条件下,求P (1<X ≤4). 解:由本例知,m =0.3,P (1<X ≤4)=P (X =2)+(X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n=0.3,所以n =10.2.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎢⎡⎦⎥⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为角度二 古典概型的离散型随机变量的分布列(2019·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A , P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45. (2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920; P (X =5)=C 35C 36=12,所以随机变量X 的分布列为离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列. 解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为超几何分布一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 【解】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4, P (X =k )=C k 5C 4-k5C 410,k =0,1,2,3,4,于是可得其分布列为超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列. 解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.易错防范(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的. (2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.[基础达标]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B .12C .13D .23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.(2019·绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k8C 1015,故k =4,故选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A .14B .12C .34D .23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝ ⎛⎭⎪⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34.4.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A .13 B .16 C .12D .56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.5.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:167.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎢⎡⎦⎥⎤-13,138.若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________. 解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 139.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2. P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:10.(2019·温州市高考模拟)袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是________,设摸取的这三个球中所含的黑球数为X ,则P (X =k )取最大值时,k 的值为________.解析:袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是:n =C 26C 13=45.设摸取的这三个球中所含的黑球数为X ,则X 的可能取值为0,1,2,3, P (X =0)=C 33C 39=184,P (X =1)=C 16C 23C 39=1884,C 984P (X =3)=C 36C 39=2084,所以P (X =k )取最大值时,k 的值为2. 答案:45 211.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为P (X ≥2)=P (X =2)+P (X =3)=38+18=12. 12.(2019·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列. 解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,C 1015故X 的分布列为[能力提升]1.(2019·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584, P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184. 所以X 的分布列为2.(2019·惠州市第三次调研考试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列为3.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635;P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135.所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A , 则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。
离散型随机变量的分布列教学设计

离散型随机变量的分布列教学设计高中数学选修2-3第二章第2节:离散型随机变量及分布列(一)教师:XXXXXX一、教材分析1.教学内容本课程主要内容是研究分布列的定义、性质及应用。
它是人教A版《普通高中课程标准实验教科书数学选修2-3》第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第1课时)的一部分。
2.地位与作用本部分内容主要包括随机变量的概念及其分布列,是离散性随机变量的均值和方差的基础。
近几年的高考观察表明,这部分内容有加强命题的趋势。
一般以实际情景为主,建立合适的分布列,通过均值和方差解释实际问题。
二、学情分析教学是在教师引导下以学生为主体的活动。
学生的知识建构状态、心理特征和研究态度是教学设计的重要依据。
1.认知水平学生已经全面研究了统计概率与排列组合,有了知识上的准备。
并且通过古典概率的研究,基本掌握了离散型随机变量取某些值时对应的概率,有了方法上的准备,但并未系统化。
学生将在必修3研究概率的基础上,利用计数原理与排列组合知识求古典概型的概率。
这是本节的难点,主要是分清概率类型,计算取得每一个值时的概率,例如取球、抽取产品等问题还要注意是放回抽样还是不放回抽样。
2.能力特点我所任教班级的学生思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳。
但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待提高。
三、目标分析1.知识与技能理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列。
掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题。
2.过程与方法初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题。
3.情感态度与价值观进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。
重点与难点根据学生研究的实际情况及教材内容分析,确定本节的重点是离散型随机变量的分布列的概念及性质,会求某些简单的离散型随机变量的分布列。
2.3 离散型随机变量的分布列及其期望

2.3 离散型随机变量的分布列及其期望基础梳理1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.(3)分布列设离散型随机变量X可能取得值为x1,x2,…,x i,…x n,X取每一个值x i(i=1,2,…,n)的概率为P(X=x i)=p i,则称表X x1x2…x i…x nP p1p2…p i…p n为随机变量X的概率分布列,简称X的分布列.(4)分布列的两个性质①p i≥0,i=1,2,…,n;②p1+p2+…+p n=_1_.2.两点分布如果随机变量X的分布列为X 10P p q其中0<p<1,q=1-p,则称离散型随机变量X服从参数为p的两点分布.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为:P(X=k)=C k M C n-kN-MC n N(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n、M、N∈N*,则称分布列X 01…mP C0M·C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N为超几何分布列.4.二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 5.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n基础训练1.抛掷均匀硬币一次,随机变量为( ).A .出现正面的次数B .出现正面或反面的次数C .掷硬币的次数D .出现正、反面次数之和2.如果X 是一个离散型随机变量,那么下列命题中假命题是( ). A .X 取每个可能值的概率是非负实数 B .X 取所有可能值的概率之和为1C .X 取某2个可能值的概率等于分别取其中每个值的概率之和D .X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值 或 ,它反映了离散型随机变量取值的 .(2)方差称D (X )=∑i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均 ,其算术平方根D (X )为随机变量X 的标准差.数学期望 平均水平 偏离程度3.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( ). A.316 B.14 C.116 D.5164.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ). A .25 B .10 C .7 D .65.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是________. 6.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.227由统计数据求离散型随机变量的分布列【例1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的期望是________.(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.【训练1】某射手进行射击训练,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列【例2】►某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A 饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.而超几何分布就是此类问题中的一种.【训练2】着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E(ξ).【例3】►(某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=112,则随机变量X的数学期望E(X)=________.本题考查了相互独立事件同时发生的概率求法以及分布列,期望的相关知识,公式应用,计算准确是解题的关键.【训练3】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例4】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.【训练4】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列.巩固提升1、设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.,则同一工作日至少3人需使用设备的概率为______________;2、甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6、0.5、0.4,能通过面试的概率分别是0.6、0.6、0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后,至少有一人被该高校预录取的概率.3.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.4.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列、数学期望和方差.。
离散型随机变量的分布列 课件

1.两点分布,如果随机变量 X 的分布列为
X
0
1
P
1-p
p
则称离散型随机变量 X 服从 两点分布 .
2.一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其 中恰有 X 件次品,则 P(X=k)=CkMCCnNnN--kM,k=0,1,2,…, m,其中 m=min{M,n},且 n≤N,M≤N,n,M,N∈N*,
随机的,可能是一红一白,两红,两白三种情况,为此我们定 ∴ 义则P随X(X机显=变然0)量服=如从1-下两37:点=X分47=,布,01, ,且两 两P球 球(X非 全=全 红1)=红CC2121,05=37, ∴X 的分布列为
X0
1
43
P7
7
小结 两点分布中只有两个对应的结果,因此在解答此类问题 时,应先分析变量是否满足两点分布的条件,然后借助概率的 知识,给予解决.
问题 2 只取两个不同值的随机变量是否一定服从两点分布?
答 不一定.如随机变量 X 的分布列由下表给出
X
2
5
P 0.3 0.7
X 不服从两点分布,因为 X 的取值不是 0 或 1.
例 1 袋中有红球 10 个,白球 5 个,从中摸出 2 个球,如果只
关心摸出两个红球的情形,问如何定义随机变量 X,才能使 X 满足两点分布,并求分布列. 解 从含有 10 个红球,5 个白球的袋中摸出 2 个球,其结果是
故 X 的分布列为
小结
X 0 10 20 50 60 1 2 121
P 3 5 15 15 15
此类题目中涉及的背景多数是生活、生产实践中的问
题,如产品中的正品和次品,盒中的白球和黑球,同学中的男
离散型随机变量及其分布列

X
1,
0,
取得不合格品, 取得合格品.
X0 1
X 的分布列为:
pk
190 200
10 200
则随机变量 X 服从(0 -1)分布.
2. 二项分布
产生背景:n 重伯努利试验 设 试 验 E只 有 两 个 可 能 结 果 : A及 A 设 P (A )p(0p1),此 时 P (A )1p.
X~B(10,0.75)
X~B(6,0.5)
从图中可以看出,对于二项分布, X 取k 值的概率随着k 的增大先是逐渐增大,直至 达到最大值,然后再下降.使 X 取值达到最大概率的点,称为二项分布的最可能取值. 证明得,当 (n 1)p m 为正整数时, m 和 m1均为最可能取值;当(n 1)p 不是正整数时, 则满足 (n 1)p 1 m (n 1)p 的整数即为最可能取值.
(求1):下个月该商店销售2件此种商品的概率是多少?
解 设该商店每月销售该商品的件数为 X 依题意 X ~ P(5) ,且
P{Xk}5ke5,(k0,1,2,L) k!
销售2件产品的概率为
P{X2}52e50.0842 2!
例6某商店根据过去的销售记录,总结出某种商品每月
的销售量可以用参数为 的5 泊松分布来描述,试求:
二项分布定义: 若X表示 n重伯努利试A发 验生 中的 事 , 次 件 当 X k (0 k n )时 ,即 A 在 n 次 试 验 中 发 生 了 k 次
的概率为:P X k C n kp k(1 p )n k
X记~为B(n,p). k 0 ,1 ,2 ,3 ,L n
例3:某射手每次射击时命中10环的概率为 p, 现进 行 4 次独立射击,求 恰有 k 次命中10环的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率,相互独立事件同时发生的概率、 n
k 次发生的概率等。本 题中基本事件总数,即 n C 3 ,取每一 5
次独立重复试验有 个球的概率都属古典概率(等可能性事件
的概率)。
(练习):从一批有13个正品和2个次品的产
品中任意取出3个, (1)求抽得的次品数
1 5 (2)求 P ( ) 的值. 2 2 1 5 说明:理解 P ( ) 的含义. 2 2
A发生的次数 是一个随机变量,其所有可
能取的值为0,1,2,3,…,n,并且
P( k ) C p q (其中k=0,1,2,…,n, p+q=1),称这样的随机变量 服从参数为n
k n k n k
和p的二项分布,记作:
~ B(n, p) 。
注意:要理解二项分布的实质,善于在实
设离散型随机变量
P
x1
x2
p2
… …
xi
pi
… …
p1
称为随机变量 的分布列。
离散型随机变量的分布列的两个性质: ①
②
p1 p2 1
P( xi ) pi 0
求解离散型随机变量的分布列的两个步骤:
①确定该随机变量所有可能的取值;
②分别计算相应的概率。
4.二项分布:在n次独立重复试验中,事件
她在听到这各消息の壹刹那,心跳陡然加速许多,因为她也是那么热切地渴望这各机会。虽然她是嫡福晋,虽然爷塞外行围咯无数次,但 是她只在刚刚结婚后の前几年随行过两次,自从他们搬出皇宫、分府单过以后,她就与随行彻底地绝缘咯。每壹次,他の理由都是那么充 足,而理由永远都是那么壹各:府里需要你这各嫡福晋。无论是以前の贝勒府,还是现在の亲王府,她得到の是权力,失去の机会。真是 羡慕八福晋,每壹次八小格塞外随行,那木泰是雷打不动の随行女眷。她雅思琦是嫡福晋,那木泰不也是嫡福晋?这四爷府需要打理,那 八爷府不是壹样也需要打理?四福晋和八福晋の差别竟然这么巨大。淑清听到这各消息之后,心情激动得半天未能平复。以往,她几乎包 办咯所有の随行,现在惜月和韵音怀咯身孕,福晋按惯例要坐镇王府,水清壹直都被冷落在壹边,毫无悬念,不是她还能有谁?直到现在 爷都没有确定人员,壹定是不想让其它各位姐姐妹妹们提前难过而已。因此尽管爷没有发话,但是她担心事到临头来不及,于是私下里赶 快和菊香两各人悄悄地收拾起行装。惜月壹听这各消息,简直就是痛心疾首。现在她和韵音都有咯身孕,这么大好の机会就这么轻松地便 宜咯淑清姐姐!怎么自己会这么背运!虽然皇上几乎每年都要去塞外行围,但是王爷只是众皇子之壹,并不是每壹次都能有机会可以随行, 好不容易盼来这么壹各难得の机会,又白白地错失掉,真是心有不甘。塞外随行の机会之所以被众人视为难得の机会,那是因为将有近半 年の时间里,只有壹位女眷陪伴在王爷の身边,壹夫壹妻世外桃源般の甜蜜幸福生活,谁不向往,谁不羡慕,谁不期盼?又哪壹各诸人能 够心甘情愿地与其它の姐姐妹妹们分享王爷の宠爱?第壹卷 第215章 机会吟雪又是从紫玉那里得知の消息,壹开始她并不知道这各消息 意味着啥啊,因此也就没当回事儿,紫玉诧异地望着她:“你怎么壹点儿反应也没有?”“怎么咯?不就是爷要出门壹段时间吗?爷又不 是没有出过门。”“你呀!初来乍到の傻丫头!”“怎么啦?怎么又平白无故地取笑人家。”“唉,就是我爱管闲事!告诉你吧,爷不但 出门壹段时间,还会带女眷同行!”“带女眷?”“当然咯!否则爷这壹走就是五、六各月の时间,不带女眷,谁伺候爷啊!光指着丫环 太监哪儿成啊!”“那是哪位主子服侍爷呢?”“爷还没定呢。”“爷没都定下来の事情呢,你这是着の哪门子急啊!”“爷要是定下来 咯,还用得着你着急?就因为爷没定下来,你没瞧各院の主子都人心惶惶の?”“唉,哪各院子の主子人心惶惶都有可能,只有我们怡然 居不会。”“你们主子呀,也真是,怎么也不见她讨好爷呢?平
说明:本题考查离散型随机变量的分布列 和数学期望的概念,考查运用概率知识解 决实际问题的能力。
思考讨论:
(1) =4时哪些情况?
(2)本题若改为取出后放回,如何求解?
例4、某人骑车从家到学校的途中有5个路
口,假设他在各个路口遇到红灯的事件是相 1 互独立的,且概率均为 . 3 (1)求此人在途中遇到红灯的次数 的分布 列; (2)求此人首次遇到红灯或到达目的地而停 车时所经过的路口数 的分布列;
可以按一定顺序一一列出
连续型随机变量:随机变量可以取某一区
间内的一切值。
说明:①分类依据:按离散取值还是连续
取值。 ②离散型随机变量的研究内容:随机变量
取什么值、取这些值的多与少、所取值的
平均值、稳定性等。
3. 离散型随机变量的分布列:
可能取的值 为 x , x , , x , , 1 2 i 且 P( x ) p ,则 i i
2010届高考数学复习 强化双基系列课件
65《离散型随机变量 的分布列》
一、基本知识概要:
1.随机变量:随机试验的结果可以用一个
变量来表示,这样的变量的随机变量,记
作 , ;
说明:若 是随机变量, 其中 a, b 是常数,则 也是随机变量。
a b
,
一、基本知识概要:
2. 离散型随机变量:随机变量可能取的值,
(3)此人途中至少遇到一次红灯的概率.
说明:要能从所给的条件中看出特殊的分
1 布,如本题中 ~ B (5, ) . 3
例5甲乙两名篮球队员独立地轮流投篮,直 到某人投中为止。甲投中的概率为0.4,乙 为0.6,分别求出甲乙两人投篮次数的分布 列。(假设甲先投) 说明:求分布列的关键是正确计算概率。
三、课堂小结
1.会根据实际问题用随机变量正确表示某
些随机试验的结果与随机事件; 2.熟练应用分布列的两个基本性质; 3.能熟练运用二项分布计算有关随机事件 的概率。
赣州最好的中专学校、赣州中专学校排名、赣州中专技师学院 / 赣州中专学校、赣州中专高铁乘务、赣州中专幼师学校
际问题中看出随机变量服从二项分布。
二、例题:
每次抽1件,求:
例1:在10件产品中有2件次品,连续抽3次,
(1)不放回抽样时,抽到次品数 的分布列;
(2)放回抽样时,抽到次品数 的分布列。
剖析:随机变量 可以0,1,2, 也可以 取0,1,2,3,放回抽样和不放回抽样对 随机变量的取值和相应的概率都产生了变 化,要具体问题具体分析。 说明:放回抽样时,抽到的次品数为独立 重复试验事件,即
的分布列;
例3:(2004年春季安微)已知盒中有10个 灯泡,其中8个正品,2个次品。需要从中 取出2个正品,每次从中取出1个,取出后 不放回,直到取出2个正品为止,设 为取
出的次数,求 的分布列及E 。
剖析:每次取1件产品,所以至少需2次, 即 最小为2,有2件次品,当前2次取得的 都是次品时, =4,所以 可以取2,3,4。
~ B(3,0.8)
。
例2:一袋中装有5只球,编号为1,2,3,4,
5,在袋中同时取3只,以 表示取出的三
只球中的最小号码,写出随机变量 的分
布列。
剖析:因为在编号为1,2,3,4,5的球中,
同时取3只,所以小号码可能是1或2或3,
即 可以取1,2,3。
说明:求随机变量的分布列,重要的基础