三角形内角和定理(第1课时)教学设计

合集下载

北师大版八年级数学上册7.5三角形内角和定理(第1课时)教学设计

北师大版八年级数学上册7.5三角形内角和定理(第1课时)教学设计
(二)讲授新知
1.教师引导学生回顾已学的三角形知识,如三角形的定义、分类等。
2.教师以直观的方式,通过动态课件或实物演示,让学生观察并发现三角形内角和等于180°的现象。
3.教师给出三角形内角和定理的表述,并对定理进行讲解,强调“任意三角形内角和都等于180°”。
4.教师通过具体的例子,如等边三角形、等腰三角形等,说明三角形内角和定理的适用范围。
3.教学评价:
(1)关注学生在课堂上的表现,评价他们的参与度、合作能力和解决问题的能力;
(2)通过课后作业和小测验,了解学生对三角形内角和定理的掌握情况;
(3)开展小组评价,让学生相互评价,提高他们的自我认知和团队协作能力。
4.教学反思:
教师在教学过程中要关注学生的反馈,及时调整教学策略,以提高教学效果。同时,教师要注重自身教学能力的提升,不断学习新的教学理念和方法,为学生提供更优质的教育。
1.培养学生的探究精神,鼓励学生主动发现问题、解决问题;
2.增强学生对数学美的感受,体会数学在生活中的应用价值;
3.培养学生严谨的学习态度,养成良好的学习习惯;
4.激发学生的爱国情怀,通过学习我国数学家的贡献,增强民族自豪感。
在教学过程中,教师要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高,实现全面发展。同时,注重启发式教学,引导学生主动思考、探索,使学生在轻松愉快的氛围中学习数学。
四、教学内容与过程
(一)导入新课
1.教师出示一块三角形的纸板,引导学生观察三角形,并提出问题:“同学们,你们知道三角形的内角和是多少度吗?如何证明三角形的内角和是180°呢?”
2.学生自由发表观点,教师收集不同的解题思路,为后续教学做好铺垫。
3.教师通过多媒体展示生活中含有三角形的实物图片,如房屋屋顶、三角形标志等,让学生感受三角形在生活中的广泛应用,从而引出本节课的学习内容:三角形内角和定理。

三角形内角和(1)教学设计

三角形内角和(1)教学设计

课题:7.5三角形内角和(1)教学设计赣榆县初级中学相小琳教学目标【知识与技能】(1)探究并掌握三角形内角和定理。

(2)了解三角形的分类,直角三角形的分类,直角三角形中两锐角互余。

(3)掌握三角形的外角定理。

【过程与方法】让学生分组探究,然后进行交流,探究三角形内角和定理,并进行应用。

【情感、态度与价值观】通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态度。

教学重点难点【重点】三角形内角和的性质。

【难点】推理说明三角形内角和定理。

教学过程(一)创设情景导入新课情景1.还记得小学学过的三角形内角和的关系吗?当时老师是用什么方法告诉大家它的由来的呢?其中有什么数学道理呢?今天我们一起来探讨三角形内角和的由来。

ACB(设计意图:利用学生的最近发展区,唤醒学生的回忆,激发学生的学习热情。

)(二)自主学习,互助探究活动1:小学时用的拼图法,再试一试!学生:动手制作一个三角形验证结论活动2:除去小学时的方法,你还可以想出其他的方法吗?学生:分小组讨论,设想几个可行的方案,整理汇报活动3:验证讨论的方法是否可行方法一:画不同形状的三角形,分别用量角器度量各角的度数并分别求每个三角形的内角和 说明:学生想到的可能性很大,验证较容易方法二:撕去三角形的一个角,形成如图所示的图形加以验证说明:此种方法可能有一部分学生想到,教学时要让学生自主探索该方法的可行性,说出可行的理论依据方法三:做辅助线(如图所示)过点A 做BC 的平行线说明:因为学生刚刚接触几何,此种方法学生想到的可能性很小,在教学时若学生没有想到的,教师可以加以引导,给出图示,让学生自主探究是否可以验证学法指导:1、 指导学生动手操作2、引导学生感悟3、启发学生们把感悟转化为数学问题(建模)4、帮助学生将说理过程进行规范(设计意图:活动一通过让学生动手做一做,让学生在感性上对结论有一定的认识。

活动二是为了激发学生的思维,让学生明确同一个问题解决的方法可能有许多种,可以试一试,同时也是为了进一步规范学生的说理。

5.5三角形内角和定理(1)doc

5.5三角形内角和定理(1)doc

5.5三角形内角和定理(1)一、教学目标1.知识与技能目标:会用平行线的性质与平角的定义证明三角形内角和等于︒180,能用三角形内角和等于︒180进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。

2.过程与方法目标:通过拼图实验、合作交流、推理论证的过程。

体现“做中学”发展学生的合情推理能力和逻辑思维能力,初步获得科学研究的体验。

3.情感态度价值观目标:通过操作、交流、探究、表述、推理等活动,培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆提出疑问,培养学生良好的学习习惯。

二、重点、难点重点:三角形内角和等于︒180的证明及应用难点:证明三角形内角和等于︒180三、教学过程“三角形的三个内角之和是︒180” 如何证明这个结论的正确性?已知:△ABC.求证:∠A+∠B+∠C=︒180证法一证明:在△ABC 的外部以CA 为边作∠ACE=∠A.延长BC 至D则 C E ∥B A ﹙内错角相等,两直线平行﹚∴∠DCE=∠B ﹙两直线平行,同位角相等﹚∵∠BCA+∠ACE+∠ECD=︒180 ﹙平角定义﹚∴∠BCA +∠A +∠B=︒180 ﹙等量代换﹚∴∠BCA +∠A +∠B = ︒1802.同学想一想还有没有其他的方法证明这个结论的正确性?证法二证明:延长BC 至D ,过C 作CE ∥BA.则∠A =∠ACE ﹙两直线平行,内错角相等﹚∠B =∠ECD ﹙两直线平行,同位角相等﹚ ∵∠BCA+∠ACE+∠ECD=︒180 E. D . A E. D .A证法三证明:过A 作EF ∥BC.则∠EAB =∠B.∠FAC = ∠C﹙两直线平行,内错角相等﹚∵∠EAB+∠BAC+∠CAF=︒180∴∠B+∠BAC+∠C=︒1801.三角形内角和定理:三角形的内角和等于︒180即△ABC 中,∠A +∠B+∠C=︒180 由证法一中的图可看出∠ACD 是三角形的一个外角,∠A 、∠B 是与∠ACD 不相邻的两个内角,由三角形内角和定理能推出∠ACD 与∠A 、 ∠B 之间有怎样的数量关系?∠ACD=∠A +∠B ∠ACD >∠A ∠ACD >∠B由此得出:推论1:三角形的一个外角等于与它不相邻的两个内角的和。

三角形内角和教学设计(通用6篇)

三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】一、激趣引入。

1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。

师:那么,下面老师给大家出个谜语。

请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。

(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。

3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。

试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。

1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。

师:三角形有几个内角啊?生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。

教资《三角形内角和》的教学设计(通用12篇)

教资《三角形内角和》的教学设计(通用12篇)

教资《三角形内角和》的教学设计教资《三角形内角和》的教学设计(通用12篇)作为一名默默奉献的教育工作者,就有可能用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

那么优秀的教学设计是什么样的呢?以下是小编收集整理的教资《三角形内角和》的教学设计(通用12篇),仅供参考,大家一起来看看吧。

教资《三角形内角和》的教学设计篇1教学目标:1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。

并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。

3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。

教学难点:通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。

"教师准备:4组学具、课件学生准备:量角器、练习本教学过程:一、兴趣导入,揭示课题1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"(生出示三角形并汇报各类三角形及特点)2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。

"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。

"(设置矛盾,使学生在矛盾中去发现问题、探究问题。

)3、我们来帮帮它们好吗?4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

你能标出三角形的三个角吗?(生快速标好)数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。

这节课我们就来研究一下"三角形的内角和"(课件片头1)"同学们,用什么方法能知道三角形的内角和?"二、猜想验证,探究规律(动手操作,探究新知)1.量角求和法证明:先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。

三角形的内角和定理教案

三角形的内角和定理教案

三角形的内角和定理教案教学目标:1. 让学生理解三角形的内角和定理。

2. 学会运用三角形的内角和定理解决实际问题。

3. 培养学生的观察能力、操作能力和解决问题的能力。

教学重点:1. 三角形的内角和定理。

2. 运用三角形的内角和定理解决实际问题。

教学难点:1. 三角形的内角和定理的理解和运用。

教学准备:1. 三角形的模型或图片。

2. 量角器。

3. 练习题。

教学过程:一、导入(5分钟)1. 向学生介绍三角形的内角和定理。

2. 引导学生思考为什么三角形的内角和等于180度。

二、新课(15分钟)1. 讲解三角形的内角和定理,并通过模型或图片进行演示。

2. 让学生用量角器测量三角形的角度,验证内角和定理。

3. 引导学生总结三角形的内角和定理的证明过程。

三、练习(10分钟)1. 让学生独立完成练习题,运用三角形的内角和定理计算三角形的角度。

2. 引导学生互相交流解题过程,讨论解题方法。

四、拓展(10分钟)1. 引导学生思考除了三角形,其他多边形的内角和是否也有定理。

2. 讲解多边形的内角和定理,并引导学生进行验证。

五、总结(5分钟)1. 让学生回顾本节课所学的内容,总结三角形的内角和定理。

2. 强调三角形的内角和定理在解决实际问题中的应用。

教学反思:本节课通过导入、新课、练习、拓展和总结环节,让学生掌握了三角形的内角和定理。

在教学过程中,注意引导学生通过观察、操作和思考,加深对内角和定理的理解。

通过练习题的设计,让学生学会运用内角和定理解决实际问题。

在拓展环节,引导学生思考其他多边形的内角和定理,培养学生的发散思维。

总体来说,本节课达到了预期的教学目标。

六、案例分析(10分钟)1. 向学生提供几个实际案例,如建筑设计、道路规划等,让学生运用三角形的内角和定理解决问题。

2. 引导学生分析案例中三角形的角度关系,运用内角和定理进行计算和验证。

七、小组讨论(10分钟)1. 将学生分成小组,让他们讨论如何运用三角形的内角和定理解决实际问题。

7.5第1课时三角形内角和定理2-2021-2022学年八年级上册初二数学(教案)(北师大版)

7.5第1课时三角形内角和定理2-2021-2022学年八年级上册初二数学(教案)(北师大版)
四、们,今天我们将要学习的是《三角形内角和定理2》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解三角形角度的情况?”(如三角形的拼接、图形设计等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形内角和定理的奥秘。
突破方法:设置具有实际背景的例题,引导学生分析问题、解决问题,让学生在实际应用中掌握三角形内角和定理。
(4)灵活运用定理解决复杂问题:学生在面对较复杂的三角形问题时,可能难以找到合适的解题思路。
突破方法:教师应引导学生分析问题、分解问题,将复杂问题转化为简单问题,逐步求解。同时,通过讲解不同解题方法,拓展学生的思维。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形内角和定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例:通过折叠、拼接等方法,让学生观察并理解三角形内角和定理的证明过程。
(3)解决实际问题中的应用:使学生能够将三角形内角和定理应用于解决实际问题,培养学以致用的能力。
举例:在建筑设计中,如何利用三角形内角和定理计算三角形屋顶的各个角度?
2.教学难点
(1)三角形内角和定理的理解:部分学生可能难以理解为什么三角形的内角和是固定的180度,需要通过实际操作、动画演示等方式帮助学生理解。
1.注重理论与实践相结合,提高学生解决问题的能力;
2.加强对学生的引导,确保讨论和实践活动紧扣主题;

《三角形内角和定理》教学设计

《三角形内角和定理》教学设计

三角形内角和定理》教学设计、教材分析一)教学内容的地位本节课是在研究了三角形的有关概念和学生在对“三角形的内角和等于1800”有感性认识的基础上,对该定理进行推理论证。

它是进一步研究三角形及其它图形的重要基础,此外,在它的证明中引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。

二)教学重点、难点:三角形内角和等于180 度,是三角形的一条重要性质,有着广泛的应用。

虽然学生在小学已经知道这一结论,但没度的证明及应用是本节课的重点。

有从理论的角度进行推理论证,因此三角形内角和等于180另外,由于学生还没有正式学习几何证明,而三角形内角和等于180 度的证明难度又较大,因此证明三角形内角和等于180 度也是本节课的难点。

突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。

二.教学目标基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。

一)知识与技能目标:会用平行线的性质与平角的定义证明三角形的内角和等于1800,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。

二)过程与方法目标:经历拼图试验、合作交流、推理论证的过程,发展学生的合情推理能力和逻辑思维能力。

三)情感、态度价值观目标:通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。

、学情分析七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了用三角形内角和等于180 度这一结论,只是没有从理论的角度去研究它,学生通过前面的学习已经具备了简单说理的能力,同时已学习了平行线的讨论交流,尝试说理做好了准备。

性质和判定及平角的定义,这就为学生自主探究,动手实验,四、教学方法与学法指导:根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作一观察实验一猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章平行线的证明
5.三角形内角和定理(第1课时)
洪庄杨乡中张献超
一、学生知识状况分析
学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.
二、教学任务分析
上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。

为此,本节课的教学目标是:
1•掌握三角形内角和定理的证明及简单应用。

2.灵活运用三角形内角和定理解决相关问题。

3•用多种方法证明三角形定理,培养一题多解的能力。

4.对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.
三、教学过程分析
本节课的设计分为四个环节:情境引入一一探索新知一一反馈练习一
—课堂小结
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理.
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与 对边平行(图6— 38 (1))然后把另外两角相向对折,使其顶点与已折角的 顶点相嵌合(图
(2)、(3)),最后得图(4)所示的结果
(1) (2) (3) 试用自己的语言说明这一结论的证明思路。

想一想,还有其
它折法吗?
(2) 实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。

想一想,如果只剪下一个角 呢? 活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

将自己 的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶, 使学生逐步过渡到严格的证明.
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法 可以验证三角形内角和定理的原因。

第二环节:探索新知
ACB
(4)
活动内容:
①用严谨的证明来论证三角形内角和定理.
②看哪个同学想的方法最多?
方法一:过A点作DE // BC
v DE // BC
•••/ DAB= / B,/ EAC= / C (两直线平行,内错角相等)
v/ DAB+ / BAC+ / EAC=180°
•••/ BAC+ / B+/ C=180°(等量代换)
方法二:作BC的延长线CD,过点C作射线CE/ BA .
v CE/BA
•••/ B= / ECD (两直线平行,同位角相等)
/ A= / ACE (两直线平行,内错角相等)
v/ BCA+ / ACE+ / ECD=180 °
•••/ A+ / B+ / ACB=180 ° (等量代换)
活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。

教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.
第三环节:反馈练习
活动内容:
(ABC中可以有3个锐角吗?3个直角呢?2个直角呢?若有1 个直角另外两角有什么特点?
(2)^ABC 中,/ C=90°,Z A=30。

,/ B=?
(3)Z A=50。

,/ B=Z 6则厶ABC 中/B= ?
(4) _______________________________ 三角形的三个内角中,只能有直角或_____________________________________ 个钝角.
(5) _____________________________ 任何一个三角形中,至少有个锐角;至多有________________________________ 个锐角.
(6)三角形中三角之比为1 : 2 : 3,则三个角各为多少度?
(7)已知:△ ABC 中,/ C=Z B=2Z A。

(a) 求/ B的度数;
(b) 若BD是AC边上的高,求/ DBC的度数?
活动目的:
通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.
教学效果:
学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决
与三角形内角和定理相关的问题。

第四环节:课堂小结
活动内容:
①证明三角形内角和定理有哪几种方法?
②辅助线的作法技巧.
③三角形内角和定理的简单应用.
活动目的:
复习巩固本课知识,提高学生的掌握程度.
教学效果:
学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明•
课后练习:课本第239页随堂练习;第241页习题6.6第1, 2, 3题
四、教学反思
三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:
(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。

(2)充分展示学生的个性,体现“学生是学习的主人”这一主题。

(3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。

相关文档
最新文档