高数(一)微积分第1章
高数第1章第7节——闭区间上连续函数的性质

y
oa
bx
注记 此定理是闭区间上连续函数的最大值和最小值 存在性定理,后面会给出具体的最大值最小值的求法. 在最大值最小值定理中,函数连续和区间是闭的是定 理成立的重要条件,缺一不可,即:
(1)f(x)在(a,b)内连续,定理的结论不一定成立. 例如:f(x) 1 在(0,1)内连续,但在(0,1)内不能
2.若区间内有间断点, 定理不一定成立.
1
如
:
f
(x)
x
1
y
x1 1 x2 x2
在(1,2)连续, 但没有零点.
y
1
ao
o
12
x
-1
bx
定理 1.7.4 设 f(x) 在闭区间[a,b]上连续 , 且 f(a)
f(b) 那么对介于 f(a) 与 f(b) 之间的任何数 , 在开区
间(a,b)内至少存在一点 ,使 f() = .
1.7 闭区间上连续函数的性质
一、 最大值和最小值定理 二、 零点定理与介值定理
一、 最大值和最小值定理
定理1.7.1 设 f ( x)在[a, b]上连续 , 则 f ( x)在[a, b] 上
一定能取到最大值和最小值, 即存在1 ,2 [a, b], 使 对一切 x [a, b], 有f (2 ) f ( x) f (1), 其中f (1)和
几何解释:
连续曲线弧 y f ( x)与
水平直线y 至少有
一个交点.
y
M f(b)
a
o
f(a)
mHale Waihona Puke bx推论1.7.1 在闭区间[a,b]上连续的函数f(x)必 取得介于最大值 与最小值 之间的任何值.
大一高数笔记第一章知识点

大一高数笔记第一章知识点在大一的高数课程中,第一章通常是引入微积分的基本概念和方法。
这一章的知识点对于整个高数学习过程非常重要,因此在这里我将分享一些我认为最关键的内容。
一、函数的概念和性质函数是数学中一个非常基本的概念。
在第一章中,我们首先学习了函数的定义和性质。
函数描述了一种变量之间的关系,通常用一个字母来表示,例如f(x)。
函数可以有不同的表示形式,比如显式表达式、隐式表达式和参数方程等。
函数的性质有很多,其中最重要的是定义域、值域和图像。
定义域是指函数可取的自变量的值的范围,值域是指函数的所有可能的取值,而图像是函数在坐标系上的表示。
理解了这些性质,我们就可以更好地掌握函数的本质和特点。
二、数列的概念和分类数列是函数的一种特殊形式,它描述了一系列数字的排列。
数列也有不同的分类,最常见的是等差数列和等比数列。
等差数列是指每一项与前一项的差值都相等的数列,这个差值称为公差。
用数学符号表示,可以写作a1, a2, a3, …, an,其中an= a1 + (n-1)d。
等比数列则是指每一项与前一项的比值都相等的数列,这个比值称为公比。
用数学符号表示,可以写作a1, a2, a3, …, an,其中an = a1 * r^(n-1)。
掌握了这两种数列的性质和求和公式,我们可以更好地解决实际问题中的数学计算。
三、极限的定义和性质极限是微积分中的核心概念,也是我们学习高数的重要环节。
在第一章中,我们首次接触了极限的概念和相关的性质。
极限描述了函数在无限接近某一点时的行为。
一个函数f(x)在x趋近某一值a时,如果当x无限接近a时,f(x)无限接近一个确定的值L,那么我们说函数f(x)在x趋近a时的极限为L,记作lim(x→a)f(x) = L。
在计算极限时,我们要关注函数的局部行为和整体趋势。
常见的极限计算方法有代数运算法、夹逼法和无穷小量法等。
掌握这些计算方法,对于我们理解函数的性质和推导数学公式非常有帮助。
高数第一章函数

A ( r )12
当x 在D内取定一个数值 x0 时,y f x 有确定的
值与之相对应, 则称此值为 y f x 在 x0 处的函数值
记为: f x0 或
f x
f x x x 0
x x0 f x0
y
x x0
当 x 取遍 D 内的各个数值时, 对应的函数值的全体 构成了函数 y 的值域 f ( D ). 注: 1、当自变量的值改变时, 函数值不一定改变。 即
弹簧秤能承担的总重量. 介于某两个定数(点)之间的一切实数(点) 定义1 称为区间。 而那两个定数(点)称为这个区间的端点。
以 a, b 为端点的区间:
开区间 ( a , b ) x
a x b
a a
b b
3
x x
闭区间 [ a , b ] x a x b
半开区间 无限区间
y f ( x) , x D 其中x为自变量;y 为因变量, D为定义域。
记为
。
当x取遍D内所有元素时,对应的y所组成的数集W 称为函数的值域,记作
W W [ f ( x)] { y y f ( x), x D}
9
1、函数的定义
设 x 与 y 是两个变量,当 x 在某个实数集D内任取定 一数值时, y 按照一定的法则总有确定的数值与它对应。 则称 y 是 x 的函数。 记为 • 定义域
例.
三、函数的表示法(如书自学) 公式法 、图象法 、列表法.
15
四. 反函数 1. 反函数的概念及性质 可以根据问题的需要 在研究两个变量间的函数关系, 任意选取其中一个为自变量, 则另一个就是因变量。
1 2 S gt 距离S是时间 t 的函数 2 2 S 若用S来确定所需要的时间 t t g 即 t 是S的函数
自考高等数学(一)微积分串讲讲义1

试题特点:知识点覆盖全面, 大多数题目难度不大,个别题目有一定的难度, 但都没有超出大纲要求。
复习要求:不报侥幸心理, 复习要涉及每个知识点。
每个知识点要做相应的练习题。
高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续(包括级数) 第二部分 导数及其应用(包括多元函数)第三部分 积分计算及其应用 (包括二重积分和方程)第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
二、极限与连续常见考试题型:1、求函数或数列的极限。
2、考察分段函数在分段点处极限是否存在,函数是否连续。
3、函数的连续与间断。
4、求函数的渐进线。
5、级数的性质及等比级数。
6、零点定理。
每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。
3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。
每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。
第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
例1..函数y=23log log x 的定义域是___________. 2007.7 知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。
大一高数课件第一章 1-1-1

第一章 函数与极限
第一节
• • • • • 一、基本概念 二、函数概念 三、函数的特性 四、反函数 五、小结
函数
一、基本概念
总体. 1.集合: 具有某种特定性质的事物的总体 1.集合: 具有某种特定性质的事物的总体. 集合 组成这个集合的事物称为该集合的元素. 组成这个集合的事物称为该集合的元素. 元素 a∈ M, a∉ M,
y
y = f ( x)
f ( x1 )
f ( x2 )
x1
恒有
f ( x1 ) > f ( x2 ),
o
x2
则称函数 f ( x )在区间 I上 是单调减少的 ;
I
x
3.函数的奇偶性: 函数的奇偶性:
设D关于原点对称 , 对于∀x ∈ D, 有
f (− x ) = f ( x )
y
y = f ( x)
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 集合, 区间, 邻域, 常量与变量, 绝对值 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 有界性,单调性,奇偶性,周期性. 反函数
思考题
1 设 ∀x > 0 , 函 数 值 f ( ) = x + 1 + x , 求 函 数 x
前言
高等数学》 《高等数学》是研究变量及变量间依赖关系的 一门数学课程。 一门数学课程。它的内容包括一元及多元函数微 积分学、空间解析几何、无穷级数和微分方程。 积分学、空间解析几何、无穷级数和微分方程。 高等数学》共讲授192学时,共计12 192学时 12学分 《高等数学》共讲授192学时,共计12学分 高等数学》的研究方法主要应用极限法。 《高等数学》的研究方法主要应用极限法。
专升本-高数一-PPT课件

例 2.下列各函数中,互为反函数的是(
n t, x o t cy (1 ) . y a x
)
1 x , 1 y ( ) 1 - x (2) .y2 2
知识点:反函数 求反函数的步骤是:先从函数 y f ( x ) 中解出 x f 1 ( y ) ,再置换 x 与
y ,就得反函数 y f 1 ( x ) 。
故函数的定义域为:{( x , y ) | x 0 且 x y 0} (2)要使函数有意义必须满足
故
x2 x 2 0 x 1 或 x 2 ,即 , x 2 x20 D ( 2, 1) (2, ) .
二、 极限
1.概念回顾
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5: 求 lim
x
x5 . x2 9
1 5 1 5 2 lim( 2 ) x5 x x x 0 0. 解: lim 2 lim x x x x 9 x 9 9 1 1 2 lim(1 2 ) x x x 知识点:设 a0 0, b0 0, m, n N ,
数。
: D g ( D ) D f: D f( D ) g 1 1 1
f g : D f [ g ( D ) ]
例 1.下列函数中,函数的图象关于原点对称的是( (1) y 2 x 2 1 ; (3) y x 1 . 知识点: 函数的奇偶性 (2) y x 3 2sin x ;
则 lim
am x x b x n n
m
m a bn a1 x a0 0 b1 x b0
mn mn mn
大学数学高数微积分专题一第1讲集合常用逻辑用语不等式课堂讲解

围,还可以考虑从集合的角度来思考,将问题转化为集合间
的运算.
热点分类突破
(1)(2013·课标全国Ⅰ)已知命题p:∀x∈R,2x<3x;命 题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( )
A.p∧q B.綈p∧q C.p∧綈q D.綈p∧綈q
本
讲 栏
(2)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:
目 开
C.存在一个有理数,它的平方是有理数
关 D.存在一个无理数,它的平方不是有理数
(B )
解析 (1)通过否定原命题得出结论.
原命题的否定是“任意一个无理数,它的平方不是有理数”.
热点分类突破
(2)已知命题p:抛物线y=2x2的准线方程为y=-
1 2
;命题q:
若函数f(x+1)为偶函数,则f(x)关于x=1对称.则下列命题是
大学数学高数微积分专题一第1讲 集合常用逻辑用语不等式课堂讲解
第1讲 集合与常用逻辑用语
【高考考情解读】
1.本讲在高考中主要考查集合的运算、充要条件的判定、含
本 讲
有一个量词的命题的真假判断与否定,常与函数、不等
栏 目
式、三角函数、立体几何、解析几何、数列等知识综合在
开 关
一起考查.
2.试题以选择题、填空题方式呈现,考查的基础知识和基本
D.(-∞,-1]∪(0,1)
热点分类突破
弄清“集合的代表元素”是解决集合问题的关键.
解析 (1)∵B={(x,y)|x∈A,y∈A,x-y∈A},
A={1,2,3,4,5},
本
讲 栏
∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,
目 开
同济大学教材高等数学目录

同济大学教材高等数学目录第一章微积分基础1.1 函数与极限- 1.1.1 实数与数轴- 1.1.2 函数的概念- 1.1.3 函数的极限1.2 导数与微分- 1.2.1 导数的概念- 1.2.2 导数的计算- 1.2.3 高阶导数与微分1.3 微分中值定理与导数的应用- 1.3.1 中值定理概念与证明- 1.3.2 罗尔定理与拉格朗日中值定理- 1.3.3 泰勒公式与应用第二章微分学的应用2.1 曲线的性质与图形的简单变换- 2.1.1 形状和方程- 2.1.3 图形的伸缩与旋转2.2 函数的单调性与曲线的凹凸性- 2.2.1 单调函数的概念- 2.2.2 定理与判定- 2.2.3 凹凸函数的概念与定理2.3 不定积分- 2.3.1 原函数与不定积分- 2.3.2 基本积分公式- 2.3.3 积分法与应用第三章多元函数微分学3.1 多元函数的极限与连续性- 3.1.1 多元函数的极限概念- 3.1.2 多元函数的连续性- 3.1.3 极限和连续性的性质3.2 偏导数与全微分- 3.2.1 偏导数的概念- 3.2.3 全微分与边界条件3.3 隐函数与参数方程的偏导数- 3.3.1 隐函数的概念与求导法则- 3.3.2 参数方程的导数与高阶导数- 3.3.3 隐函数与参数方程的微分第四章微分方程4.1 一阶常微分方程- 4.1.1 基础概念与解的存在唯一性- 4.1.2 常微分方程的解法- 4.1.3 可降阶的高阶方程4.2 高阶线性常微分方程- 4.2.1 高阶常微分方程的基本概念- 4.2.2 欧拉方程与特征方程- 4.2.3 高阶常微分方程的解法4.3 常系数线性齐次微分方程- 4.3.1 广义指数函数与欧拉公式- 4.3.2 常系数齐次线性微分方程的解- 4.3.3 常系数齐次高阶微分方程的解第五章微分方程的应用5.1 函数的级数展开与Fourier级数- 5.1.1 幂级数的定义和性质- 5.1.2 幂级数的收敛性- 5.1.3 Fourier级数的定义和应用5.2 傅里叶变换- 5.2.1 傅里叶变换的定义和性质- 5.2.2 傅里叶变换的求解方法- 5.2.3 傅里叶变换的应用5.3 积分变换- 5.3.1 Laplace变换的定义和性质- 5.3.2 Laplace变换的求解方法- 5.3.3 积分变换的应用领域以上为同济大学教材《高等数学》的目录概要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章函数及其图形
1.1 预备知识
一、基本概念
1.集合
具有某种特定性质的事物的总体。
组成这个集合的事物称为该集合的元素。
2.包含关系
集合A中的任何一个元素都是集合B中的元素,称为A包含于B,或B包含A。
若X A,则必x B,就说A是B的子集,记作A B
数集分类:
N----自然数集
Z----整数集
Q----有理数集
R----实数集
数集间的关系:
N Z,Z Q,Q R.
3.相等关系
若A B,且B A,就称集合A与B相等。
记作(A=B)
例1 则A=C.
4.空集
不含任何元素的集合称为空集(记作)。
规定空集为任何集合的子集。
例2
5.集合之间的运算
1)并:由中所有元素组成的集合称为A和B的并集,记为A B
例3
例4
2)交:由既属于A又属于B的元素组成的集合称为A和B的交集,记为A B
例5
例6
3)差:由A中不属于B的元素组成的集合称为A与B的差集,记为A-B
例7
二、绝对值
1.绝对值的定义:
2.绝对值的性质:
(1),当且仅当a=0时,
(2)
(3)
(4)
3.绝对值的几何意义:
(1)表示数轴上的点x与原点之间的距离为a。
(2)表示数轴上的两点x与y之间的距离为a。
4.绝对值不等式:
k>0时,则有
k>0时,则有
例8 ,求x的值。
答案:x=±5
5.绝对值的运算性质:
例9 化去下列各式绝对值的符号:
(1)
(2)
(3)
(4)
例10 解下列含有绝对值符号的不等式:
(1)
(2)
(3)
三、区间
是指介于某两个实数之间的全体实数,这两个实数叫做区间的端点。
以上区间都叫有限区间
这两种形式的区间叫无限区间
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
四、邻域
设a与是两个实数,且>0,数集称为点a的邻域,记作U(a)。
点a叫做这个邻域的中心,叫做这个邻域的半径。
点a的去心邻域,记作。
区间与邻域的关系:
例11 解不等式并用区间表示不等式的解集:
(1)
(2)
1.2 函数
一、函数的概念
1.定义
设x和y是两个变量,D是一个给定的数集,如果对于每个x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作
数集D叫做这个函数的定义域,当时,称为函数在点处的函数值。
函数值全体组成的数集
称为函数的值域。
2.函数的两要素:定义域与对应法则。
约定:定义域是自变量所能取的使算式有意义的一切实数值。
例1、
例2、
例3、判断下列两个函数是否相等
例4、求函数的定义域
例5、符号函数
3.分段函数
在自变量的不同变化范围中,对应法则用不同的式子来表示的函数,称为分段函数。
例6、
例7、求下面分段函数定义域并画出图形。
例8、将下面函数化为分段函数
二、函数的表示法
1.图象法
2.表格法
3.解析法
1.3 函数的特性
一、函数的有界性
若有成立,则称函数f(x)在X上有界,否则称无界。
例9、判断下面函数在其定义域是否有界
(1)符号函数y=sgnx
(2)y=x2
2.函数的单调性:
设函数f(x)的定义域为D,区间I∈D,
如果对于区间I上任意两点及当时,
恒有则称函数f(x)在区间I上是单调增加的;
设函数f(x)的定义域为D,区间I∈D,如果对于区间I上任意两点及,当
时,恒有则称函数f(x)在区间I上是单调减少的。
例10、求y=x2的单调性
例11、求y=sinx的单调性
3.函数的奇偶性:
设D关于原点对称,对于,有称f(x)为偶函数;
设D关于原点对称,对于,有f(-x)=-f(x)称f(x)为奇函数。
4.函数的周期性:
设函数f(x)的定义域为D,如果存在一个不为零的数l,使得对于任一
则称f(x)为周期函数,l称为f(x)的周期,且恒成立(通常说周期函数的周期是指其最小正周期)。
例12、判断下列函数是否有界
(1)
(2)y=cosx
例13、判断下面函数的奇偶性
(1)
(2)
例14、判断函数是否是周期函数,如果是,则求出最小正周期。
1.4 反函数
直接函数与反函数的图形关于直线y=x对称。
1.5 复合函数
1.复合函数
定义:设函数y=f(u)的定义域D f, 而函数的值域为, 若, 则
称函数为x的复合函数。
x←自变量,u←中间变量,y←因变量;
注意:
1.不是任何两个函数都可以复合成一个复合函数的;
例如:
不能符合成
2.复合函数可以由两个及以上的函数经过复合构成。
例如:
这个函数是由复合而成。
例1.分解复合函数(1)
(2)
例2.复合函数的计算(1)
(2)
(3)
(4)
1.6 初等函数
由基本初等函数经过有限次四则运算和函数的复合运算所得到的函数,称为初等函数。
基本初等函数:常值函数、指数函数、三角函数、幂函数、反三角函数、对数函数(1)常值函数
如果当自变量在函数定义域中任意变化时,函数值f(x)恒等于一个常数C,即
f(x)= C,x∈D(f),则称这个函数为常值函数。
(2)指数函数
形如f(x)=αx (-∞<x<+∞)的函数称为指数函数。
其中底数α>0,α≠1
性质:
①当α>1时,函数y=a x单调增加;
②当0<α<1时,函数y=a x单调减少;
③指数函数经过点(0,1),指数函数值大于0;
④对于a>0,x,y为实数,
我们规定:
运算法则:
要求:指数函数通过掌握的图形,掌握指数函数的性质。
(3)三角函数
有sinx,cosx,tanx,cotx,secx和cscx,它们都是周期函数。
① 正弦函数y=sinx
图1.32
② 余弦函数y=cosx
图1.33
③ 正切函数y=tanx
图1.34
④ 余切函数y=cotx
图1.35
要求:周期性、奇偶性、三角公式、特殊角的三角函数值。
同角三角函数基本关系式
①倒数关系:
②商的关系
③平方关系
两角和的正弦、余弦、正切公式
两角差的正弦、余弦、正切公式
倍角公式
降幂公式
积化和差公式
例3:利用降幂公式,将下列各式变形
(1)
(2)
(3)
特殊角的三角函数值
例1.已知一个三角函数值,求其他的三角函数值。
(1)已知tanx=3求其他的三角函数值
(2)已知secx=5,求其他的三角函数值。
(4)幂函数
形如f(x)=xα的函数为幂函数,其中α为任意常数。
要求:掌握常用的幂函数:y=x;y=x2;y=x3;的图形,性质。
性质:
α为正整数时,幂函数的定义域是(-∞,+∞);
α为负整数时,幂函数的定义域是(-∞0)∪(0,+∞);对任意实数α,曲线y=xα都通过平面上的点(1,1);
α为偶数时,f(x)=xα为偶函数;
α为奇数时,f(x)=xα为奇函数;
α>0时,f(x)=xα在(0,+∞)单调增加;
α<0时,f(x)=xα在(0,+∞)单调减少。
幂函数:y=xμ(μ是常数)
(5)反三角函数
①反正弦函数:y=arcsinx,x∈[-1,1]
②反余弦函数:y=arccosx x∈[-1,1]
③反正切函数:y=arctαnx x∈(-∞,+∞)
要求:明白反三角函数的三个含义及定义域。
它是一个角。
范围。
满足什么样的性质?有一个值求出一个角
例2.计算
(1);
答案:
(2);
答案:
(3);
(4);
(5)
例3.已知,求x的取值范围。
(6)对数函数:
对数函数的定义域是(0,+∞);
常见的对数函数y=lg x及y=ln x
当α>1时,y=logαx在定义域内是单调增加的;
当0<α<1时,y=logαx在定义域内是单调减少的。
对数函数
对数函数有下列性质:设a,b,c,x,y为任意正数,(α≠1,c≠1),α为任意实数
①;
②;
③;
④;⑤。
(7)幂指函数。