高中数学必修五基本不等式题型(精编)

合集下载

高中数学必修五同步练习题库:基本不等式(简答题:较难)

高中数学必修五同步练习题库:基本不等式(简答题:较难)

基本不等式(简答题:较难)1、(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.2、已知曲线上有一点列过点在x轴上的射影是,且1+2+3+…+n=2n+1-n-2.(n∈N*)(1)求数列{}的通项公式(2)设四边形的面积是,求(3)在(2)条件下,求证: .3、在平面直角坐标系中,已知椭圆,如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.(1)求的最小值;(2)若,求证:直线过定点.4、如图设计一幅矩形宣传画,要求画面面积为4840 cm2,画面上下边要留8cm空白,左右要留5cm空白,怎样确定画面的高与宽的尺寸,才能使宣传画面所用纸张面积最小?5、设函数的定义域均为,且是奇函数,是偶函数,,其中为自然对数的底数.(1)求的解析式,并证明:当时,;(2)若关于的不等式在上恒成立,求实数的取值范围.6、已知关于x不等式x2﹣2mx+m+2<0(m∈R)的解集为M.(1)当M为空集时,求m的取值范围;(2)在(1)的条件下,求的最大值;(3)当M不为空集,且M [1,4]时,求实数m的取值范围.7、已知直线l经过点P(2,2)且分别与x轴正半轴,y轴正半轴交于A、B两点,O为坐标原点.(1)求面积的最小值及此时直线l的方程;(2)求的最小值及此时直线l的方程.8、. 问:是否存在正数m,使得对于任意正数,可使为三角形的三边构成三角形?如果存在:①试写出一组x,y,m的值,②求出所有m的值;如果不存在,请说明理由.9、若,,且|k+b|=|-kb|(k>0).(Ⅰ)用k表示数量积;(Ⅱ)求的最小值.10、已知曲线上有一点列过点在x轴上的射影是,且1+2+3+…+n=2n+1-n-2.(n∈N*)(1)求数列{}的通项公式(2)设四边形的面积是,求(3)在(2)条件下,求证: .11、已知函数(其中,是自然对数的底数),为导函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)对任意,恒成立,求整数的最大值.12、已知函数,.(1)求证:();(2)设,若时,,求实数的取值范围.13、(2011年苏州B19)某企业有员工共100名,平均每人每年创造利润10万元.为了进一步提高经济效益,该企业决定优化产业结构,调整部分员工从事第三产业.经测算,若x(20≤x≤50,x∈)名员工从事第三产业,则剩下的员工平均每人每年创造的利润可提高20%,而从事第三产业的员工平均每人每年创造利润为万元.(1)如果要保证调整后该企业的全体员工创造的年总利润,至少比原来的年总利润多150万元,求可从事第三产业员工的最少人数与最多人数;(2)如果要使调整后该企业的全体员工创造的年总利润最大,求从事第三产业的员工人数.14、(2014年苏州B18)如图,在中,,,(1)求的长和的值;(2)延长到,延长到,连结,若四边形的面积为,求的最大值.15、在中,内角、、所对的边分别是、、,不等式对一切实数恒成立.(1)求的取值范围;(2)当取最大值,且的周长为9时,求面积的最大值,并指出面积取最大值时的形状.16、已知数列满足:.(1)求证:;(2)求证:.17、已知函数,(为常数).(1)函数的图象在点处的切线与函数的图象相切,求实数的值;(2)若函数在定义域上存在单调减区间,求实数的取值范围;(3)若,,且,都有成立,求实数的取值范围.18、宜昌一中江南新校区拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米,设小圆弧所在圆的半径为米,圆心角(弧度).(1)求关于的函数关系式;(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.19、(本小题满分10分)已知正数满足:,若对任意满足条件的:恒成立,求实数的取值范围.20、(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.21、已知实数,且,若恒成立.(1)求实数m的最小值;(2)若对任意的恒成立,求实数x的取值范围.22、(本小题满分10分)选修4-5:不等式选讲已知正实数满足:.(1)求的最小值;(2)设函数,对于(1)中求得的,是否存在实数,使得成立,说明理由.23、选修4—5:不等式选讲设,求证:.24、(本小题满分10分)选修4-5:不等式选讲已知函数,(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.25、给定数列(1)判断是否为有理数,证明你的结论;(2)是否存在常数.使对都成立? 若存在,找出的一个值, 并加以证明; 若不存在,说明理由.26、已知a,b是正常数,,求证:,指出等号成立的条件;(2)利用(1)的结论求函数的最小值,指出取最小值时x的值.27、已知函数(1)解关于的不等式;(2)若存在,使得的不等式成立,求实数的取值范围.28、已知,证明:,并利用上述结论求的最小值(其中.29、如图,已知小矩形花坛ABCD中,AB=3 m,AD=2 m,现要将小矩形花坛建成大矩形花坛AMPN,使点B在AM上,点D在AN上,且对角线MN过点C.(1)要使矩形AMPN的面积大于32 m2,AN的长应在什么范围内?(2)M,N是否存在这样的位置,使矩形AMPN的面积最小?若存在,求出这个最小面积及相应的AM,AN的长度;若不存在,说明理由.30、已知函数.(1)当时,求函数的极值;(2)若对,有成立,求实数的取值范围.31、某工厂建一个长方形无盖蓄水池,其容积为4800m3,深度为3m。

(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)(4)

(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)(4)

一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .954.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .15.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .46.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,38.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4e x x y -=+D.y =9.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.若0x >,0y >,若()()144x y --=则x y +的最小值为_________.14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.16.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 17.已知正数a ,b 满足(1)(1)1a b --=,则4a b +的最小值等于________.18.已知正实数,x y 满足x y xy +=,则3211x yx y +--的最小值为______. 19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.已知函数2(1)()a x af x bx c-+=+(a ,b ,c 为常数).(1)当1,0b c ==时,解关于x 的不等式()1f x >;(2)当0,2b c a =>=时,若()1f x <对于0x >恒成立,求实数b 的取值范围. 22.已知函数()()20,,f x ax bx c a b R c R =++>∈∈.(1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围.23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1.25.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少. 26.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242 x yzx+-=-,并理解z的几何意义,利用数形结合分析问题.4.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122zy x=-,由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.5.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.8.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x xy -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4e xxy -=+的最小值为4,故C 项正确;D 项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.9.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B.【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.10.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】 先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >, 得411y x+=,则()445529 41x y x yx y x yy xx y xy+⎛⎫+=+=++≥+⨯=⎪⎝⎭,当且仅当4x yy x=即3,6x y==时取等号.故答案为:9.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.2【分析】据题意由于MN为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M,N为平面区域401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a⋅≤(当且仅当MN与a共线同向时等号成立)从而求得最大值.【详解】由401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立), 即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离.2=, 故答案为:2 【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.15.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--. 【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.16.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.17.9【分析】将已知等式变形为然后利用乘1法将进行变形利用基本不等式即可求得【详解】因为所以即又ab 为正数所以当且仅当时等号成立故的最小值等于故答案为:9【点睛】本题考查利用基本不等式求最值关键是将已知解析:9 【分析】 将已知等式变形为111a b+=,然后利用“乘1法”将4a b +进行变形,利用基本不等式即可求得. 【详解】因为(1)(1)1a b --=,所以0ab a b --=,即111a b+=.又a ,b 为正数,所以1144(4)1459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当3a =,32b =时,等号成立. 故4a b +的最小值等于9. 故答案为:9 【点睛】本题考查利用基本不等式求最值,关键是将已知条件适当变形,得到111a b+=,以便利用“乘1法”,利用基本不等式求4a b +的最小值.利用基本不等式求最值要注意“正、定、等”的原则.18.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:5+. 【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩故得到113121323211=5++111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()1111-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)st s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立. 2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:22⎡-⎢⎣⎦【分析】由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解. 【详解】由题意可知sincos666y a t b t c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角)由题意可得3=,故2294a b +=, 由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤,故答案为22⎡-⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题.三、解答题21.(1)见解析(2)1b >+. 【分析】(1)原不等式转化为()()10-+<x a x 然后利用分类讨论思想进行分类求解; (2)原不等式转化22(0)1x b x x +>>+ ,设()()222151214x t g x x t t t+===≤+-++-11b =⇒>. 【详解】(1)当1,0b c ==时,()()()21100f x x a x a x >⇔---<≠()()10x a x ⇔-+<,讨论:①当1a <-时,原不等式的解集为(),1a -; ②当1a =-时,原不等式的解集为φ; ③当10a -<≤时,原不等式的解集为()1,a -; ④当0a >时,原不等式的解集为()()1,00,a -⋃. (2)当,2b c a ==时,()2211x f x bx b +<⇔<+22(0)1x b x x +⇔>>+ 设()221x g x x +=+,令()=22t x t +>, 则()()2221515512254214x t g x t x t t t+===≤=+=+--++-,时取等号, 故512b >+. 【点睛】关键点睛:解题的关键在于利用二次函数的性质,进行数形结合的讨论,难点在于对a 的分类讨论;由参变分离得到函数不等式区间D 上恒成立,一般有以下结论:min 1.():,()a f x x D a f x <∈<即可. max 2.():,()a f x x D a f x >∈>即可.22.(1) 8; (2)[]2,0-. 【分析】(1)根据函数()f x 的最小值是()10f -=且1c =,建立方程关系,求出a b 、的值,从而可求()()22F F +-的值;(2)将不等式()1f x ≤在区间(]0,1上恒成立等价于1b x x ≤-且1b x x ≥--恒成立,转化为求函数的最值即可得到结论. 【详解】 (1)由已知c =1,a -b +c =0,且,解得a =1,b =2,∴f (x )=(x +1)2.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2 ∴-2≤b ≤0.故b 的取值范围是[-2,0]. 【点睛】本题主要考查二次函数的解析式,求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 23.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --, 又不等式的解集为{|02}x x <<, 所以2(2)2m --=,解得1m =; (2)由正实数a ,b 满足4a b mab +=, 所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号, 所以+a b 的最小值为9. 【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1, 解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 25.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米,因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立.因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.26.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -,根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-,解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =.所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 22351024+ 点Q 到直线2410x y ++=2254|2+4+1|293353024⨯⨯+所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平.。

(完整版)高中数学基本不等式题型总结

(完整版)高中数学基本不等式题型总结

专题 基本不等式【一】基础知识基本不等式:)0,0a b a b +≥>>(1)基本不等式成立的条件: ;(2)等号成立的条件:当且仅当 时取等号.2.几个重要的不等式(1);(2);()24a b ab +≤(),a b R ∈)+0,0a b a b ≥>>【二】例题分析【模块1】“1”的巧妙替换【例1】已知,且,则的最小值为 .0,0x y >>34x y +=41x y+【变式1】已知,且,则的最小值为 .0,0x y >>34x y +=4x x y+【变式2】(2013年天津)设, 则的最小值为 .2,0a b b +=>1||2||a a b+【例2】(2012河西)已知正实数满足,则的最小值为 . ,a b 211a b +=2a b +【变式】已知正实数满足,则的最小值为 . ,a b 211a b+=2a b ab ++【例3】已知,且,则的最小值为 .0,0x y >>280x y xy +-=x y +【例4】已知正数满足,则的最小值为 .,x y 21x y +=8x y xy+【例5】已知,若不等式总能成立,则实数的最大值为 . 0,0a b >>212m a b a b+≥+m【例6】(2013年天津市第二次六校联考)与圆相交于两点,()1,0by a b +=≠221x y +=,A B 为坐标原点,且△为直角三角形,则的最小值为 . O AOB 2212a b +【例7】(2012年南开二模)若直线始终平分圆的周长,()2200,0ax by a b -+=>>222410x y x y ++-+=则的最小值为 . 11a b+【例8】设分别为具有公共焦点的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足12,e e 12,F F P ,则的最小值为120PF PF ⋅= 22214e e +【例9】已知,则的最小值是( )0,0,lg 2lg 4lg 2x y x y >>+=11x y+A .6B .5C .D .3+【例10】已知函数,若,且,则的最小值为 .()4141x x f x -=+120,0x x >>()()121f x f x +=()12f x x +【模块二】“和”与“积”混合型【例1】(2012年天津)设,若直线与轴相交于点A,与y 轴相交于B ,且与圆,m n R ∈:10l mx ny +-=x l 相交所得弦的长为,为坐标原点,则面积的最小值为 .224x y +=2O AOB ∆【例2】设,,若,,则的最大值为_______.,x y R ∈1,1a b >>2x y a b ==28a b +=11x y+【例3】若实数满足,则的最大值为 .,x y 221x y xy ++=x y +【例4】(2013年南开一模)已知正实数满足,则的最小值为 .,a b 21a b ab ++=a b +【例5】设,若直线与圆相切,则的取值范围是,m n R ∈()()1120m x n y +++-=()()22111x y -+-=m n +( )(A ) (B )1⎡+⎣(),11⎡-∞⋃+∞⎣(C ) (D )22⎡-+⎣(),22⎡-∞-⋃++∞⎣【例6】已知,且成等比数列,则的最小值为 . 1,1x y >>11ln ,,ln 44x y xy 【例7】(2015天津)已知 则当的值为 时取得最大值.0,0,8,a b ab >>=a ()22log log 2a b ⋅【例8】(2011年天津)已知,则的最小值为 .22log log 1a b +≥39a b +【例9】下列说法正确的是( )A .函数的最小值为x x y 2+=B .函数的最小值为)0(sin 2sin π<<+=x x x yC .函数的最小值为x x y 2+=D .函数的最小值为x x y lg 2lg +=【例10】设的最小值是(),,5,33x y x y x y ∈+=+R 且则A .10B .C ..。

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编)变2.下列结论正确的是 ( )A .若a b >,则ac bc >B .若a b >,则22a b >C .若a c b c +<+,0c <,则a b >D .若a b >,则a b >3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是例2、解下列不等式(1)2230x x --≥ (2)2280x x -++>(3)405x x ->- (4)405x x -≥-(5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .变、若不等式02<--b ax x 的解集为{}32<<x x ,则=+b a变补.下列各函数中,最小值为2的是 ( )A .1y x x =+B .1sin sin y x x =+,(0,)2x π∈C .222y x =+ D .1y x x=+- 变1. 若21x y +=,则24x y +的最小值是______2.3. 如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________,a+b 的取值范围是_________.例5、1. 积为定值(1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4)变、 (1)2232x y x +=+的最小值是 .(2). 2. 和为定值(1),y=x(4-x) 的最大值是 . (2), 的最大值是 .例6、“1”的妙用1.2.已知正数,x y 满足21x y +=,则yx 11+的最小值为______本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

高中数学必修五:不等式

高中数学必修五:不等式
6
二.一元二次不等式:
1.已知不等式2kx2 kx 3 0 的解集为R,求k 的范围. 8
2.设函数f (x) x2 (a 4)x 4 2a.(1)对任意x [1,1], f (x) 0恒成立,求a 的范围;(2)若a [1,1],f (x) 0恒 成立,求x 的范围.
7
3.(2018浙江)已知函数f
则m 的取值范围为 ___ .
14
3.已知a b c, (a c)( 1 + 4 ) k 恒成立,则k 的 ab bc
范围是 ___ .
4.设正实数x, y, z ,求(x y z)( 1 1) 的最小值. xy z
15
重点类型四:对等取相等
1.已知正数x, y 满足(2a b)2 1 6ab,求 ab 的 2a b 1
11
3.若b,a R,ab 0,则 a4 b4 1的最小值为 ______ . ab
4.已知k
1,a
0,则k 2a2
(k
4 1)a2
的则xy
的最小
值为 ___ .
12
重点类型二:和与积的转化 1.若b 0,a 0,a b 2ab 4 0,则a b 最小值 为 ______ .
3
9
5.若关于x 的不等式(2x 1)2 ax2 的解集中的整数恰 有3个,求实数a 的取值范围.
10
三.基本不等式:
重点类型一:a 与 1 型最值 a
1.若b a,则 b a 1 b a 的最小值为 ______ . ba
2.已知x y 0,且xy 1,求函数 x2 y2 的 最小值为 ___ . x y
1
一.绝对值不等式的求解:
1.(2018全国1)已知函数f (x)= x 1 ax 1 .(1)当a 2 时, 求不等式f (x) 1 的解集;(2)当a 1 时,求f (x) 的最大值; (3)若x (0,1) 时,不等式f (x) x 成立,求a 的取值范围.

高中数学必修五同步练习题库:基本不等式(选择题:较难)

高中数学必修五同步练习题库:基本不等式(选择题:较难)

基本不等式(选择题:较难)1、若正数满足,且的最小值为18,则的值为()A.1 B.2 C.4 D.92、,动直线过定点A,动直线过定点,若与交于点(异于点),则的最大值为A. B. C. D.3、若函数在定义域上单调递增,则实数的取值范围为()A. B. C. D.4、若,,,则的最小值是A. B. C. D.5、如右图所示,已知点是的重心,过点作直线与两边分别交于两点,且,则的最小值为()A.2 B. C. D.6、若,,,则的最小值是A. B. C. D.7、已知实数满足,则的最大值为()A.1 B.2 C.3 D.48、如图,已知抛物线的焦点为,直线过且依次交抛物线及圆于点四点,则的最小值为()A. B. C. D.9、已知,则的最小值为()A. B. C. D.10、已知等差数列的公差,且成等比数列,若,为数列的前项和,则的最小值为()A.3 B.4 C. D.11、半圆的直径AB=4, O为圆心,C是半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值是()A.2 B.0 C. D.12、抛物线的焦点为,已知点为抛物线上的两个动点,且满足,过弦的中点作准线的垂线,垂足为,则的最大值为()A.1 B. C.2 D.13、抛物线的焦点为F,准线为,是抛物线上的两个动点,且满足.设线段的中点在上的投影为,则的最大值是()A. B. C. D.14、已知,且满足,那么的最小值为()A.3﹣ B.3+2 C.3+ D.415、曲线()在点处的切线的斜率为2,则的最小值是()A.10 B.9 C.8 D.16、函数的值域为()A. B. C. D.17、,动直线过定点A,动直线过定点,若与交于点 (异于点),则的最大值为A. B. C. D.18、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.19、已知等差数列的公差,且,,成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.20、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.21、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.22、设且,则的最小值是A. B. C. D.23、已知,则的最小值是A.6 B.5 C. D.24、设正实数满足.则当取得最大值时,的最大值为() A.0 B. C.1 D.325、已知函数,若,,使得,则实数的取值范围是()A.(-∞,1] B.[1,+∞) C.(-∞,2] D.[2,+∞)26、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.27、已知偶函数是定义在上的可导函数,其导函数为.当时,恒成立.设,记,,,则,,的大小关系为()A. B. C. D.28、已知函数,则不等式成立的概率是()A. B. C. D.29、在中,角所对的边分别为,若,则当角取得最大值时,的周长为()A. B. C. D.30、锐角三角形ABC的三边长成等差数列,且,则实数的取值范围是()A. B. C. D.(6,7]31、若,,,则的最小值为()A. B. C. D.32、在平面直角坐标系中,已知抛物线的焦点为是抛物线上位于第一象限内的任意一点,是线段上的点,且满足,则直线的斜率的最大值为()A. B. C. D.33、已知函数,若不等式对任意实数恒成立,则实数的取值范围是()A. B. C. D.34、正项等比数列{a n}中,存在两项a m,a n(m,n)使得a m a n=16a12,且a7=a6+2a5,则+的最小值为()A.5 B.6 C.7 D.835、已知圆的半径为1,为该圆上四个点,且,则的面积最大值为()A.2 B.1 C. D.36、长方体中,,,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是( )A. B. C.8 D.37、若直线过点,则的最小值等于()A.6 B.3 C.7 D.438、若直线和直线相交于一点,将直线绕该点依逆时针旋转到与第一次重合时所转的角为,则角就叫做到的角,,其中分别是的斜率,已知双曲线:的右焦点为,是右顶点,是直线上的一点,是双曲线的离心率,,则的最大值为()A. B. C. D.39、中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A. B. C. D.40、若正数满足则的最小值是()A. B. C. D.41、已知函数,对任意的,恒成立,则的最小值为()A.3 B.2 C.1 D.042、已知为双曲线上不同三点,且满足(为坐标原点),直线的斜率记为,则的最小值为()A.8 B.4 C.2 D.143、中,为的中点,点在线段(不含端点)上,且满足,则的最小值为()A. B. C.6 D.844、圆:和圆:有三条公切线,若,,且,则的最小值为()A.1 B.3 C.4 D.545、在中,角,,的对边分别为,,,且,则角的最大值为()A. B. C. D.46、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.47、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.48、设正实数,满足,,不等式恒成立,则的最大值为()A. B. C. D.49、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.50、已知函数(且)的图象恒过定点,若点在直线上,其中,则的最小值为()A.3 B.C.4 D.851、若正实数满足,且不等式恒成立,则实数的取值范围是()A. B.C. D.52、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.53、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.54、设均为正实数,且,则的最小值为()A.4 B. C.9 D.1655、已知是内的一点,且,若的面积分别为,则的最小值为()A. B. C. D.56、已知直线ax+by=1(其中a,b为非零实数),与圆x+y2=1相交于A,B两点,O为坐标原点,且△AOB为直角三角形,则+的最小值为()A.4 B.2 C.5 D.857、设,则的最小值为()A.2 B.3 C.4 D.58、设,对于使成立的所有常数M中,我们把M的最小值1叫做的上确界.若,且,则的上确界为()A. B. C. D.59、已知x>0,由不等式x+≥2=2,x+=≥3=3,…,可以推出结论:x+≥n+1(n∈N*),则a=().A.2n B.3n C.n2 D.n n60、已知关于的不等式的解集是,且,则的最小值是()A. B.2 C. D.161、下列推理正确的是()A.如果不买彩票,那么就不能中奖.因为你买了彩票,所以你一定中奖B.因为a>b,a>c,所以a-b>a-cC.若a>0,b>0,则+≥D.若a>0,b<0,则62、对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1 B.2 C.3 D.463、已知,且,成等比数列,则xy( )A.有最大值e B.有最大值 C.有最小值e D.有最小值64、对于函数y=f(x)(x∈I),y=g(x)(x∈I),若对任意x∈I,存在x0使得f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则称f(x),g(x)为“兄弟函数”,已知f(x)=x2+px+q,g(x)=是定义在区间上的“兄弟函数”,那么函数f(x)在区间上的最大值为()A. B.2 C.4 D.65、已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值为()A.5 B.7 C.8 D.966、设第一象限内的点满足约束条件,若目标函数的最大值为40,则的最小值为()A. B. C.1 D.467、定义域为的函数的图象的两个端点为,是图象上任意一点,其中,向量,若不等式恒成立,则称函数在上“阶线性近似”. 若函数上“阶线性近似”,则实数的取值范围为( ) A. B. C. D.68、不等式x2+2x<+对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是( )A.(-2,0) B.(-∞,-2)∪(0,+∞)C.(-4,2) D.(-∞,-4)∪(2,+∞)69、已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC外接的球表面积等于().A.8π B.16π C.48π D.不确定的实数70、在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③ B.①④ C.①② D.①②④参考答案1、B2、B3、D4、B5、C6、B7、B8、B9、C10、B11、D12、D13、D14、B15、B16、C17、B18、D19、B20、B21、D22、A23、C24、C25、A26、B27、B28、B29、C30、C31、A32、D33、D34、B35、B36、B37、A38、C39、B40、D41、A42、B43、D44、A45、A46、D47、D48、C49、D50、D51、B52、D53、D54、D55、B56、A57、C58、D59、D.60、A61、D62、A63、C64、B65、B66、B67、C68、C69、B70、C【解析】1、由题意,应用基本不等式可得令则方程,所以是方程的根,所以选B.点睛:(1)应用基本不等式构造关于的不等式.(2)换元法将不等式转化为一元二次不等式.(3)结合二次函数图像知是一元二次方程的根.2、由题意可得:A(1,0),B(2,3),且两直线斜率之积等于﹣1,∴直线x+my﹣1=0和直线mx﹣y﹣2m+3=0垂直,则|PA|2+|PB|2=|AB|2=10≥.即.故选B.点睛:含参的动直线一般都隐含着过定点的条件,动直线,动直线l2分别过A(1,0),B(2,3),同时两条动直线保持垂直,从而易得|PA|2+|PB|2=|AB|2=10,然后借助重要不等式,得到结果.3、函数的定义域为,,由已知有,所以对于恒成立,恒成立,所以,而,当且仅当时等号成立,所以,选D.点睛:本题主要考查用导数研究函数的单调性,基本不等式等,属于中档题。

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五基本不等式题型(精编)

2.下列结论正确的是 ( )
A .若a b >,则ac bc >
B .若a b >,则22a b >
C .若a c b c +<+,0c <,则a b >
D .若a b >,则a b >
3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是
例2、解下列不等式
(1)2230x x --≥ (2)2280x x -++>
(3)
405x x ->- (4)405
x x -≥-
(5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .
变、若不等式02<--b ax x 的解集为{}32<<x x ,则=+b a

补.下列各函数中,最小值为2的是 ( )
A .1y x x =+
B .1sin sin y x x =+,(0,)2x π∈
C .2232x y x +=
+ D .21y x x
=+- 变
1. 若21x y +=,则24x y +的最小值是______
2.
3. 如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________,a+b 的取值范围是_________.
例5、
1. 积为定值
(1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12
p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4)
变、 (1)2232x y x +=
+的最小值是 .
(2)
. 2. 和为定值
(1)
,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用
1.
2.已知正数,x y 满足21x y +=,则
y
x 11+的最小值为______。

相关文档
最新文档