九年级数学中考基础训练13
2020年九年级中考数学复习专题训练:《相似综合 》(含答案)

2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。
2021年江西省九年级中考数学一轮复习课时训练:一元二次方程

一元二次方程 (答题时间:45分钟) 【基础训练】1.(2020·聊城中考)用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( ) A .⎝⎛⎭⎫x -34 2 =1716 B .⎝⎛⎭⎫x -34 2=12 C.⎝⎛⎭⎫x -32 2 =134 D .⎝⎛⎭⎫x -32 2=1142.(2020·黔东南中考)已知关于x 的一元二次方程x 2+5x -m =0的一个根是2,则另一个根是( ) A.-7 B .7 C .3 D .-33.(2019·内江中考)一个等腰三角形的底边长是6,腰长是一元二次方程x 2-8x +15=0的一根,则此三角形的周长是( )A.16 B .12 C.14 D .12或164.(2020·河南中考)定义运算:m ☆n =mn 2-mn -1.例如:4☆2=4×22-4×2-1=7.则方程1☆x =0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根5.(2020·自贡中考)关于x 的一元二次方程ax 2-2x +2=0有两个相等实数根,则a 的值为( ) A.12 B .-12C .1D .-1 6.关于x 的一元二次方程2x n -3+m =4的一个解为x =1,则mn 的值为( ) A.9 B .8 C .10 D .67.(2020·黔西南中考)已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( ) A.m <2 B .m ≤2C.m <2且m ≠1 D .m ≤2且m ≠18.(2019·广东中考)已知x 1,x 2是一元二次方程x 2-2x =0的两个实数根,下列结论错误的是( ) A.x 1≠x 2 B .x 21 -2x 1=0 C.x 1+x 2=2 D .x 1x 2=29.(2020·遵义中考)已知x 1,x 2是方程x 2-3x -2=0的两根,则x 21 +x 22 的值为( )A.5 B .10 C .11 D .1310.(2019·贵港中考)若α,β是关于x 的一元二次方程x 2-2x +m =0的两实根,且1α +1β =-23 ,则m 等于( )A.-2 B .-3 C .2 D .311.(2020·衢州中考)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )2020年1~5月份某厂家的口罩产量统计图A.180(1-x)2=461 B.180(1+x)2=461C.368(1-x)2=442 D.368(1+x)2=44212.(2020·青海中考)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=4.请你写出正确的一元二次方程____.13.(2020·上海中考)如果关于x的方程x2-4x+m=0有两个相等的实数根,那么m的值是____.14.(2019·南昌模拟)设α,β是方程x2-x-2 019=0的两个实数根,则α3-2 021α-β的值为____.15.(2020·黔西南中考)有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了____个人.16.(2020·无锡中考)解方程:x2+x-1=0.17.(2020·南京中考)用配方法解方程:x2-2x-3=0.18.(2020·玉林中考)已知关于x的一元二次方程x2+2x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求aa+1-1b+1的值.19.(2020·上海中考)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.解答下列问题:(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8,9月份营业额的月增长率.【能力提升】20.(2020·铜仁中考)已知m,n,4分别是等腰三角形(非等边三角形)三边的长,且m,n是关于x的一元二次方程x2-6x+k+2=0的两个根,则k的值等于()A.7 B.7或6 C.6或-7 D.621.(2020·遵义中考)如图,把一块长为40 cm,宽为30 cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600 cm2,设剪去小正方形的边长为x cm,则可列方程为()A.(30-2x)(40-x)=600B.(30-x)(40-x)=600C.(30-x)(40-2x)=600D.(30-2x)(40-2x)=60022.(2019·呼和浩特中考)若x1,x2是一元二次方程x2+x-3=0的两个实数根,则x32-4x21+17的值为() A.-2 B.6 C.-4 D.423.(2019·十堰中考)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=____.24.(2019·荆门中考)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1-1)(x2-1)=8k2,则k的值为____.25.(2019·东营中考)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32 000元?26.(2020·南充中考)已知x1,x2是一元二次方程x2-2x+k+2=0的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式1x1+1x2=k-2成立?如果存在,请求出k的值;如果不存在,请说明理由.答案一元二次方程 (答题时间:45分钟) 【基础训练】1.(2020·聊城中考)用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( A )A .⎝⎛⎭⎫x -34 2 =1716B .⎝⎛⎭⎫x -34 2=12 C.⎝⎛⎭⎫x -32 2 =134 D .⎝⎛⎭⎫x -32 2=1142.(2020·黔东南中考)已知关于x 的一元二次方程x 2+5x -m =0的一个根是2,则另一个根是( A ) A.-7 B .7 C .3 D .-33.(2019·内江中考)一个等腰三角形的底边长是6,腰长是一元二次方程x 2-8x +15=0的一根,则此三角形的周长是( A )A.16 B .12 C.14 D .12或164.(2020·河南中考)定义运算:m ☆n =mn 2-mn -1.例如:4☆2=4×22-4×2-1=7.则方程1☆x =0的根的情况为( A )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根5.(2020·自贡中考)关于x 的一元二次方程ax 2-2x +2=0有两个相等实数根,则a 的值为( A ) A.12 B .-12C .1D .-1 6.关于x 的一元二次方程2x n -3+m =4的一个解为x =1,则mn 的值为( C ) A.9 B .8 C .10 D .67.(2020·黔西南中考)已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( D ) A.m <2 B .m ≤2C.m <2且m ≠1 D .m ≤2且m ≠18.(2019·广东中考)已知x 1,x 2是一元二次方程x 2-2x =0的两个实数根,下列结论错误的是( D ) A.x 1≠x 2 B .x 21 -2x 1=0 C.x 1+x 2=2 D .x 1x 2=29.(2020·遵义中考)已知x 1,x 2是方程x 2-3x -2=0的两根,则x 21 +x 22 的值为( D )A.5 B .10 C .11 D .1310.(2019·贵港中考)若α,β是关于x 的一元二次方程x 2-2x +m =0的两实根,且1α +1β =-23 ,则m 等于( B )A.-2 B .-3 C .2 D .311.(2020·衢州中考)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( B )2020年1~5月份某厂家的口罩产量统计图A.180(1-x )2=461 B .180(1+x )2=461 C.368(1-x )2=442 D .368(1+x )2=44212.(2020·青海中考)在解一元二次方程x 2+bx +c =0时,小明看错了一次项系数b ,得到的解为x 1=2,x 2=3;小刚看错了常数项c ,得到的解为x 1=1,x 2=4.请你写出正确的一元二次方程__x 2-5x +6=0__.13.(2020·上海中考)如果关于x 的方程x 2-4x +m =0有两个相等的实数根,那么m 的值是__4__. 14.(2019·南昌模拟)设α,β是方程x 2-x -2 019=0的两个实数根,则α3-2 021α-β的值为__2__018__. 15.(2020·黔西南中考)有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了__10__个人.16.(2020·无锡中考)解方程:x 2+x -1=0. 解:∵a =1,b =1,c =-1,∴Δ=12-4×1×(-1)=5,x =-1±52×1 .∴x 1=-1+52 ,x 2=-1-52 .17.(2020·南京中考)用配方法解方程: x 2-2x -3=0. 解:x 2-2x =3. x 2-2x +1=3+1. (x -1)2=4. x -1=±2. ∴x 1=3,x 2=-1.18.(2020·玉林中考)已知关于x 的一元二次方程x 2+2x -k =0有两个不相等的实数根. (1)求k 的取值范围;(2)若方程的两个不相等的实数根是a ,b ,求a a +1 -1b +1 的值.解:(1)∵方程x 2+2x -k =0有两个不相等的实数根,∴Δ=4+4k >0. 解得k >-1;(2)由根与系数的关系,得a +b =-2,ab =-k . ∴a a +1 -1b +1 =ab -1ab +a +b +1 =-k -1-k -2+1=1. 19.(2020·上海中考)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.解答下列问题:(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8,9月份营业额的月增长率.解:(1)该商店去年“十一黄金周”这七天的总营业额为450+450×12%=504(万元);(2)设该商店去年8,9月份营业额的月增长率为x.根据题意,得350(1+x)2=504.解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该商店去年8,9月份营业额的月增长率为20%.【能力提升】20.(2020·铜仁中考)已知m,n,4分别是等腰三角形(非等边三角形)三边的长,且m,n是关于x的一元二次方程x2-6x+k+2=0的两个根,则k的值等于(B)A.7 B.7或6 C.6或-7 D.621.(2020·遵义中考)如图,把一块长为40 cm,宽为30 cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600 cm2,设剪去小正方形的边长为x cm,则可列方程为(D)A.(30-2x)(40-x)=600B.(30-x)(40-x)=600C.(30-x)(40-2x)=600D.(30-2x)(40-2x)=60022.(2019·呼和浩特中考)若x1,x2是一元二次方程x2+x-3=0的两个实数根,则x32-4x21+17的值为(A)A.-2 B.6 C.-4 D.423.(2019·十堰中考)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=__-3或4__.24.(2019·荆门中考)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1-1)(x2-1)=8k2,则k的值为__1__.25.(2019·东营中考)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32 000元?解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个.根据题意,得(x-100)[300+5(200-x)]=32 000.整理,得x2-360x+32 400=0.解得x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32 000元.26.(2020·南充中考)已知x1,x2是一元二次方程x2-2x+k+2=0的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式1x1+1x2=k-2成立?如果存在,请求出k的值;如果不存在,请说明理由.解:(1)∵一元二次方程x2-2x+k+2=0有两个实数根,∴Δ=(-2)2-4×1×(k+2)≥0.解得k≤-1;(2)由一元二次方程根与系数的关系,得x1+x2=2,x1x2=k+2.∴1x1+1x2=x1+x2x1x2=2k+2.又1x1+1x2=k-2,∴2k+2=k-2,即(k+2)(k-2)=2.∴k2-6=0.解得k=±6. 又∵k≤-1,∴k=-6.。
中考数学专题练习常用角的单位及换算(含解析)

2019中考数学专题练习-常用角的单位及换算(含解析)一、单选题1.把10.26°用度分秒表示为()A.10°15′36"B.10°20′6"C.10°14′6"D.10°26".2.下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′2 4″4.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′5.0.25°等于()分.A.60B.15C.90D.3606.下列计算错误的是()A.0.25°=900″B.1.5°=90′C.1000″=()°D.125.45°=1254.5′7.∠1=45゜24′,∠2=45.3゜,∠3=45゜18′,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对8.已知∠1=37°36′,∠2=37.36°,则∠1与∠2的大小关系为()A.∠1<∠2B.∠1=∠2C.∠1>∠2D.无法比较9.下列计算错误的是()A.0.25°=900″B.1.5°=90′C.1000″=()°D.125.45°=1254.5′10.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠1=∠2=∠311.已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是()A.∠A=∠BB.∠B=∠CC.∠A=∠CD.三个角互不相等12.下列算式正确的是()∠33.33°=33°3′3″∠33.33°=33°19′48″∠50°40′33″=50.43°∠50°40′33″=50.675°A.∠和∠B.∠和∠C.∠和∠D.∠和∠二、填空题13.34.37°=34°________′________″.14.0.5°=________′=________″;1800″=________°=________′.15.计算:180°﹣20°40′=________.16.8.31°=________°________′________″.17.计算,________18.计算:33.21°=________°________′________″.19.角度换算:26°48′=________°.三、计算题20.计算:(1)46゜39′+57゜41;(2)90゜﹣77゜29′32″;(3)31゜17′×5;(4)176゜52′÷3(精确到分)21.计算下列各题:(1)153°19′42″+26°40′28″;(2)90°3″﹣57°21′44″;(3)33°15′16″×5;(4)175°16′30″﹣47°30′÷6+4°12′50″×3.22.计算:(1)13°29’+78°37‘ (2)62°5’-21°39‘ (3)22°16′×5(4)42°15′÷5四、解答题23.把65°28′45″化成度.24.3.5°与3°5′的区别是什么?25.计算:(1)22°18′×5;(2)90°﹣57°23′27″.五、综合题26.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.27.综合题。
2021年上海中考数学母题讲次13 动态几何题-(教师版)

专题13动态几何题【母题来源1】(2019•上海中考真题)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么△EDF的正切值是.【答案】由折叠可得AE=FE,△AEB=△FEB,由折叠的性质以及三角形外角性质,即可得到△AEB=△EDF,进而得到tan△EDF=tan△AEB==2.【解析】解:如图所示,由折叠可得AE=FE,△AEB=△FEB=△AEF,△正方形ABCD中,E是AD的中点,△AE=DE=AD=AB,△DE=FE,△△EDF=△EFD,又△△AEF是△DEF的外角,△△AEF=△EDF+△EFD,△△EDF=△AEF,△△AEB=△EDF,△tan△EDF=tan△AEB==2.故答案为:2.【母题来源2】(2017•上海中考真题)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF△AB,那么n的值是.【答案】分两种情形讨论,分别画出图形求解即可.【解析】解:△如图1中,EF△AB时,△ACE=△A=45°,△旋转角n=45时,EF△AB.△如图2中,EF△AB时,△ACE+△A=180°,△△ACE=135°△旋转角n=360﹣135=225,△0<n<180,△此种情形不合题意,故答案为45【母题来源3】(2016•上海中考真题)如图所示,梯形ABCD中,AB△DC,△B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且△AGE=△DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【答案】(1)作DH△AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则△AGE=△GAE,则判断G点与D点重合,即ED=EA,作EM△AD于M,如图1,则AM=AD=,通过证明Rt△AME△Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE 时,则△AGE=△AEG,可证明AE=AD=15,(3)作DH△AB于H,如图2,则AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG△△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF△△EGA,于是利用相似比可表示出x和y的关系.【解析】解:(1)作DH△AB于H,如图1,易得四边形BCDH为矩形,△DH=BC=12,CD=BH,在Rt△ADH中,AH===9,△BH=AB﹣AH=16﹣9=7,△CD=7;(2)△EA=EG时,则△AGE=△GAE,△△AGE=△DAB,△△GAE=△DAB,△G点与D点重合,即ED=EA,作EM△AD于M,如图1,则AM=AD=,△△MAE=△HAD,△Rt△AME△Rt△AHD,△AE:AD=AM:AH,即AE:15=:9,解得AE=;△GA=GE时,则△GAE=△AEG,△△AGE=△DAB,而△AGE=△ADG+△DAG,△DAB=△GAE+△DAG,△△GAE=△ADG,△△AEG=△ADG,△AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH△AB于H,如图2,则AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,△△AGE=△DAB,△AEG=△DEA,△△EAG△△EDA,△EG:AE=AE:ED,即EG:x=x:,△EG=,△DG=DE﹣EG=﹣,△DF△AE,△△DGF△△EGA,△DF:AE=DG:EG,即y:x=(﹣):,△y=(9<x<).1、抓住图形运动后角度和长度等性质的特点;2、寻找几何模型突破点;3、主要有以下几点思路:数量关系突破:1、勾股定理(比较初级,实用);2、锐角三角比;3、相似;角度关系突破:平行,全等,相似,其他几何性质;4、分类讨论多种情况(可以以某一种情况切入),记得验证是否均满足题意,有些需要舍去;5、综合分析法,从已知和结果同时出发往中间靠(也就是寻找第3点的突破点)。
北师大版九年级中考数学模拟考试试题(含答案)(山东地区)

九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
九年级数学中考复习新定义专题练习

九年级数学中考复习新定义专题练习1.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2 + a .如:1☆3=1×32+1=10.则(-2)☆3的值为 .2.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= .3. 用“△”定义新运算:对于任意有理数a ,b ,当a ≤b 时,都有2a b a b ∆=;当a >b 时,都有2a b ab ∆=.那么,2△6 = ,2()3-△(3)-= . 4. 如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.5. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB ⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°6.(2019•枣庄)对于实数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x ⊗(﹣y )=2,(2y )⊗x =﹣1,求x +y 的值.7. 阅读材料:规定一种新的运算:a c =b ad bc d -.例如:1214-23=-2.34××= (1)按照这个规定,请你计算5624的值.(2)按照这个规定,当5212242=-+-x x 时求x 的值.8. 对于平面直角坐标系xOy 中的点M 和图形G ,若在图形G 上存在一点N ,使M ,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O 的半径为3时,在点P 1(1,0),P 2,1),P 3(72,0),P 4(5,0)中,⊙O 的和睦点是________;(2)若点P (4,3)为⊙O 的和睦点,求⊙O 的半径r 的取值范围;(3)点A 在直线y =﹣1上,将点A 向上平移4个单位长度得到点B ,以AB 为边构造正方形ABCD ,且C ,D 两点都在AB 右侧.已知点E,若线段OE 上的所有点都是正方形ABCD 的和睦点,直接写出点A 的横坐标A x 的取值范围.9. 对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定:(a ,b )★(c ,d )=bc -ad .例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)= ;(2)若有理数对(-3,2x -1)★(1,x +1)=7,则x = ;(3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值.10. 对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=-3×(-3-5)-1=23.(1)求(-2)⊙312的值; (2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n =(用含m ,n 的式子表示).11. (2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =,y =那么称点T 是点A ,B 的融合点.例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x ==1,y ==2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.12. 已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点.(1)当圆O 的半径为1时,①点11(,0)2P ,2P,3(0,3)P 中,圆O 的关联点有_____________________. ②直线经过(0,1)点,且与y 轴垂直,点P 在直线上.若P 是圆O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图 备用图参考答案:1. -202. 1.13. 24 -64. 45. 60°6. (1) 5 (2) 137. (1)8 (2)x=18. (1)P2,P3;(2)4≤r≤6(3) -5+√2≤x A≤3 或√2-1≤x A≤19. (1)﹣5 (2)1 (3)k=1,﹣1,﹣2,﹣410. (1)-4(2)答案不唯一,例如:m⊕n=m(n+1)11. (1)x=(﹣1+7)=2,y=(5+7)=4,故点C是点A、B的融合点;(2)①y=2x﹣1;②点E(,6)或(6,15).12. (1)P1 P2(2)-√3≤x≤√3(3)2√2-1≤r≤3。
2021年九年级中考数学考前强化练习:《四边形综合》(三)

2021年九年级中考数学考前强化练习:《四边形综合》(三)1.在平面直角坐标系中(单位长度为1cm),已知点A(0,m),N(n,0),且+|m+n ﹣10|=0.(1)m=,n=.(2)如图,若点E是第一象限内的一点,且EN⊥x轴,过点E作x轴的平行线a,与y 轴交于点A,点P从点E处出发,以每秒2cm的速度沿直线a向左移动,点Q从原点O 同时出发,以每秒1cm的速度沿x轴向右移动.①经过几秒PQ∥y轴?②若某一时刻以A、O、Q、P为顶点的四边形的面积是10cm2,求此时点P的坐标.2.如图,在▱ABCD,点E为AD的中点,延长BE、CD交于点F,连接AF,BD,CE.(1)求证:四边形ABDF为平行四边形.(2)若BE为∠ABC的角平分线,AB=5,CE=6,求△AEF的面积.3.已知正方形ABCD,点E,F分别在射线BC,射线CD上,BE=CF,AE与BF交于点H.(1)如图1,当点E,F分别在线段BC,CD上时,求证:AE=BF,且AE⊥BF;(2)如图2,当点E在线段BC延长线上时,将线段BE沿BF平移至FG,连接AG.①依题意将图2补全;②用等式表示线段AG,FG和AD之间的数量关系,并证明.4.如图,正方形ABCD中,点E在AB上,点F在BC的延长线上,DF⊥DE,EG平分∠BEF 交BD于点G.(1)求证:DE=DF;(2)请写出线段DG和DF的数量关系并证明;(3)作GH⊥EF于点H,请直接写出线段AB、GH与EF的数量关系.5.在菱形ABCD中,∠ABC=60°,点K是线段AB延长线上一点,点E是∠CBK的平分线上一点,连接DE,取DE的中点F,连接BF.(1)依照题意补全图形.(2)求证:∠FDA=∠FBA.(3)若点G是线段BE延长线上任意一点,连接CG,点H为CG中点,连接FH,用等式表达EG,DA,FH的数量关系,并证明.6.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF=AE,连接DE、DF.(1)求证:DE⊥DF;(2)连接EF,取EF中点G,连接DG并延长交BC于H,连接BG.①依题意,补全图形;②求证:BG=DG;③若∠EGB=45°,用等式表示线段BG、HG与AE之间的数量关系,并证明.7.在△ABC中,BC=AC,∠C=90°,D是BC边上一个动点(不与点B,C重合),连接AD,以AD为边作正方形ADEF(点E,F都在直线BC的上方),连接BE.(1)根据题意补全图形,并证明∠CAD=∠BDE;(2)用等式表示线段CD与BE的数量关系,并证明;(3)用等式表示线段AD,AB,BE之间的数量关系(直接写出).8.如图,平行四边形ABCD中,BC=BD.点F是线段AB的中点.过点C作CG⊥DB交BD于点G,CG延长线交DF于点H.且CH=DB.(1)如图1,若DH=1.求FH的值;(2)如图2,连接FG.求证:DB=FG+HG.9.如图,在正方形ABCD中,E为边CD上一点(不与点C,D重合),垂直于BE的一条直线MN分别交BC,BE,AD于点M,P,N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求△CDN的面积为.(2)在(1)的条件下求线段PM的长度;(3)如图2,当点M在BC边上时,判断线段AN,MB,EC之间的数量关系,并说明理由.10.如图,在边长为6的正方形ABCD中,点M为对角线BD上任意一点(可与B,D重合),连接AM,将线段AM绕点A逆时针旋转90°得到线段AN,连接MN,DN,设BM=x.(1)求证:△ABM≌△ADN;(2)当时,求MN的长;(3)嘉淇同学在完成(1)后有个想法:“△ABM与△MND也会存在全等的情况”,请判断嘉淇的想法是否正确,若正确,请直接写出△ABM与△MND全等时x的值;若不正确,请说明理由.11.在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴、y轴上,点B的坐标为,将矩形OABC 绕点A 顺时针旋转α,得到矩形O 1AB 1C 1,点O ,B ,C 的对应点分别为O 1,B 1,C 1.(Ⅰ)如图①,当α=45°时,O 1C 1与AB 相交于点E ,求点E 的坐标;(Ⅱ)如图②,当点O 1落在对角线OB 上时,连接BC 1,四边形OAC 1B 是何特殊的四边形?并说明理由;(Ⅲ)连接BC 1,当BC 1取得最小值和最大值时,分别求出点B 1的坐标(直接写出结果即可).12.如图,在平面直角坐标系中,已知菱形ABCD ,A (﹣3,0),B (2,0),D 在y 轴上.直线l 从BC 出发,以每秒1个单位长度的速度沿CD 向左平移,分别与CD 、BD 交于E 、F .设△DEF 的面积为S ,直线l 平移时间为t (s )(0<t <5). (1)求点C 的坐标; (2)求S 与t 的函数表达式;(3)过点B 作BG ⊥l ,垂足为G ,连接AF 、AG ,设△AFG 的面积为S 1,△BFG 的面积为S 2,当S 1+S 2=S 时,若点P (1﹣a ,a +3)在△DEF 内部(不包括边),求a 的取值范围.13.如图,A (0,3)是直角坐标系y 轴上一点,动点P 从原点O 出发,沿x 轴正半轴运动,速度为每秒2个单位长度,以P 为直角顶点在第一象限内作等腰Rt △APB .设P 点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)如图2,当t=2时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.14.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:给出下列图形:①平行四边形;②矩形;③菱形;④正方形.其中一定是“垂美四边形”的是(填序号);(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.求证:AB2+CD2=AD2+BC2;(3)解决问题:如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE.已知AC=,AB=3.①请问四边形CGEB是垂美四边形吗?并说明理由;②求GE的长.15.如图,四边形ABCD为正方形,点E为正方形ABCD外一点,且AD=AE,连接BE,∠DAE 的角平分线交BE于点P,连接CP,设∠DAE=α.(1)当α=60°,求∠APB的大小;(2)在(1)的条件下,当PE=2时,求AB的长;(3)当0°<α<60°时,求PA,PB,PC三条线段满足的等量关系.参考答案1.解:(1)依题意,得,解得;故答案为:4,6;(2)①设经过x秒PQ平行于y轴,依题意,得6﹣2x=x,解得x=2,∴经过2秒PQ∥y轴;②当点P在y轴右侧时,依题意,得,解得x=1,此时点P的坐标为(4,4),当点P在y轴左侧时,依题意,得,解得x=,此时点P的坐标为(﹣,4).综合以上可得点P的坐标为(4,4)或(﹣,4).2.解:(1)证明:由题意得,AB∥CF,∴∠ABE=∠DFE,又∵点E为AD的中点,∴AE=DE,在△ABE和△DFE中,,∴△ABE≌△DFE(AAS)∴AB =DF , 又∵AB ∥DF ,∴四边形ABDF 为平行四边形(一组对边平行且相等的四边形是平行四边形); (2)过点F 作AD 的垂线交AD 延长线于点K ,过点D 作DH ⊥EC ,过点E 作EG ⊥CD ,∵S △AEF =;,∴S △AEF =S △EDF ,又∵BE 为∠ABC 的角平分线, ∴∠ABE =∠EBC , 又∵AD ∥BC , ∴∠EBC =∠FED , 而∠ABE =∠DFE , ∴∠FED =∠DFE , ∴ED =FD ,由(1)可知AB =DC =FD =5, ∴ED =FD =DC =5, 又∵S △EFD =,S △EDC =,∴S △AEF =S △EDF =S △ECD ,在等腰△EDC 中,ED =CD =5,EC =6, ∵DH ⊥EC , ∴EH ===3,在Rt △EHD 中,ED =5,EH =3, ∴DH ===4,∴S △ECD ==12,∴S△AEF =S△EDF=S△ECD=12,故S△AEF=12.3.解:(1)如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵∠CBF+∠ABH=90°,∴∠BAE+∠ABH=90°,∴∠AHB=90°,∴AE⊥BF,故AE=BF,且AE⊥BF;(2)①补全图如图2所示;②AG2=2AD2+2FG2.理由如下:如图3,连接EG,∵线段BE沿BF平移至FG,∴四边形BEGF是平行四边形,∴EG=BF,EG∥BF,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BFC=∠AEB,∴EG=BF=AE,∵∠BFC+∠CBF=90°,∴∠AEB+∠CBF=90°,∴∠BHE=90°,∵EG∥BF,∴∠AEG=∠BHE=90°,∴AG2=AE2+EG2=2AE2,∵AE2=AB2+BE2=AD2+FG2,∴AG2=2AD2+2FG2.4.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠BCD=90°,∴∠CDE+∠EDA=90°,∠FCD=∠EAD=90°,∵DE⊥DF,∴∠FDC+∠CDE=90°,∴∠FDC=∠EDA,∴△EDA≌△FDC(ASA),∴DE=DF;(2)解:DG=DF,证明如下:由(1)得:DE=DF,∵∠FDE=90°,∴∠DEF是等腰直角三角形,∴∠DFE=∠DEF=45°,∴∠DEG=45°+∠FEG,∵四边形ABCD是正方形,∴∠ABG=45°,∴∠DGE=∠ABG+∠BEG=45°+∠BEG,∵EG平分∠BEF,∴∠FEG=∠BEG,∴∠DEG=∠DGE,∴DE=DG,∴DG=DF;(3)解:AB﹣GH=EF,理由如下:过点G作GM⊥AB于M,如图所示:∵EG平分∠BEF,GM⊥AB,GH⊥EF,∴GM=GH,∵∠ABG=45°,∴△BGM、△ABD是等腰直角三角形,∴BG=GM=GH,BD=AB,由(2)可知,DG=DE,△DEF是等腰直角三角形,∴EF=DE,∵DE=DG,∴DG=EF,∵BD﹣BG=DG,∴AB﹣GH=EF,∴AB﹣GH=EF.5.解(1)如图所示.(2)如图所示,连接DB,∵四边形ABCD是菱形,∴BD平分∠ABC,∴∠DBC=∠ABC=30°,同理∠CBE=∠CBK=60°,∴∠DBE=∠DBC+∠CBE=90°,在Rt△DBE中,F为BE中点,∴BF=DE=DF,∴∠FDB=∠FBD,∵DA=AB,∴∠ADB=∠ABD,∴∠FDA=∠FBA.(3)4FH2=EG2+DA2+EG•DA.如图1所示,连接CE,取CE中点为点M,连接FM,HM,延长HM交AB于点N,不妨设EG=a,DA=b,FH=c,∵H,M分别为CG,CE的中点,∴HM∥GE,且HM=EG=a,同理FM∥DC,且FM=DC=DA=b.∴∠HMF=∠MNA=∠ABG=120°;如图2所示,过点H作HP⊥FP交FM延长线于点P,在Rt△HMP中,∠HMP=60°,HM=a,∴MP=a,HP=a.∴FP=b+a.在Rt△HMP中,∠HPM=90°,∴HP2+MP2=HM2,即(a)2+(b+a)2=c2,化简得:4c2=a2+b2+ab.即4FH2=EG2+DA2+EG•DA.6.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依题意,补全图形如图所示:②证明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中点,∴DG=EF,BG=EF,∴BG=DG;③解:BG2+HG2=4AE2,证明如下:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G为EF的中点,∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF﹣∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.7.解:(1)补全图形如下:∵正方形ADEF,∴∠ADE=90°,∴∠BDE=180°﹣∠ADE﹣∠ADC=90°﹣∠ADC,∵∠C=90°,∴∠CAD=90°﹣∠ADC,∴∠CAD=∠BDE;(2)CD与BE的数量关系为:BE=CD,证明如下:过E作EG⊥CB于G,如图:∵四边形ADEF是正方形,∴AD=DE,∵EG⊥CB,∴∠G=90°=∠C,在△ACD和△DGE中,,∴△ACD≌△DGE(AAS),∴CD=EG,AC=DG,∵AC=BC,∴DG=BC,∴DG﹣DB=BC﹣DB,即BG=CD,∴BG=EG,∴△BGE是等腰直角三角形,∴BE=BG,∴BE=CD;(3)AD,AB,BE之间的数量关系为:AB2=2AD2﹣BE2,理由如下:∵∠C=90°,AC=BC,∴AB2=AC2+BC2=2AC2,AC2=AD2﹣CD2,∴AB2=2(AD2﹣CD2),而BE=CD,∴CD2=BE2,∴AB2=2(AD2﹣BE2),即AB2=2AD2﹣BE2.8.(1)证明:如图1中,∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AB∥CD,∵BD=BC,∴AD=BD,∵AF=FB,∴DF⊥AB,∴DF⊥DC,∵CG⊥BD,∴∠CDH=∠CGD=∠DFB=90°,∴∠BDF+∠CDG=90°,∠CDG+∠DCH=90°,∴∠BDF=∠DCH,∵CH=DB,∴△DFB≌△CDH(AAS),∴DH=BF,CD=DF,∴AB=DF,∵AB=2BF,∴DF=2DH=2,∴FH=DH=1;(2)解:如图1中,过点F作FJ⊥BD于J,FK⊥CH交CH的延长线于K.过点D作DT⊥DF交FG的延长线于T,连接CT,设FT交CD于N.∵∠K=∠FJG=∠KGJ=90°,∴四边形FKGJ是矩形,∴∠FKJ=90°,∵∠DFB=90°,∴∠KFH=∠BFJ,∵∠K=∠FJB=90°,FH=FB,∴△FKH≌△FJB(AAS),∴FK=FJ,∵FK⊥GK,FJ⊥GJ,∴FG平分∠KGJ,∴∠FGH=∠FGJ=45°,∵∠DGT=∠FGJ=45°,∠GDT=90°,∴DG=DT,∵∠FDC=∠GDT=90°,∴∠FDG=∠CDT,∵DF=DC,∴△FDG≌△CDT(SAS),∴FG=CT,∠DFN=∠TCN,∵∠DNF=∠CNF,∴∠FDN=∠CTN=90°,∵∠TGC=∠FGK=45°,∴TG=TC,CG=CT=FG,∴BD=CH=GH+CG=GH+FG,∴DB=FG+HG.9.解:(1)∵四边形ABD是正方形,∴AD=CD=6,∠D=90°,∵AN=4,∴DN=AD﹣AN=2,∴△CDN的面积=CD×DN=×6×2=6,故答案为:6;(2)∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∠D=∠BCE=90°,∵BE⊥MN,点M和点C重合,∴MD=BC=6,∠DMN+∠BCP=90°,∠CBE+∠BCP=90°,∴∠DMN=∠CBE,在△DMN和△CBE中,,∴△DMN≌△CBE(AAS),∴MN=BE,DN=CE,∵AN=4,∴CE=DN=AD﹣AN=6﹣4=2,由勾股定理得:MN===2,∴BE=2,∵MN⊥BE,∴△BME的面积=BE×PM=BC×CE,∴PM===;(3)线段AN、MB、EC之间的数量关系为:AN+EC=MB,理由如下:过点N作NF⊥BC于N,如图2所示:则四边形ANFB为矩形,∴AN=BF,NF=AB=BC,∵MN⊥BE,∴∠EBC+∠PMB=90°,∠MNF+∠NMF=90°,∴∠EBC=∠MNF,在△EBC和△MNF中,,∴△EBC≌△MNF(ASA),∴FM=EC,∴MB=BF+FM=AN+EC,即AN+EC=MB.10.(1)证明:在正方形ABCD中,AB=AD,由旋转的性质知:AM=AN,∵∠BAD=∠MAN=90°,∴∠BAM=∠DAN,在△ABM和△ADN中,,∴△ABM≌△ADN(SAS).解:(2)∵BD是正方形ABCD的对角线,且AB=6,∴,∠ADB=45°,∴,由△ABM≌△AND得:,∠ADN=∠ABM=45°,∴∠MDN=∠ADB+∠AND=45°+45°=90°,在Rt△MDN中,.(3)正确;.理由如下:如图:当AM⊥BD,易得△ABM和△ADN是全等的等腰直角三角形,∴∠NDA=∠ABM=45°,AN=AM,∵正方形ABCD中,∠ADB=∠ABD=45°,∴∠NDM =90°,∵∠NAM =∠AMD =∠∠NDM =90°,∴四边形AMDN 为矩形,又∵AN =AM ,∴矩形AMDN 为正方形,∴△NMD ≌△DAN (SAS ),∴△NMD ≌△ABM (全等传递性),此时AM ===3.当△ABM 与△MND 全等时x =3.11.解:(Ⅰ)∵矩形OABC ,∴∠OAB =90°.∵∠OAO 1=45°,∴∠O 1AE =45°,∵∠AO 1E =90°,O 1A =OA =2, ∴, ∴E ;(Ⅱ)四边形OAC 1B 是平行四边形,在Rt△AOB中,,∴∠BOA=60°,同理,∠O1AC1=60°.∵OA=O1A,∴△OAO1是等边三角形,∴∠OAO1=60°,∴AC1与x轴的夹角=180﹣∠O1AO﹣∠C1AO1=180﹣60﹣60=60°,∴BO∥AC1,又BO=AC1,∴四边形OAC1B为平行四边形;(Ⅲ)点C1的运动路径是以A为圆心,AC1为半径的圆,当点C1在AB延长线上时,BC1为最小值,过点B1为作B1G⊥x轴A于点G,在Rt△B1AG中,∠B1AG=180﹣90﹣30=60°,∴,,当BC1取得最小值时点B1的坐标为;当点C1在A延A长线上时,BC1为最大值,过点B1为作B1H⊥x轴A于点H,在Rt△B1AH中,∠B1AH=180﹣90﹣30=60°,∴,,当BC1取得最大值时点B1的坐标为(,﹣3),综上所述当BC1取得最小值和最大值时点B1的坐标分别为,.12.解:(1)∵AB=2﹣(﹣3)=5=AD=CD,则OD==4,故点C的坐标为(5,4);=CD×OD=5×4=10,(2)S△DBC∵l∥BC,∴△DEF∽△DCB,则S:S△DBC=(DE:CD)2=(5﹣t)2:52,∴S=10×=t2﹣4t+10;(3)设直线l与x轴交于点K,则BK=CE=t,∵l∥AD,故∠GKB=∠ADO,则tan∠GKB=tan∠ADO=,则sin∠GKB=,则sin∠GBK=,则KG=BK sin∠GBK=t,则GF=5﹣(5﹣t)﹣t=t,则EF=DE=5﹣t,设点B到AD的距离为h,则S△ABD=×AB×OD=AD×h,则h=OD=4,∴S1+S2=GF×h=t××4=t=S,而S=10×=t2﹣4t+10;故点E(2.5,4);由点A、D的坐标得,直线AD表达式为y=x+4,故设直线l的表达式为y=x+t,将点E的坐标代入上式得:4=×+t,解得t=,故直线l的表达式为y=x+①,令y=x+=0,解得x=﹣,故点K的坐标为(﹣,0),由点P的坐标知,点P在直线y=﹣x+4②上,联立①②并解得,两个函数的交点坐标为(,),则0<x P<,则0<1﹣a<,解得﹣<a<1.13.解:(1)过点B作BC⊥x轴于点C,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为矩形,∴AO=BC=3,∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=3,∴t=3÷2=1.5(秒),故t的值为1.5;(2)当t=2时,M、P、B为顶点的三角形和△ABP全等,①如图3,若△ABP≌△MBP,则AP=PM,过点M作MD⊥OP于点D,∵∠AOP=∠PDM,∠APO=∠DPM,∴△AOP≌△MDP(AAS),∴OA=DM=3,OP=PD=4,∴M(8,﹣3).②如图4,若△ABP≌△MPB,同理可求得M(3,7),③如图5,若△ABP≌△MPB,同理可求得M(7,﹣1).综合以上可得点M的坐标为(3,7),(8,﹣3),(11,﹣1).14.解:(1)∵菱形、正方形的对角线垂直,∴菱形、正方形都是垂美四边形.故答案为:③④.(2)证明:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理,得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AB2+CD2=AD2+BC2;(3)①连接CG、BE,AB与CE交于点O,BG与CE交于点N,如图2,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AOE=90°,∴∠ABG+∠AOE=90°,即CE⊥BG,∴四边形CGEB是垂美四边形;②由(2)得,CG2+BE2=CB2+GE2,∵AC=,AB=3,∴BC===2,CG=AC=,BE=AB=3,∴GE2=CG2+BE2﹣CB2==24,∴GE=2.15.解:(1)∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AD=AE,∠DAE=60°,∴AB=AE,∠BAE=∠BAD+∠DAE=150°,∴∠ABE=AEB=(180°﹣∠BAE)=×(180°﹣∠BAE)=15°,∵AP平分∠DAE,∴∠PAE=∠DAE=30°,∴∠APB=∠PAE+∠AEP=30°+15°=45°;(2)连接PD,∵AD=AE,∠DAE=60°,∴△ADE为等边三角形,∴∠AED=∠ADE=60°,DE=AD,∵∠DAP=∠EAP,AP=AP,∴△DAP≌△EAP(SAS),∴PD=PE,∴∠PED=∠PDE,∵∠AEP=15°,∴∠PED=45°,∴∠DPE=90°,∵PE=2,∴DE=PE=2,∴AB=AD=DE=2;(3)PC+PA=PB.如图2,过点B作BH⊥BE交PA延长线于点H,∴∠HBE=90°,∵∠APB=45°,∴∠BHP=180°﹣∠HBE﹣∠APB=45°,∴∠BHP=∠APB,∴BH=BP,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠HBE=∠ABC,∴∠HBE﹣∠ABE=∠ABC﹣∠ABE,即∠HBA=∠EBC,在△PBC与△HBA中,,∴△PBC≌△HBA(SAS),∴∠BPC=∠BHP=45°,BP=BH,CP=AH,∴∠HBE=90°,∴PH2=BH2+BP2=2BP2,即PH=BP,∴PC+PA=AH+AP=PH=BP.。
2013-2014学年九年级数学中考考前复习试卷及答案

2013-2014学年下学期4月模拟考试数学试卷(总分:150分,时间:120分钟)一、选择题(每小题3分,10个小题,共30分)1 ).3A - .3B .3C ± .D 92、13-的相反数的倒数是( ) .3A 1.3B .3C - 1.3D -3、下列各数:22060,,,172π∙中无理数个数是( ).2A 个 .3B 个 .4C 个 .5D 个4、下列运算中,计算结果正确的是( ).321A x x -= 2.222B x x x += 325.()C a a -=- 2.D x xx ⋅= 5、下列函数中,y 随x 的增大而减小的是( ).A y x =- 1.B y x =- 3.(0)C y x x=-> .(0)D y x x => 6、正在修建的巴陕高速公路建成后,巴中到西安只要3小时左右。
其设计时速:80公里/时,路线全长113公里,总投资137.1亿元。
把数值137.1亿用科学计数法表示为( )9.1.37110A ⨯ 10.1.37110B ⨯ 11.1.37110C ⨯ 12.1.37110D ⨯7、下列调查,适合用普查方式的是( ).A 了解一批水稻种子的合格率 .B 了解恩阳河中鱼的种类.C 了解九年级一班学生对“社会主义核心价值观”的知晓率 .D 了解巴中电视台《新闻365》栏目的收视率8、图1是二次函数222y ax bx a =++- (,a b 为常数)的图像,则a 的值是( ).1B .2C -.D9、成巴高速公路全长308km ,一辆货车和一辆轿车同时从巴中、成都两地相向开出,经1小时45分钟到达同一地点,相遇时,轿车比货车多行30km ,设轿车、货车的速度分别是x /km h ,y /km h 则下列方程组正确的是( )7()308.430x y A x y ⎧+=⎪⎨⎪-=⎩ 105()308.105()30x y B x y +=⎧⎨-=⎩7()3084.7()304x y C x y ⎧+=⎪⎪⎨⎪-=⎪⎩ 45()308.45()30x y D x y +=⎧⎨-=⎩10、如图2,在平面直角坐标系中, 点P 在第一象限,P 与x 轴相切于点Q ,与y 轴交于(0,2)M 、(0,8)N 两点,则点P 的坐标是( ).(5,3)A .(5,4)B .(4,5)C .(3,5)D二、填空题(每小题3分,10个小题,共30分) 11、把多项式:25510x x +-分解因式______________. 12、函数y =x 的取值范围是___________. 13、1O 与2O 的半径分别是方程27110x x -+=的两根,如果两圆相切,那么圆心距是______________________.14、分式方程:2231x x x x=+-的解是___________________.15、某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在每盒售价16元,则该药品平均每次降价的百分率是_____________.16、已知关于x 的一元二次方程x 2-4x+k-5=0有两个相等的实数根,则k 的值为______________.17、如图3,一束光线从y 轴上点(0,1)A 发出,经过x 轴上点C 反射后,经过点(6,2)B , 则点C 的坐标是___________.18、如图4,已知矩形OABC 的面积为1003,它的对角线OB 与 双曲线ky x=相交于点D ,且:5:3OB OD =,则k =_______.19、已知点1(,3)P a 和2(4,)P b 关于y 轴对称,则2014()a b +的值为_____.20、二次函数223y x =的图像如图5所示, 点1A ,2A ,3A ,,2014A 在y 轴正半轴 上,1B ,2B ,3B ,,2014B 在二次函数第一象限的图像上,若11OB A ,122A B A ,233A B A ,,201320142014A B A 都为等边三角形,求:11OB A 的边长_______,122A B A 的边长20132014A B 初三4月月考数学试题答卷一、选择题:10小题,共tan 2+23、(8分)先化简,再求值22122()121x x x x x x x x ----÷+++,其中x 满足210x x --=.24、(8分)解不等的式组:212(1)1x xx-≤⎧⎨+≥-⎩,并将解集在数轴上表示出来.25、(8分)若方程组:ax y bx by a+=⎧⎨-=⎩的解是11xy=⎧⎨=⎩,求2()()()a b a b a b+--+的值.26、(10分)某学校团委选派“志愿者”到各个街道进行党的群众路线知识宣传,若每个街道安排4人,还剩78人,若每个街道安排8人,最后一个街道不足8人,但不少于4人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考基础训练(13)
时间:30分钟 你实际使用 分钟
班级 姓名 学号 成绩
一、精心选一选
1.计算:3________.
2.2006年5月20 日,世界上规模最大的混凝土重力坝三峡大坝浇筑完成.建成后,三峡
水库库容总量为39 300 000 000立方米.用科学计数法表示库容总量为_____________立方
米.
3.如图,将矩形纸片ABCD沿AE向上折叠,使点B落在DC边
上的F点处.若AFD△的周长为9,ECF△的周长为3,则矩形
ABCD
的周长为________.
4.为考察甲、乙两种小麦的长势,分别从中抽取50株小麦,测得
苗高,经过数据处理,它们的平均数相同,方差分别为
22
15.412SS甲乙,
,由此可以估计______种小麦长的比较整齐.
5.“平阳府有座大鼓楼,半截子插在天里头”.如图,为测量临
汾市区鼓楼的高AB,在距B点50m的C处安装测倾器,测得鼓
楼顶端A的仰角为4012,测倾器的高CD为1.3m ,则鼓楼高
AB
约为________m(tan40120.85≈).
6.写出一个图象位于第一、三象限内的反比例函数表达式__________________.
7.如图,AB为O⊙的直径,CD,是O⊙上两点,若
50ABC∠
,则D∠的度数为________.
8.为庆祝“六一”儿童节,幼儿园要用彩纸包裹底圆直径..为1m,
高为2m的一根圆柱的侧面.若每平方米彩纸10元,则包裹这根圆
柱侧面的彩纸共需________元(接缝忽略不计,3.14≈).
9.将图中线段AB绕点A按顺时针方向旋转90后,得到线段
AB
,则点B的坐标是______________.
10.如图,依次连结第一个...正方形各边的中点得到第二个正方
形,再依次连结第二个正方形各边的中点得到第三个正方形,
按此方法继续下去.若第一个...正方形边长为1,则第.n个.正方
形的面积是_________________.
D
A
B
C
F
E
50m
1.3m
A
B
C
D
4012
A O B
D
C
x
y
4
3
2
1
1 2 3 4
0
A
B
……
二、细心填一填
11.下列运算正确的是( )
A.235 B.3323
C.632aaa D.2336(2)8abab
12.不等式组2112xx,≤的解集在数轴上表示为( )
13.半径分别为5和8的两个圆的圆心距为d,若313d≤,则这两个圆的位置关系一
定是( )
A.相交 B .相切 C. 内切或相交 D.外切或相交
14.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书
超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一
次性购书付款162元,那么王明所购书的原价一定为( )
A.180元 B . 202.5元 C. 180元或202.5元 D.180元或200元
15.如图,在RtABC△中,904cm6cmCACBC,,∠,
动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点Q从
点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点
时,另一个动点也停止运动.则运动过程中所构成的CPQ△的面
积2(cm)y与运动时间(s)x之间的函数图象大致是( )
16.一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷
小正方体两次,那么下列说法正确的是( )
A.得到的数字和必然是4 B.得到的数字和可能是3
C.得到的数字和不可能是2 D.得到的数字和有可能是1
17.某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正
方体( )
2 1 0 1 2 D. 2 1 0 1 2 A. 2 1 0 1 2 B. 2 1
0
1
2
C.
B A
C
P
Q
9 O (s)x 2(cm)y 3 A. 9 O (s)x 2(cm)y 3 B. 9 O (s)x 2(cm)y 3 C. 9
O
(s)x
2
(cm)y
3
D.
正
(主)
视
图
左 视 图 俯
视
图
A.3块 B.4块
C.5块 D.6块
三、开心用一用
19.(1)计算:12201(1)sin30(2)2
(2)化简:22362444xxxxx
答案:
一、填空题:
1.3; 2.103.9310; 3.12; 4.乙; 5.43.8; 6.(略); 7.40;
8.62.8; 9.(30),; 10.112n.
二、选择题(
题号
11 12 13 14 15 16 17
答案
D A D C C B B
三、解答题18.解:(1)原式1112414.
(2)原式23(2)2(2)(2)(2)xxxxx
3
(2)2xx
3
.