最新苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

合集下载

最新苏科版七年级上册有理数》单元测试题 附答案

最新苏科版七年级上册有理数》单元测试题  附答案

一.选择题(共10小题,满分30分,每小题3分)1.|﹣|的值是()A.2020B.﹣2020C.﹣D.2.在3.14159,4,1.1010010001…,4.,π,中,无理数有()A.1个B.2个C.3个D.4个3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1064.数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣25.下列说法中,正确的是()A.0是最小的整数B.最大的负整数是﹣1C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数6.2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:+4,0,+5,﹣3,+2,则这5天他共背诵汉语成语()A.38个B.36个C.34个D.30个7.计算(﹣5)÷的结果等于()A.﹣25B.﹣1C.1D.258.|x﹣1|+|y+3|=0,则y﹣x﹣的值是()A.﹣4B.﹣2C.﹣1D.19.若计算机按如图所示程序工作,若输入的数是1,则输出的数是()A.﹣63B.63C.﹣639D.63910.将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6B.3C.﹣6D.﹣9二.填空题(共6小题,满分24分,每小题4分)11.计算:0﹣(﹣6)=.12.﹣3的相反数是,的倒数是.13.如果盈利100元记作+100元,那么亏损50元记作元.14.在数轴上,到原点的距离等于1.6个单位长度的点所表示的有理数是.15.定义新运算:a⊕b=ab+b,例如:3⊕2=3×2+2=8,则(﹣3)⊕4=.16.计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2030=.三.解答题(共8小题,满分66分)17.(12分)计算(1)10﹣(﹣5)+(﹣8);(2)÷(﹣1)×(﹣2);(3)(+﹣)×12;(4)(﹣1)10×2+(﹣2)3÷4.18.(6分)如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示、、;(2)将点B向左移动3个单位长度后,点B所表示的数是;(3)将点A向右移动4个单位长度后,点A所表示的数是.19.(6分)若(a﹣1)2与(b+2)2互为相反数,求(a+b)2013+a2011.20.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.21.(8分)一辆货车从百货大楼出发送货,向东行驶4千米到达小明家,继续向东行驶1.5千米到达小红家,然后向西行驶8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?22.(8分)用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.23.(9分)学校阅览室有故事书、科学书、漫画书等.已知故事书240本,科学书比故事书多.(1)求学校阅览室的科学书有多少本?(2)学校阅览室的漫画书比科学书少,求漫画书有多少本?(3)在(2)的条件下,漫画书占学校阅览室书的,求学校阅览室的书一共有多少本?24.(9分)2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期一二三四五六日增减+100 ﹣200 +400 ﹣100 ﹣100 +350 +150 (1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:,故选:D.2.解:在3.14159,4,1.1010010001…,4.,π,中,无理数有1.1010010001…,π共2个.故选:B.3.解:690万=6900000=6.9×106.故选:D.4.解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.5.解:A、没有最小的整数,错误;B、最大的负整数是﹣1,正确;C、有理数包括0、正有理数和负有理数,错误;D、一个有理数的平方是非负数,错误;故选:B.6.解:(+4+0+5﹣3+2)+5×6=38个,∴这5天他共背诵汉语成语38个,故选:A.7.解:(﹣5)÷=(﹣5)×5=﹣25.故选:A.8.解:∵|x﹣1|+|3+y|=0,∴x﹣1=0,3+y=0,解得y=﹣3,x=1,∴y﹣x﹣=﹣3﹣1﹣=﹣4.故选:A.9.解:把x=1代入计算程序中得:(1﹣8)×9=﹣63,把x=﹣63代入计算程序中得:(﹣63﹣8)×9=﹣639.则输出的数是﹣639.故选:C.10.解:图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,∵﹣2﹣4=﹣6,∴中间数是﹣6÷2=﹣3,∴m=﹣6﹣3=﹣9.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=0+6=6.故答案为:6.12.解:﹣3的相反数是:3,的倒数是:3.故答案为:3,3.13.解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.14.解:在数轴上,到原点的距离等于1.6个单位长度的点所表示的有理数是±1.6,故答案为:±1.6.15.解:∵a⊕b=ab+b,∴(﹣3)⊕4=(﹣3)×4+4=﹣12+4=﹣8.故答案为:﹣8.16.解:原式=﹣1+1﹣1+1﹣……﹣1+1=0×1015=0,故答案为:0.三.解答题(共8小题,满分66分)17.解:(1)10﹣(﹣5)+(﹣8)=10+5﹣8=7;(2)÷(﹣1)×(﹣2)=×(﹣)×(﹣)=;(3)(+﹣)×12=×12+×12﹣×12=3+2﹣6=﹣1;(4)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2﹣2=0.18.解:(1)从数轴看,点A、B、C三点分别为:﹣4,﹣2,3,故答案为:﹣4,﹣2,3;(2)将点B向左移动3个单位长度后,点B所表示的数是﹣5,故答案为﹣5;(3)将点A向右移动4个单位长度后,点A所表示的数为0,故答案为:0.19.解:∵(a﹣1)2与(b+2)2互为相反数,∴(a﹣1)2+(b+2)2=0,∴a﹣1=0,a=1,b+2=0,b=﹣2,∴(a+b)2013+a2011=(1﹣2)2013+12011=﹣1+1=0.20.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.21.解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米).答:小明家与小刚家相距7千米远.22.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.23.解:(1)240×(1+)=300,所以学校阅览室的科学书有300本;(2)300×(1﹣)=225,所以学校阅览室的漫画书有225本;(3)225÷=1200,所以学校阅览室的书一共有1200本.24.解:(1)(+100﹣200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)+400﹣(﹣200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)5000×7+(100﹣200+400﹣100﹣100+350+150)=35600(个),0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.。

苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.4.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.5.已知数轴上有A,B,C三个点,对应的数分别为﹣36,﹣12,12;动点P从A出发,以每秒1个单位的速度向终点C移动,设运动时间为t秒(1)若点P到A点的距离是到点B距离的2倍,求点P的对应数;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q 两点之间的距离为4?请说明理由.【答案】(1)解:当P在A、B之间,PA+PB=AB,因为点P到A点的距离是到点B距离的2倍,所以PA=2PB,故2PB+PB=AB,代数可得PB=8,故P点对应数为﹣12﹣8=﹣20;当P在B、C之间,PA﹣PB=AB,所以2PB﹣PB=AB,故PB=AB=24,故P点对应数为﹣12+24=12,与点C重合.(2)解:分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度.PA﹣QA=4,设时间为t1, AB+t1×1﹣3t1=4,故24+t1×1﹣3t1=4,则t1=10;第二种情况:当Q超过P时,两点相距4个单位长度.QA﹣PA=4,设时间为t2,3t2﹣(t2+AB)=4,故3t2﹣(t2+24)=4,则t2=14;第三种情况:当Q从C点返回未和P相遇时,两点相距4个单位长度.设时间为t3,3t3+t3+4+AB=2AC,故3t3+t3+4+24=2×48,则t3=17;第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.设时间为t4,3t4+t4+AB=2AC+4,故3t4+t4+24=2×48+4,则t4=19.【解析】【分析】(1)P从A运动到C,存在两种情况:1.P在A、B之间2.P在B、C之间,后计算发现此点与C重合;(2)分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度. 第二种情况:当Q超过P时,两点相距4个单位长度. 第三种情况:当Q 从C点返回未和P相遇时,两点相距4个单位长度,第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.6.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为________;线段AB的中点M所表示的数________.(2)点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)【答案】(1)18;-1(2)﹣10+3t;8﹣2t(3)解:设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,解得x= ,﹣10+3x= .答:A、B两点经过秒会相遇,相遇点所表示的数是;(4)解:由题意得, =0,解得t=2,答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.故答案为18,﹣1;﹣10+3t,8﹣2t.【解析】【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示的数为 =﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中点表示的数为0列出方程,解方程即可.7.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

2024-2025学年七年级数学上册 第一章 有理数 单元测试题(含详解)

2024-2025学年七年级数学上册 第一章  有理数  单元测试题(含详解)

第1章 有理数(单元重点综合测试)考试范围:全章的内容; 考试时间:120分钟; 总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.−3的相反数是( )A .−3B .3C .−13D .132.如果把收入2024元记作+2024,那么支出2024元记作( )A .2024B .12024C .|2024|D .−20243.下列运算结果为负数的是( )A .|−3|B .|−(−3)|C .−(−3)D .−|−3|4.下列说法中,正确的是( )A .0既不是整数也不是分数B .绝对值等于本身的数是0和1C .不是所有有理数都可以在数轴上表示D .整数和分数统称为有理数5.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个6.如图,数轴上被墨水遮盖的数的绝对值可能是( )A .−72B .−52C .72D .527.已知a =−|−3|,b =+(−0.5),c =−1,则a 、b 、c 的大小关系是( )A .b >c >aB .a >c >bC .a >b >cD .c >b >a8.凝固点是晶体物质凝固时的温度,标准大气压下,下列物质中凝固点最低的是( )物质钨水银煤油水凝固点3412℃−38.87℃−30℃0℃A .钨B .水银C .煤油D .水9.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A.a>−1B.b>1C.−a<b D.−b>a10.数轴上点A表示的数是−2,将点A沿数轴移动3单位长度得到点B,则点B表示的数是()A.−5B.1C.−1或5D.−5或1二、填空题(本大题共6小题,每小题3分,共18分)11.用“>”“<”“=”号填空:−76−6 7.12.化简:|−35|=;−|−1.5|=;|−(−2)|=.13.我国古代数学名著《九章算术》中已经用正负数来表示相反意义的量.如果节约50cm3的水记为+50cm3,那么浪费10cm3的水记为.14.如图,在数轴上有A、B两点,点A表示的数是−2024,点O为原点,若OA=OB,则点B表示的数是.15.若|x−1|+|y−5|=0,那么x=,y=.16.如图,在数轴上,点A表示的数是10,点B表示的数为50,点P是数轴上的动点.点P沿数轴的负方向运动,在运动过程中,当点P到点A的距离与点P到点B的距离比是2:3时,点P表示的数是.三、(本大题共4小题,每小题6分,共24分)17.某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?18.下面是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:−3;3.5;−(−212);−|−1|.19.有理数a,b在数轴上的对应点的位置如图所示.(1)判断:−a_______1(填“>”,“<”或“=”);(2)用“<”将a,a+1,b,−b连接起来(直按写出结果)20.把下面各数填在相应的大括号里(将各数用逗号分开):−18,3.14,0,2024,−3,5 80%,π,−|−5|,−(−7).2负整数集合{……}整数集合{……}正分数集合{……}非负整数集合{……}有理数{……}四、(本大题共3小题,每小题8分,共24分)21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A处出发去看望B、C、D处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A到B记为A→B{1,4},从B到A记为:B→A{−1,−4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C{______,______},C→B{______,______}:(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M、N,且M→A{1−a,b−5},M→N{5−a,b−2},则A→N应记为什么?直接写出你的答案.22.数轴上表示有理数a,b,c,d的点的位置如图所示:(1)请将有理数a,b,c,d按从小到大的顺序用“<”连接起来:______;(2)如果|a|=4,表示数b的点到原点的距离为6,|c|=2,c与d距离原点的距离相等,则a= ______,b=______,c=______,d=______.23.有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3,解:当x≥0时,方程可化为:x+2x=3,解得x=1,符合题意;当x<0时,方程可化为:x−2x=3,解得x=−3,符合题意.所以,原方程的解为x=1或x=−3.请根据上述解法,完成以下问题:解方程:x+2|x−1|=3;五、(本大题共2小题,每小题12分,共24分)24.点A、B、C、D、E在数轴上位置如图所示(1)点A、B、C、D、E所表示的有理数分别是______,用“<”把它们连接起来是______.(2)点F所对应的有理数是−5,请在数轴上标出点F的位置2(3)A、B之间的距离是多少?A、E之间的距离是多少?若数轴上有两点M、N,且它们对应的有理数分别是a和b,则M、N之间的距离是多少?(用含a,b的代数式表示)25.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a−b|.利用数形结合的思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和−10的两点之间的距离是;(2)数轴上表示x和−2的两点之间的距离表示为;(3)若x表示一个有理数,|x−1|+|x+3|有最小值吗?若有,请求出最小值,若没有写出理由.(4)若x表示一个有理数,求|x+4|+|x−5|+|x+6|的最小值.参考答案:1.B【分析】本题考查了相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解答此题的关键.根据符号不同,绝对值相同的两个数互为相反数即可求得答案.【详解】解:−3的相反数是3.故选:B2.D【分析】本题考查正数和负数,理解具有相反意义的量是解题的关键.正数和负数是一组具有相反意义的量,据此即可求得答案.【详解】解:收入2024元记作+2024,那么支出2024元记作−2024,故选:D3.D【分析】本题考查了有理数的绝对值、相反数等,解题的关键是正确理解有理数的绝对值以及相反数的意义.|−3|=3,结果为正数,故A错误;|−(−3)|=3,结果为正数,故B错误;−(−3)=3,结果为正数,故C错误;−|−3|=−3,结果为负数,故D正确.【详解】解:A、|−3|=3,结果为正数,故A错误;B.|−(−3)|=3,结果为正数,故B错误;C.−(−3)=3,结果为正数,故C错误;D.−|−3|=−3,结果为负数,故D正确.故选:D.4.D【分析】本题考查数轴,有理数,绝对值,关键是掌握有理数、整数的概念,由有理数和整数的概念,即可判断.【详解】解:A、0是整数,故A不符合题意;B、绝对值等于本身的数是0或正数(非负数),故B不符合题意,C、所有理数都可以在数轴上表示,故C不符合题意;D、整数和分数统称为有理数,正确,故D符合题意.故选:D.5.B【分析】本题考查了非负数的定义,解题的管计划司掌握非负数的定义.根据“零和整数统称为非负数”,即可求解.【详解】解:非负数有:3.1415,0,2.010010001…,共3个,故选:B.6.C【分析】本题主要考查了有理数与数轴,求一个数的绝对值.根据数轴确定该数的绝对值在3到4之间即可判断.【详解】解:由题意得,遮住的数在−4到−3之间,∴遮住的数的绝对值在3到4之间,∴四个选项中只有C选项符合题意,故选:C.7.A【分析】此题考查了绝对值,多重符号化简,有理数的大小比较,先化简个数,再根据有历史大小比较的方法比较即可.【详解】解:∵a=−|−3|=−3,b=+(−0.5)=−0.5,c=−1,∴−0.5>−1>3,∴b>c>a,故选:A.8.B【分析】本题考查了正负数,绝对值越大的负数反而越小,据此即可作答.【详解】解:∵|−38.87℃|=38.87℃,|−30℃|=30℃,38.87℃>30℃,∴−38.87℃<−30℃,∴下列物质中凝固点最低的是水银,故选:B.9.D【分析】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.根据数轴上的点的特征即可判断.【详解】解:A:∵点a在−1的左边,∴a<−1,故该选项不符合题意;B:∵点b在1的左边,∴b<1,故该选项不符合题意;C:∵a<−1,∴−a>1,又∵b<1,∴−a>b,故该选项不符合题意;D :∵ b <1,∴ −b >−1,又∵ a <−1,∴ −b >a ,故该选项符合题意;故选:D .10.D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:−2−3=−5,可得点A 向右移动时:−2+3=1,综上可得点B 表示的数是−5或1,故选D .11.<【分析】本题考查了有理数的大小比较,解决本题的关键是掌握两个负数大小的比较,绝对值大的其值反而小.根据两个负数,绝对值大的其值反而小即可比较.【详解】解:∵ |−76|=76,|−67|=67,而76>67,∴ −76<−67.故答案为:<.12. 35 −1.5 2【分析】本题考查了绝对值:若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=−a .【详解】解:|−35|=35,−|−1.5|=−1.5,|−(−2)|=2,故答案为:35,−1.5,2.13.−10cm 3【分析】本题考查正数和负数,正数和负数是一组具有相反意义的量,据此即可求得答案,熟练掌握具有相反意义的量是解决此题的关键【详解】解:如果节约50cm 3的水记为+50cm 3,那么浪费10cm 3的水记为−10cm 3,故答案为:−10cm 3.14.2024【分析】本题考查了数轴上两点间的距离,相反数的意义.根据数轴上两点间的距离,即可求解.【详解】解:∵点A 表示的数是−2024,OA =OB ,∴点A 点B 表示的数互为相反数,∴点B 表示的数为:−(−2024)=2024,故答案为:2024.15. 1 5【分析】本题考查了绝对值的非负性和解一元一次方程,熟练掌握任何数的绝对值都是非负数是解题的关键,据此作答即可.【详解】∵|x−1|+|y−5|=0,|x−1|≥0,|y−5|≥0,∴x−1=0,y−5=0,解得x =1,y =5,故答案为:1,5.16.26或−70【分析】本题考查了数轴上的动点问题、数轴上两点间的距离.可分为“当点P 运动到点A 右侧时”和“当点P 运动到点A 左侧时”两种情况讨论,根据“点P 到点A 的距离与点P 到点B 的距离比是2:3”,列式计算即可,根据数轴得到两点间的距离是解题的关键.【详解】解:∵在点P 运动过程中,点P 到点A 的距离与点P 到点B 的距离比是2:3,∴PA:PB =2:3,当点P 运动到点A 右侧时,PA =23+2AB =25×(50−10)=16,∴此时点P 表示的数是10+16=26;当点P 运动到点A 左侧时,PA =23−2AB =2×(50−10)=80,∴此时点P 表示的数是10−80=−70,综上所述,点P 表示的数是26或−70.故答案为:26或−7017.合格,过程见详解【分析】本题考查用正负数表示变化的量,在用正负数表示变化的量时,先规定其中的一个为正(或负),则其相反意义的量就用负(或正)表示.理解500±30(mL )的意义,根据题意进行判断即可.【详解】解:“500±30(mL )”是500 mL 为标准容量,470~530(mL )是合格范围,故503mL,511mL,489mL,473mL,527mL,抽查产品的容量是合格的.18.(1)见解析(2)−3<−|−1|<−(−212)<3.5【分析】本题主要考查了用数轴表示有理数,根据数轴比较有理数的大小,化简绝对值和多重符号:(1)先规定向右为正方向,以及单位长度,再化简绝对值和多重符号,最后表示出各数即可;(2)根据数轴上左边的数小于右边的数用小于号将各数连接起来即可.【详解】(1)解:−(−212)=212,−|−1|=−1(2)解;由数轴可得,−3<−|−1|<−(−212)<3.5.19.(1)<(2)−b<a<a+1<b.【分析】(1)利用数轴和相反数的意义解答即可;(2)利用数轴和相反数的意义解答即可.【详解】(1)解:∵−1<a<0,∴0<−a<1.故答案为:<;(2)解:∵−1<a<0,b>1,∴0<a+1<1,−b<−1,如图,∴−b<a<a+1<b.20.见解析【分析】本题考查了正数,负数,整数,分数,有理数,以及无理数的概念,解题的关键是熟练掌握相关定义,要注意的是本题中的π2是无限不循环小数,为无理数.【详解】解:∵ −|−5|=−5,−(−7)=7,3.14=3750,80%=45,∴ 这些数可按如下分类,负整数集合{−18,−|−5|……}整数集合{−18,0,2024,−|−5|,−(−7)……}正分数集合{3.14,80%……}非负整数集合{0,2024,−(−7)……}有理数{−18,3.14,0,2024,−35,80%,−|−5|,−(−7)……}21.(1)3,4;−2,0(2)10(3)(4,3)【分析】本题考查了正负数在网格线中的运动路线问题,数形结合,明确运动规则,是解题的关键.(1)根据向上向右走均为正,向下向左走均为负,分别写出各点的坐标即可;(2)分别根据各点的坐标计算总长即可;(3)将M→A ,M→N 对应的横纵坐标相减即可得出答案.【详解】(1)解:图中A→C {3,4},C→B {−2,0}故答案为:3,4;−2,0.(2)解:由已知可得:A→B 表示为{1,4},B→C 记为{2,0},C→D 记为{1,−2},则该甲虫走过的路程为:1+4+2+1+2=10.(3)解:由M→A {1−a,b−5},M→N {5−a,b−2},可知:5−a−(1−a )=4,b−2−(b−5)=3,∴点A 向右走4个格点,向上走3个格点到点N ,∴A→N 应记为(4,3).22.(1)a <c <d <b(2)−4,6,−2,2【分析】此题主要考查了数轴以及绝对值的性质,正确利用数形结合得出答案是解题关键.(1)利用数轴上a,b,c,d的位置进而得出大小关系;(2)利用绝对值的意义以及结合数轴得出答案【详解】(1)由题意得:a<c<d<b,故答案为:a<c<d<b;(2)∵|a|=4,a<0,∴a=−4,∵数b的点到原点的距离为6,b>0,∴b=6,∵|c|=2,c<0,∴c=−2,∵c与d距离原点的距离相等,d>0,∴d=2.故答案为:−4,6,−2,2.23.x=−1或x=53【分析】本题考查了含绝对值符号的一元一次方程,分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案是解题关键,以防遗漏.【详解】当x<1时,方程可化为:x+2(1−x)=3,解得x=−1,符合题意;,符合题意;当x≥1时,方程可化为:x+2(x−1)=3,解得x=53.所以,原方程的解为:x=−1或x=5324.(1)−3,2,3.5,0,−1;−3<−1<0<2<3.5(2)见详解(3)5;2;|a−b|【分析】本题主要考查了数轴表示有理数、利用数轴比较大小和数轴上两点之间的距离.(1)根据数轴写出对应点的有理数,然后利用数轴比较有理数的大小即可.(2)根据有理数的大小在数轴上标出即可.(3)根据数轴上两点的距离公式求解即可.【详解】(1)解:如图,点A、B、C、D、E所对应的有理数分别是:−3,2,3.5,0,−1利用数轴从左到右依次增大,可得A<E<D<B<C.即−3<−1<0<2<3.5故答案为:−3,2,3.5,0,−1;−3<−1<0<2<3.5在−2和−3的正中间,标示如下:(2)−52(3)A、B之间的距离是:|2−(−3)|=5;A、E之间的距离是:|(−3)−(−1)|=|−2|=2,M、N之间的距离是|a−b|25.(1)8;12(2)|x+2|(3)|x−1|+|x+3|有最小值,最小值为4(4)11【分析】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.(1)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(2)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(3)根据题意可得|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,即可;(4)根据题意可得|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,即可.【详解】(1)解:|10−2|=8;|2−(−10)|=12;故答案为:8;12.(2)数轴上表示x和−2的两点之间的距离表示为|x−(−2)|=|x+2|;故答案为:|x+2|.(3)解:|x−1|+|x+3|有最小值,根据题意得:|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,∵1−(−3)=4,∴|x−1|+|x+3|有最小值,最小值为4;(4)解:根据题意得:|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,∴当x=−4时,有最小值,最小值为5−(−4)+(−4)−(−6)=11.。

苏科版七年级数学上册 有理数单元测试题(Word版 含解析)

苏科版七年级数学上册 有理数单元测试题(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P、Q均停止运动.设运动的时间为t秒.问:(1)用含t的代数式表示动点P在运动过程中距O点的距离;(2)P、Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少?(3)是否存在P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等时?若存在,请直接写出t的取值;若不存在,请说明理由.【答案】(1)解:设动点P在运动过程中距O点的距离为S,当P从A运动到O时,所需时间为:(秒),当0≤t≤5时,S=10﹣2t,当P从O运动到B时,所需时间为:(秒)∴P从A运动到B时,所需时间为:15秒当5<t≤15时,S=t﹣5,即动点P在运动过程中距O点的距离S=;(2)解:设经过a秒,P、Q两点相遇,则点P运动的距离为10+(a-5),点Q运动的距离为a,10+(a-5)+a=28解得,a=,则点M所对应的数是:18﹣=,即点M所对应的数是;(3)解:存在,t=2或t=,理由:当0≤t≤5时,10﹣2t=(18﹣10﹣t)×1,解得,t=2当5<t≤8时,(t﹣10÷2)×1=(18﹣10﹣t)×1,解得,t=,当8<t≤15时,(t﹣10÷2)×1=[t﹣(18﹣10)÷1]×1该方程无解,故存在,t=2或t= .【解析】【分析】(1)分点P在AO上和点P在OB上两种情况,先求出点P在每段时t 的取值范围,再根据题意分别列出代数式可得答案;(2)根据相遇时P,Q运动的时间相等,P,Q运动的距离和等于28可得方程,根据解方程,可得答案;(3)分0≤t≤5,5<t≤8,8<t≤15三种情况,根据PO=BQ,可得方程,分别解出方程,可得答案.2.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.3.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。

最新苏科版数学七年级上册 有理数单元测试卷(含答案解析)

最新苏科版数学七年级上册 有理数单元测试卷(含答案解析)

一、初一数学有理数解答题压轴题精选(难)1.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.2.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.3.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

最新苏科版数学七年级上册 有理数单元测试卷 (word版,含解析)

最新苏科版数学七年级上册 有理数单元测试卷 (word版,含解析)

一、初一数学有理数解答题压轴题精选(难)1.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.2.已知 , , 三点在数轴上对应的位置如图如示,其中点对应的数为2,, .(1)点对应的数是________,点对应的数是________;(2)动点,分别同时从,两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点为的中点,点在上,且,设运动时间为 .①请直接用含的代数式表示点,对应的数;②当时,求的值.【答案】(1)-12;5(2)解:① 对应的数是,对应的数是;② ,,,,由,得,由,得,故当秒或秒时, .【解析】【解答】解:(1)点对应的数为,,,点对应的数是:;点对应的数是:;故点对应的数为,点对应的数是 .【分析】(1)根据点对应的数,由的长确定出点表示的数,再根据的长确定出点表示的数;(2)①根据题意表示出点、的数即可;②列出含t的、的代数式,得出方程,求出方程的解即可.3.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值【答案】(1)<;>;>(2)解:① 且 , ,且 , .∵点B到点A,C的距离相等,∴∴ ,∴②∵ , ∴ ,③依题意,得∴原式=∵∴原式= 【此处不取-2没关系】∵当 P 点在运动过程中,原式的值保持不变,即原式的值与无关∴ ,∴【解析】【解答】解:(1)由题中的数轴可知,a<0<b<c,且∴abc<0,a+b>ac,ab-ac>0,故答案为:<,>,>;【分析】(1)根据数轴上的点所表示的数的特点得出a<0<b<c,且,从而根据有理数的乘法法则,加法法则、减法法则及有理数大小的比较方法即可一一判断得出答案;(2)①根据数轴上点的位置及绝对值的意义、有理数的乘方确定a、b的取值,进而根据点B到点A,C的距离相等,即即可求解;②根据数轴上两个点之间的距离及点B到点A,C的距离相等,即,即可得结论;③根据绝对值的意义把算式化简,再根据当P点在运动过程中,原式的值保持不变,即原式的值与无关列出方程,求解即可.4.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)解:∵b是最小的正整数∴b=1∵+=0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,①当m<0时,|2m|=-2m;②当m≥0时,|2m|=2m;(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,∴BC=3t+4,AB=3t+2∴BC-AB=3t+4-(3t+2)=2【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.5.如图,点A、B、C在数轴上表示的数分别是-3、1、5。

【精选】苏科版七年级数学上册 有理数单元测试卷 (word版,含解析)

【精选】苏科版七年级数学上册 有理数单元测试卷 (word版,含解析)

一、初一数学有理数解答题压轴题精选(难)1.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.2.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.3.已知 , , 三点在数轴上对应的位置如图如示,其中点对应的数为2,, .(1)点对应的数是________,点对应的数是________;(2)动点,分别同时从,两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点为的中点,点在上,且,设运动时间为 .①请直接用含的代数式表示点,对应的数;②当时,求的值.【答案】(1)-12;5(2)解:① 对应的数是,对应的数是;② ,,,,由,得,由,得,故当秒或秒时, .【解析】【解答】解:(1)点对应的数为,,,点对应的数是:;点对应的数是:;故点对应的数为,点对应的数是 .【分析】(1)根据点对应的数,由的长确定出点表示的数,再根据的长确定出点表示的数;(2)①根据题意表示出点、的数即可;②列出含t的、的代数式,得出方程,求出方程的解即可.4.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.(1)在数轴上标示出-4、-3、-2、4、(2)结合数轴与绝对值的知识回答下列问题:①数轴上表示4和-2的两点之间的距离是________,表示-2和-4两点之间的距离是________.一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,即那么a=________②若数轴上表示数a的点位于-3和2之间,则的值是________;③当a取________时,|a+4|+|a-1-|+|a-4|的值最小,最小值是________.【答案】(1)解:如图所示:(2)6;2;1或-5;5;1;8.【解析】【解答】解:(2)①数轴上表示4和−2的两点之间的距离是4−(−2)=6,表示−2和−4两点之间的距离是−2−(−4)=2;∵|a−(−2)|=3,∴a−(−2)=±3,解得a=−5或1;②因为|a+3|+|a−2|表示数轴上数a和−3,2之间距离的和,又因为数a位于−3与2之间,所以|a+3|+|a−2|=5;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,所以当a=1时,式子的值最小,此时|a+4|+|a−1|+|a−4|的最小值是8.故答案为:6,2,−5或1;5;1,8.【分析】(1)数轴上原点表示正数,原点左边表示负数,原点右边表示正数,然后在数轴上找出表示各个数的点,用实心的小原点标记,并在实心小圆点上方写出该点所表示的数;(2)①根据数轴上任意两点的距离等于这两点所表示的数差的绝对值即可算出答案;解含绝对值的方程,根据绝对值的意义去掉绝对值符号,再解即可;②因为数a位于−3与2之间,故a+3>0,a−2<0,根据绝对值的意义去掉绝对值符号再合并他即可;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,根据两点之间线段最短即可得出当a=1时,式子的值最小,从而将a=1代入即可算出答案。

新苏科版七年级数学上册《有理数》单元测试题

新苏科版七年级数学上册《有理数》单元测试题

《有理数》单元测试题一、知识点填空1、三个重要的定义(1)正数: 的数叫做正数 (2)负数:在正数前面加上“-”号,表示比0小的数叫做负数; (3)0即不是正数也不是负数,0是正数和负数的分界,可以表示没有也可表示具体的温度。

2、有理数的概念及分类 (1)有理数包含 和 (2)有理数包含 、 和(3)有理数包含 、 、 、 和(4)整数包含 、 和 (5)分数包含 和(6)正有理数包含 和 (7)负有理数包含 和(8)任何有理数一定可以化成 和 ,只有有限小数和无限循环小数是有理数,因为它们都能化为分数,而无限不循环小数不能化成分数,所以无限不循环小数不是有理数。

(9)非负数包含 ;非负整数包含3、数轴:有 、 和 的 叫作数轴。

(1)任何一个有理数都能在数轴上找到 的点与之对应(2)数轴上的任何一个点都对应唯一一个数,不一定是有理数。

4、相反数:若两个数只有 ,则其中一个数叫另一个数的相反数或者叫它们互为相反数。

0的相反数是 ,相反数是它本身的数是 。

(1)互为相反数的两个数,在数轴上位于原点的 ,并且与原点的 ;互为相反数的两个数关于原点 。

数a 的相反数是 。

(2)如果数a 和数b 互为相反数,则a +b =0或a = —b ;)0(1≠-=ab b a 或)0(1≠-=ab ab (3)求一个数的相反数,只要在这个数的前面加上“—”即可;例如b a -的相反数是(4)多重符号的化简规律:当负号的个数为奇数个时,结果为 号;当负号的个数为偶数个时,结果为 号;与正号无关。

5、绝对值: 数轴上表示数a 的点与 叫做数a 的绝对值,记作(1)几何意义:一个数的绝对值就是数轴上表示 与 。

(2)代数意义:一个正数的绝对值是 ;0的绝对值是 ;一个负数的绝对值是 。

(3)非负数的绝对值是 ; 若0a ≥ ,则a = 。

若a = a , 则a非正数的绝对值是 ; 若0a ≤ ,则a = 。

若a =–a ,则a(4)绝对值非负性:“一个数的绝对值是数轴上表示该数的点与原点的距离”,而距离只能 是 ,也就是说任何一个数的绝对值都是非负数,即0≥a (5)互为相反数的两个数到原点的距离 ,也就是说互为相反数的两个数绝对值相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。

3.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.(1)请写出线段AB的中点C对应的数.(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?【答案】(1)解:AB=120-(-20)=140,则BC=70C点对应的数是50.(2)解:设P、Q运动时间为t,则BP=3t,AQ=2t当点P、Q重合时,则BP+AQ=140即:3t+2t=140,解得:t=28所以AP=56点P、Q重合时对应的数为56-20=36(3)解:分两种情况,①当P、Q相遇之前,BP+AQ=140-50,即3t+2t=140-50,解得:t=18②当P、Q相遇之后,BP+AQ=140+50,即3t+2t=140+50,解得:t=38当P、Q两点运动18秒或38秒时,P、Q相距50个单位长度.【解析】【分析】(1)先求出AB的长度,即可求出线段BC,再确定C在数轴上表示的数即可;(2)设P、Q运动时间为t,则BP=3t,AQ=2t,根据题意可知BP+AQ=140,即3t+2t=140,进而求得t的值,即可表示P、Q重合点的对应数.(3)分两种情况,①当P、Q相遇之前,BP+AQ=140-50;②当P、Q相遇之后,BP+AQ=140+50,分别求出t的值,即可解决问题.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

(1)用“>”“<”或”=”填空:b________0,a+b________0,a-c________0 ,b-c________0 (2)|b-1|+|a-1|=________;(3)化简:|a+b|+|a-c|-|b|+|b-c|。

【答案】(1)<;=;>;<(2)a-b(3)解:∵a+b=0,a>c,b<c,∴原式=0+a-c-(-b)+c-b=a.【解析】【解答】解:(1)b<0∵表示数a的点,数b的点与原点的距离相等,∴a+b=0;∵a>c,∴a-c>0;∵b<c,∴b-c<0.故答案为:<、=、>、<.(2)∵b<1,a>1∴b-1<0,a-1>0,∴|b-1|+|a-1|=1-b+a-1=a-b;故答案为:a-b;【分析】(1)观察数轴可知b<0,a与b互为相反数,a>c,b<c,由此可得答案。

(2)观察数轴可知b<1,a>1,从而可判断出b-1,a-1的符号,然后化简绝对值,合并即可。

(3)由a+b=0,a>c,b<c,再化简绝对值,然后合并同类项。

5.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.6.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.7.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.(1)数轴上点C表示的数是________;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)【答案】(1)-2(2)解:①设t秒后点O恰好是PQ的中点.根据题意t秒后,点由题意,得-12+2t=-(8-t)解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=10-2t,QC=10-t,所以10-2t=2(10-t)或10-t=2(10-2t)解得t= ;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC∵PC=-10+2t,PQ=20-3t∴-10+2t=2(20-3t)或20-3t=2(-10+2t)解得t= 或t= ;当点Q为CP的三等分点时PQ=2CQ或QC=2PQ∵当P、Q相遇时,两点都停止运动∴此情况不成立.综上,t= 秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点【解析】【解答】(1)解:∵点A表示的数为-12,点B表示的数为8,点C为线段AB 的中点.∴点C表示的数为:故答案为:-2【分析】(1)利用中点公式计算即可;(2)①用t表示OP,OQ,根据OP=OQ列方程求解;②分别以P、Q、C为三等分点,分类讨论.8.如图,在数轴上A点表示的数是-8,B点表示的数是2。

相关文档
最新文档