高二数学必修2综合练习题
新教材苏教版高中数学必修第二册第12章复数 课时练习题及章末综合测验含答案解析

第12章 复数12.1 复数的概念 .......................................................................................................... - 1 - 12.2 第1课时 复数的加减与乘法运算 ................................................................... - 5 - 12.2 第2课时 复数的乘方与除法 ........................................................................... - 9 - 12.3 复数的几何意义................................................................................................. - 13 - 12.4 复数的三角形式*............................................................................................... - 18 - 章末综合测验................................................................................................................ - 23 -12.1 复数的概念一、选择题1.已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是( )A .2,1B .2,5C .±2,5D .±2,1C [令⎩⎨⎧a 2=2,-2+b =3,得a =±2,b =5.]2.如果C ,R ,I 分别表示复数集、实数集和纯虚数集,其中C 为全集,则( ) A .C =R ∪I B .R ∪I ={0} C .R =C ∩ID .R ∩I =∅D [复数包括实数与虚数,所以实数集与纯虚数集无交集.∴R ∩I =∅,故选D .]3.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2iD .2+2iA [3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A .] 4.若x i -i 2=y +2i ,x ,y ∈R ,则复数x +y i =( ) A .-2+iB .2+iC .1-2iD .1+2iB [由i 2=-1,得x i -i 2=1+x i ,则由题意得1+x i =y +2i ,根据复数相等的充要条件得x =2,y =1,故x +y i =2+i .]5.设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件B [因为a ,b ∈R ,“a =0”时“复数a +b i 不一定是纯虚数”.“复数a +b i 是纯虚数”则“a =0”一定成立.所以a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的必要不充分条件.]二、填空题6.复数3+ii 2(i 为虚数单位)的实部等于________. -3 [3+i i 2=3+i -1=-3-i ,其实部为-3.]7.若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值为________. -2 [⎩⎨⎧log 2(x 2+2x +1)=0,log 2(x 2-3x -2)>1,∴x =-2.] 8.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =________.-2 [复数m 2+m -2+(m 2-1)i 是纯虚数的充要条件是⎩⎨⎧m 2+m -2=0,m 2-1≠0,解得⎩⎨⎧m =1或m =-2,m ≠±1,即m =-2.故m =-2时,m 2+m -2+(m 2-1)i 是纯虚数.] 三、解答题9.已知m ∈R ,复数z =(2+i)m 2-3(1+i)m -2(1-i). (1)写出复数z 的代数形式;(2)当m 为何值时,z =0?当m 为何值时,z 是纯虚数? [解] (1)复数z =(2+i)m 2-3(1+i)m -2(1-i)=(2m 2-3m -2)+(m 2-3m +2)i ,即复数z 的代数形式为z =(2m 2-3m -2)+(m 2-3m +2)i . (2)若z =0,则⎩⎨⎧m 2-3m +2=0,2m 2-3m -2=0,解得m =2.若z 为纯虚数,则⎩⎨⎧m 2-3m +2≠0,2m 2-3m -2=0,解得⎩⎪⎨⎪⎧m ≠2且m ≠1,m =2或m =-12,即m =-12.10.已知关于x 的方程x 2+(k +2i)x +2+k i =0有实数根,求实数k 的值. [解] 设x 0是方程的实数根,代入方程并整理得(x 20+kx 0+2)+(2x 0+k )i =0.由两个复数相等的充要条件得⎩⎨⎧x 2+kx 0+2=0,2x 0+k =0.解得⎩⎨⎧ x 0=2,k =-22,或⎩⎨⎧x 0=-2,k =2 2.∴实数k 的值为±22.11.(多选题)已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1 B .(a 2+1)i(a ∈R )是纯虚数C .若z 21+z 22=0,则z 1=z 2=0D .当m =4时,复数lg(m 2-2m -7)+(m 2+5m +6)i 是纯虚数BD [取x =i ,y =-i ,则x +y i =1+i ,但不满足x =y =1,故A 错误;∀a ∈R ,a 2+1>0恒成立,所以(a 2+1)i 是纯虚数,故B 正确;取z 1=i ,z 2=1,则z 21+z 22=0,但z 1=z 2=0不成立,故C 错误;复数lg(m 2-2m -7)+(m 2+5m +6)i 是纯虚数等价于⎩⎨⎧lg (m 2-2m -7)=0,m 2+5m +6≠0,解得m =4,故D 正确.故选BD .]12.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R )有实根n ,且z =m +n i ,则复数z =( )A .3+iB .3-iC .-3-iD .-3+iB [由题意,知n 2+(m +2i)n +2+2i =0, 即n 2+mn +2+(2n +2)i =0. 所以⎩⎨⎧n 2+mn +2=0,2n +2=0,解得⎩⎨⎧m =3,n =-1.所以z =3-i .]13.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围为________.⎣⎢⎡⎦⎥⎤-916,7 [由复数相等的充要条件可得 ⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ, 化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.]14.若复数z =⎝ ⎛⎭⎪⎫sin θ-35+⎝ ⎛⎭⎪⎫cos θ-45i 是纯虚数,则cos θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________.-45 -7 [∵复数z 是纯虚数, ∴⎩⎪⎨⎪⎧sin θ-35=0,cos θ-45≠0,∴sin θ=35且cos θ≠45,∴cos θ=-45. ∴tan θ=sin θcos θ=-34. ∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=-34-11-34=-7.]15.设z 1=m 2+1+(m 2+m -2)i ,z 2=4m +2+(m 2-5m +4)i ,若z 1<z 2,求实数m 的取值范围.[解] 由于z 1<z 2,m ∈R , ∴z 1∈R 且z 2∈R ,当z 1∈R 时,m 2+m -2=0,m =1或m =-2. 当z 2∈R 时,m 2-5m +4=0,m =1或m =4, ∴当m =1时,z 1=2,z 2=6,满足z 1<z 2. ∴z 1<z 2时,实数m 的取值为m =1.12.2 第1课时 复数的加减与乘法运算一、选择题1.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75 B .-115 C .-185 D .5B [(-3a +b i)-(2b +a i)=(-3a -2b )+(b -a )i =3-5i , 所以⎩⎨⎧-3a -2b =3,b -a =-5,解得a =75,b =-185, 故有a +b =-115.]2.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3 D .-4 B [z =1-(3-4i)=-2+4i ,故选B.]3.已知a ,b ∈R ,i 是虚数单位.若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4iD [由题意知a -i =2-b i ,∴a =2,b =1,∴(a +b i)2=(2+i)2=3+4i.] 4.已知复数z =2-i ,则z ·z 的值为( ) A .5 B. 5 C .3 D.3A [z ·z =(2-i)(2+i)=22-i 2=4+1=5,故选A.]5.复数z =32-a i ,a ∈R ,且z 2=12-32i ,则a 的值为( ) A .1 B .2 C.12 D.14C [由z =32-a i ,a ∈R ,得z 2=⎝ ⎛⎭⎪⎫322-2×32×a i +(a i)2=34-a 2-3a i ,因为z 2=12-32i ,所以⎩⎪⎨⎪⎧34-a 2=12,-3a =-32,解得a =12.]二、填空题6.设复数z 1=x +2i ,z 2=3-y i(x ,y ∈R ),若z 1+z 2=5-6i ,则z 1-z 2=________. -1+10i [∵z 1+z 2=x +2i +(3-y i)=(x +3)+(2-y )i ,∴(x +3)+(2-y )i =5-6i(x ,y ∈R ),由复数相等定义,得x =2且y =8,∴z 1-z 2=2+2i -(3-8i)=-1+10i.]7.设复数z 1=1+i ,z 2=x +2i(x ∈R ),若z 1z 2∈R ,则x 等于________. -2 [∵z 1=1+i ,z 2=x +2i(x ∈R ), ∴z 1z 2=(1+i)(x +2i)=(x -2)+(x +2)i.∵z 1z 2∈R ,∴x +2=0,即x =-2.]8.复数z =1+i ,z 为z 的共轭复数,则z ·z -z -1=________. -i [∵z =1+i ,∴z =1-i , ∴z ·z =(1+i)(1-i)=2, ∴z ·z -z -1=2-(1+i)-1=-i.] 三、解答题9.计算:(1)(1+i)(1-i)+(-1+i); (2)⎝ ⎛⎭⎪⎫-12+32i ⎝ ⎛⎭⎪⎫32+12i (1+i). [解] (1)原式=1-i 2+(-1)+i =1+i. (2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-34+34i 2+⎝ ⎛⎭⎪⎫34-14i (1+i)=⎝ ⎛⎭⎪⎫-32+12i (1+i) =-32-32i +12i -12 =-1+32+1-32i.10.已知复数z =(1-i)2+1+3i ,若z 2+az +b =1-i(a ,b ∈R ),求b +a i 的共轭复数.[解] z =(1-i)2+1+3i =-2i +1+3i =1+i , 由z 2+az +b =1-i ,得 (1+i)2+a (1+i)+b =1-i , ∴a +b +i(a +2)=1-i(a ,b ∈R ), ∴⎩⎨⎧ a +b =1,a +2=-1,解得⎩⎨⎧a =-3,b =4, 则b +a i =4-3i ,则b +a i 的共轭复数是4+3i.11.复数(1-i)-(2+i)+3i 等于( )A .-1+iB .1-iC .iD .-iA [(1-i)-(2+i)+3i =(1-2)+(-i -i +3i)=-1+i.故选A.] 12.(多选题)若复数z =(3-2i)i ,则下列说法正确的有( ) A .z 的实部是2B .z 的共轭复数z =2-3iC .z +z =6iD .z ·z =13ABD [∵z =(3-2i)i =3i +2, ∴z =2-3i ,∴z +z =4,z ·z =13,故ABD 均正确.]13.已知-1+i 是关于x 的方程x 2+px +q =0的一个根,则复数z =p +q i(p ,q ∈R )等于________,z ·z =________.2+2i 8 [(-1+i)2+p (-1+i)+q =0,整理得(q -p )+(p -2)i =0, ∴⎩⎨⎧q -p =0,p -2=0,∴p =q =2. 故z =p +q i =2+2i. ∴z =2-2i ,∴z ·z =(2+2i)(2-2i)=8.]14.已知z 1=cos α+isin α,z 2=cos β-isin β且z 1-z 2=513+1213i ,则cos(α+β)的值为________.12[∵z 1=cos α+isin α,z 2=cos β-isin β, ∴z 1-z 2=(cos α-cos β)+i(sin α+sin β)=513+1213i , ∴⎩⎪⎨⎪⎧cos α-cos β=513,①sin α+sin β=1213,②①2+②2得2-2cos(α+β)=1,。
高中数学-三角恒等变换综合练习(苏教版必修第二册)(解析版)

10.4 三角恒等变换综合练习(基础)一.选择题(共8小题)1.已知α是第二象限角,sin α=45,则sin2α=( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos α的值,进而根据二倍角的正弦公式即可求解. 【解答】解:因为α是第二象限角,sin α=45, 所以cos α=−√1−sin 2α=−35,则sin2α=2sin αcos α=2×45×(−35)=−2425. 故选:A .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.2.已知cos (θ−π2)=45,−π2<θ<π2,则sin2θ的值等于( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos θ的值,进而根据二倍角的正弦公式即可求解sin2θ的值.【解答】解:因为cos (θ−π2)=sin θ=45,−π2<θ<π2, 所以cos θ=√1−sin 2θ=35,则sin2θ=2sin θcos θ=2×45×35=2425. 故选:B .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 3.已知tan α=2,则sinα+2cosα3sinα−cosα的值为( )A .−25B .45C .23D .25【分析】由已知利用同角三角函数基本关系式化简所求即可得解. 【解答】解:因为tan α=2,则sinα+2cosα3sinα−cosα=tanα+23tanα−1=2+23×2−1=45.故选:B .【点评】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.4.cos350°sin70°﹣sin170°sin20°=( ) A .√32B .−√32C .12D .−12【分析】结合诱导公式及两角和的余弦公式进行化简即可求值.【解答】解:cos350°sin70°﹣sin170°sin20°=cos10°cos20°﹣sin10°sin20°=cos30°=√32.故选:A .【点评】本题主要考查了两角和的余弦公式及诱导公式在三角函数化简求值中的应用,属于基础试题. 5.已知sin(π6+α)=−45,则cos(π3−α)=( ) A .45B .35C .−45D .−35【分析】由已知直接利用三角函数的诱导公式化简求值. 【解答】解:∵sin(π6+α)=−45,∴cos(π3−α)=cos[π2−(π6+α)]=sin(π6+α)=−45,故选:C .【点评】本题考查三角函数的化简求值,考查诱导公式的应用,是基础题. 6.计算1−cos 270°1+cos40°=( )A .45B .34C .23D .12【分析】利用二倍角公式,诱导公式即可化简求解.【解答】解:1−cos 270°1+cos40°=1−1+cos140°21+cos40°=1−cos140°2(1+cos40°)=1+cos40°2(1+cos40°)=12.故选:D .【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7.若12sin2α﹣sin 2α=0,则cos (2α+π4)=( )A .1B .√22C .−√22D .±√22【分析】由已知结合二倍角公式可求sin α=0或tan α=1,然后分类讨论,结合同角基本关系即可求解. 【解答】解:因为12sin2α﹣sin 2α=0,所以sin αcos α﹣sin 2α=0, 所以sin α=0或sin α=cos α, 当sin α=0时, cos (2α+π4)=√22(cos2α﹣sin2α)=√22(1−2sin 2α−2sinαcosα)=√22,当sin α=cos α即tan α=1时,cos (2α+π4)=√22(cos2α﹣sin2α),=√22×(cos 2α﹣sin 2α﹣2sin αcos α), =√22(1−tan 2α1+tan 2α−2tanα1+tan 2α)=−√22.故选:D .【点评】本题以三角函数为背景,主要考查了三角恒等变换,考查了运算求解能力,考查了数学运算的核心素养.8.已知α∈(0,π2),sin2α1+cos2α=12,则cos α=( )A .√55B .2√55C .√1010D .3√1010【分析】利用二倍角公式化简已知等式可得cos α=2sin α,进而根据同角三角函数基本关系式即可求解. 【解答】解:由于sin2α1+cos2α=12,可得4sin αcos α=2cos 2α,因为α∈(0,π2),cos α≠0,所以cos α=2sin α,联立{cosα=2sinαsin 2α+cos 2α=1,解得cos α=2√55. 故选:B .【点评】本题主要考查了二倍角公式,同角三角函数基本关系式,考查推理论证能力,运算求解能力,考查了数学运算核心素养,属于基础题. 二.多选题(共4小题) 9.下列各式中值为12的是( )A .2sin75°cos75°B .1﹣2sin 2π12C .sin45°cos15°﹣cos45°sin15°D .tan20°+tan25°+tan20°tan25° 【分析】根据对应的公式求出判断即可.【解答】解:对于A :2sin75°cos75°=sin150°=12, 对于B :1﹣2sin 2π12=cosπ6=√32, 对于C :sin45°cos15°﹣cos45°sin15°=sin30°=12,对于D :tan20°+tan25°+tan20°tan25°=tan (20°+25°)(1﹣tan20°tan25°)+tan20°tan25°=1, 故选:AC .【点评】本题考查了三角的恒等变换,属于基础题. 10.下列化简正确的是( ) A .tan (π+1)=tan 1 B .sin(−α)tan(360°−α)=cos αC .sin(π−α)cos(π+α)=tan αD .cos(π−α)tan(−π−α)sin(2π−α)=1【分析】由题意利用诱导公式化简所给的式子,可的结果. 【解答】解:∵由诱导公式可得 tan (π+1)=tan1,故A 正确;sin(−α)tan(360°−α)=−sinα−tanα=cos α,故B 正确;sin(π−α)cos(π+α)=sinα−cosα=−tan α,故C 不正确; cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−1,故D 不正确,故选:AB .【点评】本题主要考查诱导公式的应用,属于基础题. 11.若α∈[0,2π],sin α3sin4α3+cos α3cos4α3=0,则α的值是( )A .π6B .π4C .π2D .3π2【分析】由已知结合两角差的余弦公式进行化简求解即可.【解答】解:因为α∈[0,2π],sin α3sin4α3+cos α3cos4α3=cos α=0,则α=12π或α=3π2, 故选:CD .【点评】本题主要考查了两角差的余弦公式的简单应用,属于基础试题. 12.若tan2x ﹣tan (x +π4)=5,则tan x 的值可能为( ) A .−√63B .−√62C .√63D .√62【分析】利用三角函数恒等变换的应用即可化简求值得解.【解答】解:设tan x =t ,因为tan2x −tan(x +π4)=2t 1−t 2−t+11−t =2t−(t+1)21−t 2=t 2+1t 2−1=5,所以t 2=32,故tanx =t =±√62. 故选:BD .【点评】本题考查三角恒等变换,考查运算求解能力,属于基础题. 三.填空题(共4小题)13.已知α、β均为锐角,且cos α=17,cos (α+β)=−1114,则β=π3.【分析】先利用同角三角函数的基本关系求得sin α和sin (α+β)的值,然后利用cos β=cos p [(α+β)﹣α],根据两角和公式求得答案. 【解答】解:α,β均为锐角,∴sin α=√1−149=4√37,sin (α+β)=√1−(−1114)2=5√314,∴cos β=cos p [(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=−1114×17+4√37×5√314=12. ∴β=π3. 故答案为π3.【点评】本题主要考查了两角和公式的化简求值和同角三角函数的基本关系的应用.熟练记忆三角函数的基本公式是解题的基础.14.若cos (α﹣β)=12,cos (α+β)=−35,则tan αtan β= ﹣11 .【分析】由已知利用两角和与差的余弦公式可求cos αcos β,sin αsin β的值,进而根据同角三角函数基本关系式即可求解.【解答】解:因为cos (α﹣β)=12, 所以cos αcos β+sin αsin β=12, 因为cos (α+β)=−35,所以cos αcos β﹣sin αsin β=−35,所以cos αcos β=12(12−35)=−120,sin αsin β=12(12+35)=1120,则tan αtan β=1120−120=−11.故答案为:﹣11.【点评】本题主要考查了两角和与差的余弦公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.若0<α<π2,﹣π<β<−π2,cos (π4+α)=13,cos (π4−β2)=−√33,则cos (α+β2)= √33.【分析】由已知先求出,的范围,再根据正弦和余弦的平方关系和为1求出对应的正弦值,然后再利用凑角的方法即可求解.【解答】解:因为0<α<π2,−π<β<−π2, 所以π4<α+π4<3π4,π2<π4−β2<3π4,所以sin (π4+α)=√1−(13)2=2√23, sin (π4−β2)=1−(−√33)2=√63,所以cos (α+β2)=cos[(π4+α)﹣(π4−β2)]=cos (π4+α)cos (π4−β2)+sin (π4+α)sin (π4−β2)=13×(−√33)+2√23×√63 =√33, 故答案为:√33. 【点评】本题考查了两角和与差的的三角函数求值问题,考查了学生的运算能力,属于基础题. 16.已知α∈R ,3sin α+cos α=3,则sin2α﹣cos 2α=35或0. .【分析】由已知可得,(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α,然后利用同角基本关系弦化切可求tan α,进而可求.【解答】解:因为3sin α+cos α=3, 当cos α≠0时,所以(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α=9tan 2α+6tanα+11+tan 2α=9,解得,tan α=43,所以sin2α﹣cos 2α=2sinαcosα−cos 2αsin 2α+cos 2α=2tanα−1tan 2α+1=2×43−1(43)2+1=35.当cos α=0时,sin2α﹣cos 2α=0 故答案为:35或0.【点评】本题主要考查了三角恒等变换,考查了运算求解能力,数据处理的能力. 四.解答题(共8小题)17.已知0<α<π2,0<β<π2,sin α=45,cos (α+β)=513. (1)求cos β的值; (2)求sin 2α+sin2αcos2α−1的值.【分析】(1)由已知利用同角三角函数基本关系式可求cos α,sin (α+β)的值,进而根据β=(α+β)﹣α,利用两角差的余弦函数公式即可求解.(2)利用二倍角公式可求sin2α,cos2α的值,进而即可代入求解. 【解答】解:(1)因为0<α<π2,sin α=45, 所以cos α=35,又因为0<β<π2,cos (α+β)=513, 所以sin (α+β)=1213, 所以cos β=cos[(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=513×35+1213×45=6365. (2)因为cos α=35,sin α=45,所以sin2α=2sin αcos α=2×45×35=2425,cos2α=2cos 2α﹣1=2×(35)2﹣1=−725,所以sin 2α+sin2αcos2α−1=(45)2+2425−725−1=−54.【点评】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 18.已知cosα=−45,α为第三象限角. (1)求sin α,tan α的值; (2)求cos(π4−2α)的值.【分析】(1)先根据α所在的象限,判断出sin α的正负,进而根据同角三角函数的基本关系,利用cos α的值求得sin α,进而求得tan α的值.(2)由(1)利用二倍角公式可求sin2α,cos2α的值,进而根据两角差的余弦函数公式即可求解. 【解答】解:(1)∵cosα=−45,α为第三象限角, ∴sin α<0,∴sin α=−√1−cos 2α=−√1−1625=−35,tan α=sinαcosα=34. (2)∵由(1)可得sin2α=2sin αcos α=2425,cos2α=2cos 2α﹣1=725, ∴cos(π4−2α)=cos π4cos2α+sin π4sin2α=√22×725+√22×2425=31√250.【点评】本题主要考查了同角三角函数基本关系,二倍角公式,两角差的余弦函数公式在三角函数化简求值中的应用.注意根据角的范围确定三角函数的正负号,属于基础题. 19.已知cosα=35,,. (Ⅰ)求tan α,sin2α的值; (Ⅱ)求sin(π3−α)的值.【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求sin α,tan α的值,利用二倍角的正弦函数公式可求sin2α的值.(Ⅱ)利用两角差的正弦函数公式即可计算得解. 【解答】解:(Ⅰ)∵cosα=35,,, ∴sinα=−√1−cos 2α=−45, ∴tanα=sinαcosα=−43,sin2α=2sinαcosα=−2425. (Ⅱ)∴sin(π3−α)=sin π3cosα−cos π3sinα=√32×35−12×(−45)=3√3+410. 【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式,两角差的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 20.(1)已知sinα=−13,且α为第四象限角,求sin(α−π2)与tan α值; (2)已知tan α=2,求cos αsin α的值.【分析】(1)由已知利用同角三角函数基本关系式,诱导公式,即可求解. (2)利用同角三角函数基本关系式即可计算得解. 【解答】解:(1)因为sinα=−13,且α为第四象限角, 所以cosα=√1−sin 2α=2√23, 可得sin(α−π2)=−cos α=−2√23,tanα=−√24. (2)因为tan α=2, 可得sinαcosα=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=25. 【点评】本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 21.已知α,β∈(0,π2),cos α=√55,sin β=45.(1)求sin2β; (2)求tan (α+2β).【分析】(1)利用同角三角函数关系以及倍角公式进行转化求解即可. (2)先求出对应的正切值,利用两角和差的正切公式进行转化求解即可. 【解答】解:(1)∵α,β∈(0,π2),cos α=√55,sin β=45.∴sin α=2√55,cos β=35.则sin2β=2sin βcos β=2×45×35=2425. (2)∵cos2β=1﹣2sin 2β=−725, ∴tan2β=sin2βcos2β=−247,tan α=sinαcosα=2,∴tan (α+2β)=tanα+tan2β1−tanαtan2β=2−2471+2×247=−211.【点评】本题主要考查三角函数值的计算,同角三角函数关系以及两角和差的三角公式是解决本题的关键,比较基础.22.已知sin (π3−x )=13,且0<x <π2,求sin (π6+x )﹣cos (2π3+x )的值.【分析】由题意利用同角三角函数的基本关系,求得cos (π3−x )的值,再利用诱导公式、两角和差的三角公式,求得要求式子的值.【解答】解:∵0<x <π2,∴−π6<π3−x <π3,∵已知sin (π3−x )=13,∴cos (π3−x )=√1−sin 2(π3−x)=2√23. 且 0<x <π2,求sin (π6+x )﹣cos (2π3+x )的∴sin (π6+x )﹣cos (2π3+x )=cos (π3−x )+cos (π3−x )=2cos (π3−x )=4√23. 【点评】本题主要考查同角三角函数的基本关系,诱导公式、两角和差的三角公式的应用,属于基础题. 23.已知tan α,,β是第三象,角. (1)求,的值;(2)求cos (α﹣β)的值.【分析】(1)利用同角三角函数的基本关系求得 sin α和cos α的值,进而即可代入求解.(2)利用同角三角函数的基本关系求得sin β的值,再利用两角差的余弦公式求得cos (α﹣β)的值. 【解答】解:(1)∵tan α=sinαcosα=−43,α∈(π2,π),sin 2α+cos 2α=1, ∴sin α=45,cos α=−35,可得3sinα+cosαsinα−cosα=3×45+(−35)45−(−35)=97.(2)∵cos β=−513,β是第三象限角, ∴sin β=−√1−cos 2β=−1213,∴cos (α﹣β)=cos αcos β+sin αsin β=−35•(−513)+45•(−1213)=−3365.【点评】本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.24.已知tanα,tanβ为方程式x2+6x+2=0的两根,求下列各式之值:(1)1cos2(α+β);(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β).【分析】(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,然后结合两角和的正切公式及同角基本关系可求.(2)由sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β)=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],代入可求.【解答】解:(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,∴tan(α+β)=tanα+tanβ1−tanαtanβ=−61−2=6,∴1cos2(α+β)=cos2(α+β)+sin2(α+β)cos2(α+β)=1+sin2(α+β)cos2(α+β),=1+tan2(α+β)=1+36=37,(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β),=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],=137(36+4×6+2)=6237.【点评】本题主要考查了同角基本关系的应用,解题的关键是公式的灵活应用.。
高中数学必修二 第六章 章末小结 练习(含答案)

第六章 综合检测题一、选择题1.向量AB MB BO BC OM ++++=( ) A .AC B .ABC .BCD .AM【答案】A【解析】向量AB MB BO BC OM AB BO OM MB BC AC ++++=++++=. 故选:A.2.【2019年5月10日《每日一题》必修4向量数乘运算及其几何意义】在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,则四边形ABCD 的形状是 A .长方形 B .平行四边形C .菱形D .梯形【答案】D【解析】由题意,因为2AB a b =+,4BC a b =--,53CD a b =--, ∴AD AB =+BC +24532CD a b a b a b BC =+----=, ∴AD ∥BC ,且AD≠BC ,∴四边形ABCD 为梯形,故选D .3.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( ) A .2 B .3C .4D .5【答案】D【解析】因为四边形CD AB 是平行四边形,所以()()()C D 1,22,13,1A =AB+A =-+=-,所以()D C 23115A ⋅A =⨯+⨯-=,故选D .4.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-,故选A.5.在ABC ∆中,若3AB =,BC =4AC =,则AC 边上的高为 ( )A B C .32D .【答案】B【解析】由题意可知,222341cos 2342A +-==⨯⨯,sin A ∴=又1··2ABC S AB AC ∆= 1sin ?·,2A AC h h =∴=.故选B.6.若平面向量a ⃗与b ⃗⃗的夹角为60°,|b ⃗⃗|=4,(a ⃗+2b ⃗⃗)•(a ⃗−3b ⃗⃗)=−72,则向量a ⃗的模为( ) A .2 B .4 C .6 D .12 【答案】C【解析】∵(a ⃗+2b ⃗⃗)·(a ⃗−3b ⃗⃗)=−72,∴|a ⃗|2−a ⃗·b ⃗⃗−6|b ⃗⃗|2=−72,又∵a ⃗·b ⃗⃗=|a ⃗|·|b ⃗⃗|cos60∘,∴|a ⃗|2−2|a ⃗|−24=0,则|a ⃗|=6,故选C7.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+,则λμ+=( )A .43B .53C .158D .2【答案】B【解析】以A 为坐标原点建立平面直角坐标系,设正方形边长为1, 由此,()()11,1,1,,1,12AC AM BD ⎛⎫===- ⎪⎝⎭,故11,12λμλμ=-=+, 解得415,,333λμλμ==+=.故选B. 8.已知向量a,b 满足a 1=,a b 1⋅=-,则a (2a b)⋅-= A .4 B .3 C .2 D .0【答案】B【解析】因为22(2)22||(1)213,a a b a a b a ⋅-=-⋅=--=+= 所以选B.9.(多选题)设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( ) A.a ·c -b ·c =(a -b )·c ; B.(b ·c )·a -(c ·a )·b 不与c 垂直; C.|a |-|b |<|a -b |; D.(3a +2b )·(3a -2b )=9|a |2-4|b |2. 【答案】A ,C ,D【解析】根据向量积的分配律知A 正确;因为[(b ·c )·a -(c ·a )·b ]·c =(b ·c )·(a ·c )-(c ·a )·(b ·c )=0,∴(b ·c )·a -(c ·a )·b 与c 垂直,B 错误;因为a ,b 不共线,所以|a |,|b |,|a -b |组成三角形三边,∴|a |-|b |<|a -b |成立,C 正确;D 正确.故正确命题的序号是A ,C ,D.10.(多选题)给出下列四个命题,其中正确的选项有( ) A.非零向量a ,b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角是30° B.若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形C.若单位向量a ,b 的夹角为120°,则当|2a +xb |(x ∈R )取最小值时x =1D.若OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34. 【答案】A ,B ,C【解析】A 中,令OA →=a ,OB →=b .以OA →,OB →为邻边作平行四边形OACB .∵|a |=|b |=|a -b |,∴四边形OACB 为菱形,∠AOB =60°,∠AOC =30°,即a 与a +b 的夹角是30°,故A 正确. B 中,∵(AB →+AC →)·(AB →-AC →)=0,∴|AB →|2=|AC →|2,故△ABC 为等腰三角形.故B 正确.C 中,∵(2a +x b )2=4a 2+4x a ·b +x 2b 2=4+4x cos 120°+x 2=x 2-2x +4=(x -1)2+3,故|2a +x b |取最小值时x =1.故③正确.D 中,∵BA →=OA →-OB →=(3,-4)-(6,-3)=(-3,-1),BC →=OC →-OB →=(5-m ,-3-m )-(6,-3)=(-1-m ,-m ),又∠ABC 为锐角,∴BA →·BC →>0,即3+3m +m >0,∴m >-34.又当BA →与BC →同向共线时,m =12,故当∠ABC 为锐角时,m 的取值范围是m >-34且m ≠12.故D 不正确.故选A ,B ,C. 11.(多选题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列结论不正确的是( ) A .a 2=b 2+c 2﹣2bc cos A B sin a B .=sin b A C .a =sin cos b C c B + D .cos cos sin a B b A C += 【答案】A ,B ,C【解析】由在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,知: 在A 中,由余弦定理得:a 2=b 2+c 2﹣2bc cos A ,故A 正确; 在B 中,由正弦定理得:,∴a sin B =b sin A ,故B 正确;在C 中,∵a =sin cos b C c B +,∴由余弦定理得:a =b ×+c ×,整理,得2a 2=2a 2,故C 正确;在D 中,由余弦定理得a cos B +b cos A =a ×+b ×=+=c ≠sin C ,故D 错误.故选A ,B ,C.12.(多选题)在△ABC 中,根据下列条件解三角形,其中有一解的是( ) A .b =7,c =3,C =30° B .b =5,c =4,B =45° C .a =6,b =3,B =60°D .a =20,b =30,A =30°【解析】B ,C【解析】对于A ,∵b =7,c =3,C =30°,∴由正弦定理可得:sin B ===>1,无解;对于B ,b =5,c =4,B =45°,∴由正弦定理可得sin C ===<1,且c <b ,有一解;对于C ,∵a =6,b =3,B =60°,∴由正弦定理可得:sin A ===1,A =90°,此时C =30°,有一解;对于D ,∵a =20,b =30,A =30°,∴由正弦定理可得:sin B ===<1,且b >a ,∴B 有两个可能值,本选项符合题意.故选B ,C . 二、填空题13.【贵州省贵阳市第一中学2020届高三上学期第三次月考数学(理)试题】已知()1,3a =,()0,1b =-,则a b b a b ⎛⎫⎪+⋅= ⎪⎝⎭________. 【答案】1 【解析】2a =,1b =,所以()13,,0,122ab ab⎛⎫==- ⎪ ⎪⎝⎭, 所以13,122a bab ⎛⎫+=- ⎪ ⎪⎝⎭,所以()10111||222||a b b a b ⎛⎫⎛⎫+⋅=⨯+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:1. 14.在ABC ∆中,角A B C 、、所对的边分别为a b c 、、.若2,a b ==sin cos B B +=,,则角A 的大小为____________________. 【答案】6π【解析】由sin cos )4B B B π+=+=sin()14B π+=,所以4B π=由正弦定理sin sin a b A B=得sin 14sin 22a B Ab π===,所以A=6π或56π(舍去)、 15.如图,在ABC 中,12021BAC AB AC ∠=︒==,,,D 是边BC 上一点,2DC BD =,则AD BC = .【答案】83-【解析】由图及题意得 , =∴ =()()= +== .16.设1e ,2e 是两个不共线的向量, a =31e +42e ,b =1e -22e .若以a ,b 为基底表示向量1e +22e ,即1e +22e =λa +μb ,则λ= ,μ= 。
高中数学 模块综合检测2(含解析)新人教A版选择性必修第二册-新人教A版高二选择性必修第二册数学试题

模块综合检测(二)(满分:150分 时间:120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=ln x 2x ,则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =( ) A .-2-ln 2B .-2+ln 2C .2-ln 2D .2+ln 2A [由题意,函数f (x )=ln x 2x , 则f ′(x )=1x ·2x -(2x )′ln x (2x )2=2x -12⎝ ⎛⎭⎪⎫1-12ln x 2x , 则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =-f ′⎝ ⎛⎭⎪⎫12=-2+ln 22×12=-2-ln 2,故选A.] 2.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4C .2D .4C [∵T 13=4T 9,∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9,∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15,∴(a 8·a 15)2=4,∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0,∴a 8a 15=2.]3.已知公差不为0的等差数列{a n }的前23项的和等于前8项的和.若a 8+a k =0,则k =( )A .22B .23C .24D .25C [等差数列的前n 项和S n 可看做关于n 的二次函数(图象过原点).由S 23=S 8,得S n 的图象关于n =312对称,所以S 15=S 16,即a 16=0,所以a 8+a 24=2a 16=0,所以k =24.]4.已知函数f (x )=(x +a )e x 的图象在x =1和x =-1处的切线相互垂直,则a =( )A .-1B .0C .1D .2A [因为f ′(x )=(x +a +1)e x ,所以f ′(1)=(a +2)e ,f ′(-1)=a e -1=a e ,由题意有f (1)f ′(-1)=-1,所以a =-1,选A.]5.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( )A .15B .19C .21D .30B [由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )(4a 2+2d ),化简得3d 2=2a 2d ,又d ≠0,∴a 2=3,d =2,a 1=1,∴a n =1+2(n -1)=2n -1,∴a 10=19.]6.若函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,则实数a 的取值X 围是( )A .(-2,+∞)B .⎝ ⎛⎭⎪⎫12,+∞ C .⎝ ⎛⎭⎪⎫-12,+∞ D .(2,+∞)D [因为函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,所以函数f (x )=ax -ln x 的图象上存在斜率为2的切线,故k =f ′(x )=a -1x =2有解,所以a =2+1x ,x >0有解,因为y =2+1x ,x >0的值域为(2,+∞).所以a ∈(2,+∞).]7.已知等差数列{}a n 的前n 项为S n ,且a 1+a 5=-14,S 9=-27,则使得S n 取最小值时的n 为( )A .1B .6C .7D .6或7B [由等差数列{a n }的性质,可得a 1+a 5=2a 3=-14⇒a 3=-7,又S 9=9(a 1+a 9)2=-27⇒a 1+a 9=-6⇒a 5=-3,所以d =a 5-a 35-3=2,所以数列{a n }的通项公式为a n =a 3+(n -3)d =-7+(n -3)×2=2n -13,令a n ≤0⇒2n -13≤0,解得n ≤132,所以数列的前6项为负数,从第7项开始为正数,所以使得S n 取最小值时的n 为6,故选B.]8.若方底无盖水箱的容积为256,则最省材料时,它的高为( )A .4B .6C .4.5D .8A [设底面边长为x ,高为h ,则V (x )=x 2·h =256,∴h =256x 2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值.∴h =25682=4.]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设数列{}a n 是等差数列,S n 是其前n 项和,a 1>0,且S 6=S 9,则( )A .d <0B .a 8=0C .S 5>S 6D .S 7或S 8为S n 的最大值ABD [根据题意可得a 7+a 8+a 9=0⇒3a 8=0⇒a 8=0,∵数列{}a n 是等差数列,a 1>0,∴公差d <0,所以数列{}a n 是单调递减数列, 对于A 、B ,d <0,a 8=0,显然成立;对于C ,由a 6>0,则S 5<S 6,故C 不正确;对于D ,由a 8=0,则S 7=S 8,又数列为递减数列,则S 7或S 8为S n 的最大值,故D 正确.故选ABD.]10.如图是y =f (x )导数的图象,对于下列四个判断,其中正确的判断是( )A .f (x )在(-2,-1)上是增函数B .当x =-1时,f (x )取得极小值C .f (x )在(-1,2)上是增函数,在(2,4)上是减函数D .当x =3时,f (x )取得极小值BC [根据图象知当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数单调递减; 当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数单调递增.故A 错误;故当x =-1时,f (x )取得极小值,B 正确;C 正确;当x =3时,f (x )不是取得极小值,D 错误.故选BC.]11.已知等比数列{}a n 的公比q =-23,等差数列{}b n 的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10AD [∵等比数列{}a n 的公比q =-23,∴a 9和a 10异号,∴a 9a 10<0 ,故A 正确;但不能确定a 9和a 10的大小关系,故B 不正确;∵a 9和a 10异号,且a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数, 又∵b 1=12>0 ,∴d <0,∴b 9>b 10 ,故D 正确,∴b 10一定是负数,即b 10<0 ,故C 不正确. 故选AD.]12.已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f (x 1)-f (x 2)x 1-x 2<0 D .当ln x >-1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)AD [设g (x )=f (x )x =ln x ,函数单调递增,则g (x 2)>g (x 1),即f (x 2)x 2>f (x 1)x 1,∴x 1f (x 2)>x 2f (x 1),A 正确; 设h (x )=f (x )+x ∴h ′(x )=ln x +2不是恒大于零,B 错误;f (x )=x ln x ,∴f ′(x )=ln x +1不是恒小于零,C 错误;ln x >-1,故f ′(x )=ln x +1>0,函数单调递增.故(x 2-x 1)(f (x 2)-f (x 1))=x 1f (x 1)+x 2f (x 2)-x 2f (x 1)-x 1f (x 2)>0,即x 1f (x 1)+x 2f (x 2)>x 2f (x 1)+x 1f (x 2).f (x 2)x 2=ln x 2>f (x 1)x 1=ln x 1,∴x 1f (x 2)>x 2f (x 1),即x 1f (x 1)+x 2f (x 2)>2x 2f (x 1),D 正确.故选AD.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.数列{a n }的前n 项和为S n ,若a n +1=11-a n(n ∈N *),a 1=2,则S 50=________. 25[因为a n +1=11-a n (n ∈N *),a 1=2,所以a 2=11-a 1=-1,a 3=11-a 2=12,a 4=11-a 3=2,∴数列{a n }是以3为周期的周期数列,且前三项和S 3=2-1+12=32, ∴S 50=16S 3+2-1=25.]14.将边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =(梯形的周长)2梯形的面积,则s 的最小值是________. 3233[设AD =x (0<x <1),则DE =AD =x ,∴梯形的周长为x+2(1-x )+1=3-x .又S △ADE =34x 2,∴梯形的面积为34-34x 2,∴s =433×x 2-6x +91-x 2(0<x <1), 则s ′=-833×(3x -1)(x -3)(1-x 2)2. 令s ′=0,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′<0,s 为减函数;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′>0,s 为增函数.故当x =13时,s 取得极小值,也是最小值,此时s 的最小值为3233.]15.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.32[由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q -3=0,解得q =32或q =-1.因为q >0,所以q =32.]16.已知函数f (x )是定义在R 上的偶函数,当x >0时,xf ′(x )>f (x ),若f (2)=0,则2f (3)________3f (2)(填“>”“<”)不等式x ·f (x )>0的解集为________.(本题第一空2分,第二空3分)> (-2,0)∪(2,+∞)[由题意,令g (x )=f (x )x ,∵x >0时,g ′(x )=xf ′(x )-f (x )x 2>0.∴g (x )在(0,+∞)单调递增,∵f (x )x 在(0,+∞)上单调递增,∴f (3)3>f (2)2即2f (3)>3f (2).又∵f (-x )=f (x ),∴g (-x )=-g (x ),则g (x )是奇函数,且g (x )在(-∞,0)上递增,又g (2)=f (2)2=0,∴当0<x <2时,g (x )<0,当x >2时,g (x )>0;根据函数的奇偶性,可得当-2<x <0时,g (x )>0,当x <-2时,g (x )<0. ∴不等式x ·f (x )>0的解集为{x |-2<x <0或x >2}.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{}a n 中,已知a 1=1,a 3=-5.(1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-25,求k 的值.[解](1)由题意,设等差数列{}a n 的公差为d ,则a n =a 1+()n -1d ,因为a 1=1,a 3=-5,可得1+2d =-5,解得d =-3,所以数列{}a n 的通项公式为a n =1+()n -1×()-3=4-3n .(2)由(1)可知a n =4-3n ,所以S n =n [1+(4-3n )]2=-32n 2+52n ,又由S k =-25,可得-32k 2+52k =-25,即3k 2-5k -50=0,解得k =5或k =-103,又因为k ∈N *,所以k =5.18.(本小题满分12分)已知函数f (x )=a ln x +12x 2.(1)求f (x )的单调区间;(2)函数g (x )=23x 3-16(x >0),求证:a =1时f (x )的图象不在g (x )的图象的上方.[解](1)f ′(x )=a x +x (x >0),若a ≥0,则f ′(x )>0,f (x )在 (0,+∞)上单调递增;若a <0,令f ′(x )=0,解得x =±-a ,由f ′(x )=(x --a )(x +-a )x >0,得x >-a ,由f ′(x )<0,得0<x <-a .从而f (x )的单调递增区间为(-a ,+∞),单调递减区间为(0,-a ). (2)证明:令φ(x )=f (x )-g (x ),当a =1时,φ(x )=ln x +12x 2-23x 3+16(x >0),则φ′(x )=1x +x -2x 2=1+x 2-2x 3x =(1-x )(2x 2+x +1)x. 令φ′(x )=0,解得x =1.当0<x <1时,φ′(x )>0,φ(x )单调递增;当x >1时,φ′(x )<0,φ(x )单调递减.∴当x =1时,φ(x )取得最大值φ(1)=12-23+16=0,∴φ(x )≤0,即f (x )≤g (x ).故a =1时f (x )的图象不在g (x )的图象的上方.19.(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且2S n =3a n -1.(1)求数列{}a n 的通项公式;(2)若数列{}b n 满足b n =log 3a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .[解](1)由2S n =3a n -1()n ∈N +得,2S n -1=3a n -1-1()n ≥2.两式相减并整理得,a n =3a n -1()n ≥2.令n =1,由2S n =3a n -1()n ∈N +得,a 1=1.故{}a n 是以1为首项,公比为3的等比数列,因此a n =3n -1()n ∈N +.(2)由b n =log 3a n +1,结合a n =3n -1得,b n =n .则1b n b n +1=1n ()n +1=1n -1n +1 故T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+1n -1n +1=n n +1. 20.(本小题满分12分)某旅游景点预计2019年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧ 35-2x (x ∈N *,且1≤x ≤6),160x (x ∈N *,且7≤x ≤12).(1)写出2019年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)问2019年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?[解](1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x ,验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x 个月旅游消费总额(单位:万元)为g (x )=⎩⎨⎧ (-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12),即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). (i)当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125.(ii)当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040.综上,2019年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.21.(本小题满分12分)已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n b n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解](1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5.设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2.∵b n >0,∴d =-10应舍去,∴d =2,∴b 1=3,∴b n =2n +1.故a n b n=(2n+1)·3n-1.(2)由(1)知T n=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①3T n=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②①-②,得-2T n=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)×3n =3+2×(3+32+33+…+3n-1)-(2n+1)×3n=3+2×3-3n1-3-(2n+1)×3n=3n-(2n+1)×3n=-2n·3n.∴T n=n·3n.22.(本小题满分12分)设函数f (x)=x3-6x+5,x∈R.(1)求f (x)的极值点;(2)若关于x的方程f (x)=a有3个不同实根,某某数a的取值X围;(3)已知当x∈(1,+∞)时,f (x)≥k(x-1)恒成立,某某数k的取值X围.[解](1)f ′(x)=3(x2-2),令f ′(x)=0,得x1=-2,x2= 2.当x∈(-∞,-2)∪(2,+∞)时,f ′(x)>0,当x∈(-2,2) 时,f ′(x)<0,因此x1=-2,x2=2分别为f (x)的极大值点、极小值点.(2)由(1)的分析可知y=f (x)图象的大致形状及走向如图所示.要使直线y=a 与y=f (x)的图象有3个不同交点需5-42=f (2)<a<f (-2)=5+4 2.则方程f (x)=a有3个不同实根时,所某某数a的取值X围为(5-42,5+42).(3)法一:f (x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1),因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立,令g(x)=x2+x-5,由二次函数的性质得g(x)在(1,+∞)上是增函数,所以g(x)>g(1)=-3,所以所求k的取值X围是为(-∞,-3].法二:直线y=k(x-1)过定点(1,0)且f (1)=0,曲线f (x)在点(1,0)处切线斜率f ′(1)=-3,由(2)中图知要使x∈(1,+∞)时,f (x)≥k(x-1)恒成立需k≤-3.故实数k的取值X围为(-∞,-3].。
21人教版高中a版数学同步必修2 第三章3.1~3.3综合拔高练(可编辑word)

3.1~3.3综合拔高练三年模拟练一、选择题1.(2020江西南昌二中高二期末,★★☆)直线x+(a2+1)y-1=0的倾斜角的取值范围是( )A.[135°,180°]B.[45°,135°]C.(0,45°]D.[135°,180°)2.(2020西安电子科技大学附属中学高一期末,★★☆)若A(3,-2)、B(-9,4)、C(x,0)三点共线,则x的值为( )A.1B.-1C.0D.73.(2020湖南雅礼中学高一期末,★★☆)已知直线l:kx-y+2-k=0过定点M,点P(x,y)在直线m:2x+y-1=0上,则|MP|的最小值是( )A.√10B.3√55C.√6D.3√54.(★★☆)已知直线l1:x+2y+t2=0和直线l2:2x+4y+2t-3=0,则当l1与l2间的距离最短时,t的值为( )A.1B.12C.13D.25.(★★☆)直线l过点A(3,4),且与点B(-3,2)的距离最远,则l的方程为( )A.3x-y-13=0B.3x-y+13=0C.3x+y-13=0D.3x+y+13=0二、填空题6.(2018山东淄博桓台二中高一期末,★★☆)过点P(2,3)且在两坐标轴上的截距相等的直线方程为.7.(★★☆)一条光线沿直线2x-y+2=0入射到直线x+y-5=0后反射,则反射光线所在直线的方程为.三、解答题8.(2018吉林吉化一中高一期末,★★☆)已知△ABC的边AC,AB上的高所在直线的方程分别为2x-3y+1=0,x+y=0,顶点A(1,2),求BC边所在直线的方程.9.(2018广西桂林高一期末,★★☆)已知直线l经过点P(-2,1),且与直线x+y=0垂直.(1)求直线l的方程;(2)若直线m与l平行,且点P到直线m的距离为√2,求直线m的方程.10.(2019江苏扬州中学高一月考,★★☆)设直线l1:mx-2my-6=0与l2:(3-m)x+my+m2-3m=0,且l1∥l2.(1)求l1,l2之间的距离;(2)求l1关于l2对称的直线方程.11.(2019黑龙江哈尔滨三中高二月考,★★☆)已知菱形ABCD的一边所在的直线方程为x-y+4=0,一条对角线的两个端点分别为A(-2,2)和C(4,4).(1)求对角线AC和BD所在直线的方程;(2)求菱形另三边所在直线的方程.答案全解全析三年模拟练一、选择题1.D 易知直线的斜率存在,且为-1a 2+1,由于a 2+1≥1,所以-1a 2+1∈[-1,0),对应的倾斜角的取值范围是[135°,180°).故选D.2.B 由三点共线,可得k AB =k AC ,即4-(-2)-9-3=0-(-2)x -3,解得x=-1,故选B.3.B 解法一:直线l 的方程为kx-y+2-k=0,即k(x-1)-y+2=0,过定点M(1,2),当MP⊥m 时,|MP|有最小值,此时|MP|=√22+12=3√55. 解法二:易知直线l 过定点M(1,2),∵点P(x,y)在直线2x+y-1=0上,∴y=1-2x,∴|MP|=√(x -1)2+(1-2x -2)2 =√5x 2+2x +2=√5(x +15)2+95, 故当x=-15时,|MP|取得最小值3√55,故选B. 4.B ∵直线l 2:2x+4y+2t-3=0即为直线x+2y+2t -32=0,∴直线l 1∥直线l 2. ∴l 1与l 2间的距离d=|t 2-2t -32|√12+22=(t -12)2+54√5≥√54,当且仅当t=12时取等号.∴当l 1与l 2间的距离最短时,t 的值为12.5.C 由已知可知l 是过点A 且与AB 垂直的直线,因为k AB =2-4-3-3=13,所以k l =-3.由直线的点斜式方程得y-4=-3(x-3),即3x+y-13=0.二、填空题6.答案 x+y-5=0或3x-2y=0解析 若截距不为0,则可设直线方程为x a +y a =1,把P(2,3)代入得2a +3a =1,解得a=5,故直线方程为x+y-5=0;若截距为0,则可设直线方程为y=kx,k≠0,把P(2,3)代入得3=2k,即k=32,故直线方程为3x-2y=0. 综上,所求直线方程为x+y-5=0或3x-2y=0.7.答案 x-2y+7=0解析 由{2x -y +2=0,x +y -5=0解得{x =1,y =4,记为点A(1,4).在直线2x-y+2=0上任取一点P(0,2),设点P 关于直线x+y-5=0对称的点为P'(a,b),则{a 2+b+22-5=0,b -2a -0×(-1)=-1,解得{a =3,b =5,所以P'(3,5),于是反射光线所在直线就是直线AP',其方程为y-4=4-51-3(x-1),整理得x-2y+7=0.三、解答题 8.解析 因为AC 边上的高所在直线的方程为2x-3y+1=0,所以直线AC 的斜率为-32. 所以直线AC 的方程为y-2=-32(x-1),即3x+2y-7=0.同理,直线AB 的方程为x-y+1=0.由{3x +2y -7=0,x +y =0得顶点C 的坐标为(7,-7).由{x -y +1=0,2x -3y +1=0得顶点B 的坐标为(-2,-1). 所以直线BC 的斜率为-1-(-7)-2-7=-23. 所以直线BC 的方程为y+1=-23(x+2),即2x+3y+7=0.9.解析 (1)由题意知直线l 的斜率为1,故直线l 的方程为y-1=x+2,即x-y+3=0.(2)由直线m 与直线l 平行,可设直线m 的方程为x-y+c=0(c≠3), 由点到直线的距离公式得√12+(-1)=√2,即|c-3|=2,解得c=1或c=5.故直线m 的方程为x-y+1=0或x-y+5=0.10.解析 (1)由直线l 1的方程可以得到m≠0,由l 1∥l 2,得m 3-m =-2mm ≠-6m 2-3m ,∴m=6,∴l 1:x-2y-1=0,l 2:x-2y-6=0, ∴l 1,l 2之间的距离d=√12+(-2)=√5.(2)因为l 1∥l 2,所以不妨设l 1关于l 2对称的直线方程为l 3:x-2y+λ=0,λ≠-1且λ≠-6,易知l 2到l 1的距离等于l 2到l 3的距离,任取l 2上一点(6,0),则d=√12+(-2)=√5,故λ=-11或λ=-1(舍).∴l 3的直线方程为x-2y-11=0 .11.解析 (1)因为A(-2,2)和C(4,4),所以设AC 的方程为y=kx+b,则{2=-2k +b ,4=4k +b ,解得{k =13,b =83.所以直线AC 的方程为y=13x+83,即x-3y+8=0. 设线段AC 的中点为M,则M(1,3),因为四边形ABCD 为菱形,所以对角线BD 与AC 垂直且平分,易知与线段AC 垂直平分的直线的斜率k=-3,所以BD 所在直线的方程为y=-3(x-1)+3 ,即3x+y-6=0.(2) 因为A(-2,2)在直线x-y+4=0上,不妨设x-y+4=0是AB 所在直线的方程,则直线DC 与直线AB 平行且过点C,所以DC 所在直线的方程为x-y=0.联立直线AB 与直线BD 的方程,得{y =x +4,y =-3x +6,解得{x =12,y =92.所以B (12,92). 所以BC 所在直线的方程为x+7y-32=0.因为BC∥AD,两条直线斜率相等,且直线AD 经过A,所以设AD 所在直线的方程为x+7y+b=0,b≠-32,代入A 点坐标,解得b=-12.所以AD 所在直线的方程为x+7y-12=0.综上,另外三条直线的方程分别为x-y=0,x+7y-32=0,x+7y-12=0.。
高二数学必修2练习题

高二数学必修2练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等:(1) A={x|x²3x+2=0},B={1, 2}(2) A={x|x为小于5的自然数},B={0, 1, 2, 3, 4}(1) x∈M且x²2x3>0(2) x∉M且x²+x+1<03. 已知函数f(x)=2x+1,求f(3)和f(1)的值。
二、幂函数、指数函数与对数函数(1) y=x²(2) y=3^x(3) y=log₂(x1)(1) y=2x(2) y=(1/2)^x(3) y=log₃x3. 已知函数f(x)=2^x,求f(x+1)f(x)的值。
三、三角函数(1) sin 30°(2) cos 45°(3) tan 60°2. 已知sin α=1/2,求cos α的值。
(1) sin x + cos x = 1(2) 2sin²x sin x 1 = 0四、平面向量1. 已知向量a=(2, 3),求向量a的模。
2. 已知向量a=(4, 5),向量b=(3, 2),求向量a与向量b的和、差及数量积。
(1) 向量a与向量b的模相等,则向量a=向量b。
(2) 向量a与向量b的数量积为零,则向量a与向量b垂直。
五、数列(1) 3, 6, 9, 12, …(2) 1, 1/2, 1/4, 1/8, …2. 已知数列{an}的通项公式为an=n²,求a1, a2, a3的值。
(1) 2, 4, 8, 16, …(2) 1, 3, 6, 10, …六、不等式与不等关系(1) 3x 5 > 2x + 1(2) (x 1)(x + 2) ≤ 02. 已知不等式组:2x 3y > 6x + 4y ≤ 8求解该不等式组。
(1) 若a > b,则a² > b²。
(2) 若a < b,则1/a > 1/b。
高中数学人教A版必修二 章末综合测评2 Word版含答案

点、直线、平面之间的位置关系一、选择题1.设a、b为两条直线α、β为两个平面则正确的命题是()【09960089】A.若a、b与α所成的角相等则a∥bB.若a∥αb∥βα∥β则a∥bC.若a⊂αb⊂βa∥b则α∥βD.若a⊥αb⊥βα⊥β则a⊥b【解析】A中a、b可以平行、相交或异面;B中a、b可以平行或异面;C中α、β可以平行或相交.【答案】 D2.(2016·山西山大附中高二检测)如图1在正方体ABCD-A1B1C1D1中E、F、G、H分别为AA1、AB、BB1、B1C1的中点则异面直线EF与GH所成的角等于()图1A.45°B.60°C.90°D.120°【解析】如图连接A1B、BC1、A1C1则A1B=BC1=A1C1且EF∥A1B、GH∥BC1所以异面直线EF与GH所成的角等于60°【答案】 B3.设l为直线αβ是两个不同的平面.下列命题中正确的是() A.若l∥αl∥β则α∥βB.若l⊥αl⊥β则α∥βC.若l⊥αl∥β则α∥βD.若α⊥βl∥α则l⊥β【解析】选项A平行于同一条直线的两个平面也可能相交故选项A错误;选项B垂直于同一直线的两个平面互相平行选项B正确;选项C由条件应得α⊥β故选项C错误;选项D l与β的位置不确定故选项D错误.故选B【答案】 B7.(2015·洛阳高一检测)如图2△ADB和△ADC都是以D为直角顶点的等腰直角三角形且∠BAC=60°下列说法中错误的是()图2A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC⊥平面ABD【解析】由题可知AD⊥BDAD⊥DC所以AD⊥平面BDC又△ABD与△ADC均为以D为直角顶点的等腰直角三角形所以AB=ACBD=DC=22AB又∠BAC=60°所以△ABC为等边三角形故BC=AB=2BD所以∠BDC=90°即BD⊥DC所以BD⊥平面ADC同理DC⊥平面ABD所以A、B、C项均正确.选D【答案】 D8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12底面对角线的长为26则侧面与底面所成的二面角为() A.30°B.45°C.60°D.90°【解析】由棱锥体积公式可得底面边长为23高为3在底面正方形的任一边上取其中点连接棱锥的顶点及其在底面的射影根据二面角定义即可判定其平面角在直角三角形中因为tan θ=3(设θ为所求平面角)所以二面角为60°选C【答案】 C9.将正方形ABCD沿BD折成直二面角M为CD的中点则∠AMD 的大小是()A.45°B.30°C.60°D.90°【解析】 如图设正方形边长为a 作AO ⊥BD 则AM =AO 2+OM 2=⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫12a 2=32a又AD =aDM =a2∴AD 2=DM 2+AM 2∴∠AMD =90° 【答案】 D10.在矩形ABCD 中若AB =3BC =4P A ⊥平面AC 且P A =1则点P 到对角线BD 的距离为( )A 292B 135C 175D 1195【解析】 如图过点A 作AE ⊥BD 于点E 连接PE∵P A ⊥平面ABCDBD ⊂平面ABCD ∴P A ⊥BD ∴BD ⊥平面P AE ∴BD ⊥PE∵AE =AB ·AD BD =125P A =1 ∴PE =1+⎝ ⎛⎭⎪⎫1252=135 【答案】 B11.(2016·大连高一检测)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直体积为94底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心则P A 与平面ABC 所成角的大小为( )【09960090】A.75°B.60°C.45°D.30°【解析】如图所示P为正三角形A1B1C1的中心设O为△ABC的中心由题意知:PO⊥平面ABC连接OA则∠P AO即为P A与平面ABC 所成的角.在正三角形ABC中AB=BC=AC= 3则S=34×(3)2=334VABC-A1B1C1=S×PO=94∴PO= 3又AO=33×3=1∴tan ∠P AO=POAO=3∴∠P AO=60°【答案】 B12.正方体ABCD-A1B1C1D1中过点A作平面A1BD的垂线垂足为点H以下结论中错误的是()A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°【解析】因为AH⊥平面A1BDBD⊂平面A1BD所以BD⊥AH又BD⊥AA1且AH∩AA1=A所以BD⊥平面AA1H又A1H⊂平面AA1H所以A1H⊥BD同理可证BH⊥A1D所以点H是△A1BD的垂心A正确.因为平面A1BD∥平面CB1D1所以AH⊥平面CB1D1B正确.易证AC1⊥平面A1BD因为过一点有且只有一条直线与已知平面垂直所以AC1和AH重合.故C正确.因为AA1∥BB1所以∠A1AH为直线AH和BB1所成的角.因为∠AA1H≠45°所以∠A1AH≠45°故D错误.【答案】 D二、填空题(本大题共4小题每小题5分共20分将答案填在题中的横线上)13.设平面α∥平面βA、C∈αB、D∈β直线AB与CD交于点S 且点S位于平面αβ之间AS=8BS=6CS=12则SD=________【解析】由面面平行的性质得AC∥BD ASBS=CSSD解得SD=9【答案】914.如图3四棱锥S-ABCD中底面ABCD为平行四边形E是SA上一点当点E满足条件:________时SC∥平面EBD图3【解析】当E是SA的中点时连接EBEDAC设AC与BD的交点为O连接EO∵四边形ABCD是平行四边形∴点O是AC的中点.又E是SA的中点∴OE是△SAC的中位线.∴OE∥SC∵SC⊄平面EBDOE⊂平面EBD∴SC∥平面EBD【答案】E是SA的中点15.如图4所示在正方体ABCD-A1B1C1D1中MN分别是棱AA1和AB上的点若∠B1MN是直角则∠C1MN等于________.图4【解析】∵B1C1⊥平面A1ABB1MN⊂平面A1ABB1∴B1C1⊥MN又∠B1MN为直角∴B1M⊥MN而B1M∩B1C1=B1∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1∴∠C 1MN =90° 【答案】 90°16.已知四棱锥P -ABCD 的底面ABCD 是矩形P A ⊥底面ABCD 点E 、F 分别是棱PC 、PD 的中点则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△P AB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号) 【解析】 由条件可得AB ⊥平面P AD ∴AB ⊥PD 故①正确;若平面PBC ⊥平面ABCD 由PB ⊥BC得PB ⊥平面ABCD 从而P A ∥PB 这是不可能的故②错;S △PCD =12CD ·PDS △P AB =12AB ·P A由AB =CDPD >P A 知③正确; 由E 、F 分别是棱PC 、PD 的中点 可得EF ∥CD 又AB ∥CD∴EF ∥AB 故AE 与BF 共面④错. 【答案】 ①③三、解答题(本大题共6小题共70分.解答应写出文字说明证明过程或演算步骤)17.(本小题满分10分)如图5所示已知△ABC 中∠ACB =90°SA ⊥平面ABCAD ⊥SC 求证:AD ⊥平面SBC图5【证明】∵∠ACB=90°∴BC⊥AC又∵SA⊥平面ABC∴SA⊥BC∵SA∩AC=A∴BC⊥平面SAC∴BC⊥AD又∵SC⊥ADSC∩BC=C∴AD⊥平面SBC18.(本小题满分12分)如图6三棱柱ABC-A1B1C1的侧棱与底面垂直AC=9BC=12AB=15AA1=12点D是AB的中点.图6(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1【证明】(1)∵C1C⊥平面ABC∴C1C⊥AC∵AC=9BC=12AB=15∴AC2+BC2=AB2∴AC⊥BC又BC∩C1C=C∴AC⊥平面BCC1B1而B1C⊂平面BCC1B1∴AC⊥B1C(2)连接BC1交B1C于O点连接OD如图∵OD分别为BC1AB的中点∴OD∥AC1又OD⊂平面CDB1AC1⊄平面CDB1∴AC1∥平面CDB1 19.(本小题满分12分)(2016·德州高一检测)某几何体的三视图如图7所示P是正方形ABCD对角线的交点G是PB的中点.(1)根据三视图画出该几何体的直观图;(2)在直观图中①证明:PD∥面AGC;②证明:面PBD⊥面AGC图7【解】(1)该几何体的直观图如图所示:(2)证明:①连接ACBD交于点O连接OG因为G为PB的中点O为BD 的中点所以OG ∥PD②连接PO 由三视图知PO ⊥平面ABCD 所以AO ⊥PO又AO ⊥BO 所以AO ⊥平面PBD因为AO ⊂平面AGC所以平面PBD ⊥平面AGC20.(本小题满分12分)(2016·济宁高一检测)如图8正方形ABCD 和四边形ACEF 所在的平面互相垂直EF ∥ACAB =2CE =EF =1图8(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE【09960091】【证明】 (1)如图设AC 与BD 交于点G因为EF ∥AG 且EF =1AG =12AC =1所以四边形AGEF 为平行四边形.所以AF ∥EG因为EG⊂平面BDEAF⊄平面BDE所以AF∥平面BDE(2)连接FG∵EF∥CGEF=CG=1∴四边形CEFG为平行四边形又∵CE=EF=1∴▱CEFG为菱形∴EG⊥CF在正方形ABCD中AC⊥BD∵正方形ABCD和四边形ACEF所在的平面互相垂直∴BD⊥平面CEFG∴BD⊥CF又∵EG∩BD=G∴CF⊥平面BDE21.(本小题满分12分)(2015·山东高考)如图9三棱台DEF-ABC 中AB=2DEGH分别为ACBC的中点.图9(1)求证:BD∥平面FGH;(2)若CF⊥BCAB⊥BC求证:平面BCD⊥平面EGH【解】(1)证法一:连接DGCD设CD∩GF=M连接MH在三棱台DEF-ABC中AB=2DEG为AC的中点可得DF∥GCDF=GC所以四边形DFCG为平行四边形则M为CD的中点.又H为BC的中点所以MH∥BD又MH⊂平面FGHBD⊄平面FGH所以BD∥平面FGH 证法二:在三棱台DEF-ABC中由BC=2EFH为BC的中点可得BH∥EFBH=EF所以四边形BHFE为平行四边形可得BE∥HF在△ABC中G为AC的中点H为BC的中点所以GH∥AB又GH∩HF=H所以平面FGH∥平面ABED因为BD⊂平面ABED所以BD∥平面FGH(2)连接HE因为GH分别为ACBC的中点所以GH∥AB由AB⊥BC得GH⊥BC又H为BC的中点所以EF∥HCEF=HC因此四边形EFCH是平行四边形.所以CF∥HE又CF⊥BC所以HE⊥BC又HEGH⊂平面EGHHE∩GH=H所以BC⊥平面EGH又BC⊂平面BCD所以平面BCD⊥平面EGH22.(本小题满分12分)(2016·重庆高一检测)如图10所示ABCD是正方形O是正方形的中心PO⊥底面ABCD底面边长为aE是PC的中点.图10(1)求证:P A∥平面BDE;平面P AC⊥平面BDE;(2)若二面角E-BD-C为30°求四棱锥P-ABCD的体积.【解】(1)证明:连接OE如图所示.∵O、E分别为AC、PC的中点∴OE∥P A∵OE⊂平面BDEP A⊄平面BDE∴P A∥平面BDE∵PO⊥平面ABCD∴PO⊥BD在正方形ABCD中BD⊥AC又∵PO∩AC=O∴BD⊥平面P AC又∵BD⊂平面BDE∴平面P AC⊥平面BDE(2)取OC中点F连接EF∵E为PC中点∴EF为△POC的中位线∴EF∥PO又∵PO⊥平面ABCD∴EF⊥平面ABCD∵OF ⊥BD ∴OE ⊥BD∴∠EOF 为二面角E -BD -C 的平面角 ∴∠EOF =30°在Rt △OEF 中OF =12OC =14AC =24a∴EF =OF ·tan 30°=612a ∴OP =2EF =66a∴V P -ABCD =13×a 2×66a =618a 3。
高中数学选择性必修二 精讲精炼 本册综合测试(提升)(含答案)

本册综合测试(提升)一、单选题(每题只有一个选项为正确答案。
每题5分,8题共40分)1.(2021·吉林高三开学考试(文))已知正项等比数列{a n }中,a 2a 8+a 4a 6=8,则log 2a 1+log 2a 2+…+log 2a 9=( ) A .10 B .9 C .8 D .7【答案】B【解析】由等比数列性质可知,192846a a a a a a ===,而a 2a 8+a 4a 6=8, 所以1928464a a a a a a ====,因为log 2a 1+log 2a 2+…+log 2a 9212921928465log log ()()()a a a a a a a a a a ==,所以log 2a 1+log 2a 2+…+log 2a 9= 92log 29=,故选:B2.(2021·黑龙江佳木斯一中)设等比数列{}n a 满足1310a a +=,245a a +=,则使12n a a a 最大的n 为( )A .72B .3C .3或4D .4【答案】C【解析】由题意,设等比数列{}n a 的公比为q ,则24131(),,2a a a a q q +=+∴=代入1310a a +=可得,11110,84a a a +=∴=, 故114118()22n n nn a a q ---==⨯=,则(34)(7)432(4)221232222222n nn n nn n a a a +---+++-⨯==⨯⨯==,由于2t y =为增函数,(7)2n nt -=为开口向下的二次函数,对称轴为 3.5n =, 又*n N ∈,故当3n =或4时,12n a a a 取得最大值.故选:C.3.(2021·西藏拉萨中学 )若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞【答案】D【解析】若()f x 在区间1(,2)2内存在单调递增区间,则1()0,(,2)2f x x '>∈有解,故21,2a x >-令21()2g x x =- 21()2g x x =-在1(,2)2递增 , 1()()2,2g x g ∴>=-故2 ,a ≥- 故选:D4.(2021·四川省乐山第一中学校 )设a ∈R ,若“1x >”是“ln ax x >”的充分不必要条件,则实数a 的取值范围是( ) A .(0,)+∞ B .1,e⎛⎫+∞ ⎪⎝⎭C .(1,)+∞D .(,)e +∞【答案】B【解析】由题意“1x >”是“ln ax x >”的充分不必要条件, 所以不等式ln ax x >在(1,)+∞上恒成立,即ln xa x>在(1,)+∞上恒成立, 令ln ()(1)x f x x x =>,则()21ln xf x x -'=, 当(1,)x e ∈时,()0f x '>;当(,)x e ∈+∞时,()0f x '<, 所以()f x 在(1,)e 上单调递增,在(,)e +∞上单调递减, 所以当x e =时,函数()f x 取得最小值()1f e e =,所以1a e>.故实数a 的取值范围是为1,e⎛⎫+∞ ⎪⎝⎭.故选:B.5.(2021·全国高二单元测试)已知数列:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,即此数列第一项是02,接下来两项是02,12,再接下来三项是02,12,22,依此类推,设n S 是此数列的前n 项和,则2021S =( )A .64234-B .63234-C .64248-D .63248-【答案】A【解析】将数列分组:第一组有一项,和为02;第二组有两项,和为0122+;……; 第n 组有n 项,和为011122222112n n n --++⋅⋅⋅+==--, 则前63组共有636420162⨯=(项), 所以()()001016201234202122222222222S =+++⋅⋅⋅+++⋅⋅⋅++++++()()()12630123421212122222=-+-+⋅⋅⋅+-+++++()()632636421222263313223412-=++⋅⋅⋅+-+=-=--,故选:A.6.(2021·北京市第十二中学 )已知函数()()20x f x a x a =>-在()1,2上单调递减,则实数a 的取值范围是( ) A .1a ≤或2a ≥ B .2a ≥ C .2a ≥或1a = D .1a ≥【答案】C【解析】由题意,0x a -≠在1,2恒成立,则()1,2a ∉, 又()22222()2()()x x a x x axf x x a x a ---'==--,∴()0f x '≤在1,2恒成立, ∴220x ax -≤即2xa ≥在1,2恒成立,∴1a ≥, 综上,2a ≥或1a =. 故选:C.7.(2021·陕西新城 )函数2()(2)e x f x x x =-的图像大致是( )A .B .C .D .【答案】B【解析】由()0f x =得,0x =或2x =,选项C ,D 不满足;由()()22e xf x x x =-求导得2()(2)e x f x x '=-,当x <x >()0f x '>,当x <()0f x '<,于是得()f x 在(,-∞和)+∞上都单调递增,在(上单调递减,()f x 在x =在x A 不满足,B 满足. 故选:B8.(2021·全国 专题练习)设正项数列{}n a 的前n 项和n S 满足()2114n n S a =+,记[]x 表示不超过x 的最大整数,212020n n a b ⎡⎤=+⎢⎥⎣⎦.若数列{}n b 的前n 项和为n T ,则使得2020n T ≥成立的n 的最小值为( ) A .1179 B .1178 C .2019 D .2020【答案】A 【解析】()2114n n S a =+①,令1n =,得()21141a a =+,解得11a =. ()211114n n S a --=+,2n ≥②, 由①-②可得()()2211111144n n n n n a S S a a --=-=+-+,整理得()()1120n n n n a a a a ----+=, 根据0n a >可知12(2)n n a a n --=≥,则数列{}n a 是首项为1,公差为2的等差数列,12(1)21n a n n =+-=-,*n ∈N .2421120202020n n a n b -⎡⎤⎡⎤=+=+⎢⎥⎢⎥⎣⎦⎣⎦,*n ∈N , 当[1,505]n ∈时,422018n -≤,1n b =;当[]506,1010n ∈时,2020424038n <-≤,2n b =; 当[]1011,1515n ∈时,4040426058n <-≤,3n b =. 因为101050550521515T =+⨯=,(20201515)3168.3-÷≈, 所以使2020n T ≥成立的n 的最小值为10101691179+=. 故选:A.二、多选题(每题不止一个选项为正确答案,每题5分,4题共20分)9.(2021·全国高二单元测试)定义在[]1,5-上的函数()f x 的导函数()f x '的图象如图所示,函数()f x 的部分对应值如下表.下列关于函数()f x 的结论正确的是( )A .函数()f x 的极值点的个数为3B .函数()f x 的单调递减区间为()()0,24,5C .若[]1,x t ∈-时,()f x 的最大值是2,则t 的最大值为4D .当12a ≤<时,方程()f x a =有4个不同的实根 【答案】AD【解析】对于A :由()f x '的图象可知,当0,2,4x =时,()0f x '=,且当10x -<<时,()>0f x ',当02x <<时,()0f x '<,当24x <<时,()>0f x ',当45x <<时,()0f x '<,所以0,2,4是函数()f x 的极值点,故A 选项正确;对于B :由导函数()f x '的正负与函数()f x 之间的关系可知,当02x <<时,()0f x '<,当45x <<时,()0f x '<,所以函数()f x 的单调递减区间为()0,2,()4,5,故B 选项错误;对于C :当[1,5]x ∈-时,函数()f x 的最大值是2,而t 的最大值不是4,故C 选项错误;对于D :作出函数()f x 的大致图象如图所示,当12a ≤<时,直线y a =与函数()f x 的图象有4个交点,故D 选项正确. 故选:AD .10.(2021·宁德市第九中学高二月考)若数列{}n a 满足113,33(2),nn n a a a n -==+≥则( )A .{}3nn a 是等差数列 B .{}3nn a 是等比数列 C .数列{}n a 的通项公式3nn a n =⋅D .数列{}n a 的通项公式3n nn a =【答案】AC【解析】在数列{}n a 中,当2n ≥时,133nn n a a -=+,即11133n n n n a a --=+,而13a =,即113a =,则{}3n n a 是首项为1,公差为1的等差数列, 因此,1(1)13n na n n =+-⨯=,3nna n =⋅, 所以A 正确,B 不正确,C 正确,D 不正确. 故选:AC11.(2021·海南 )若函数32()3f x x x a =-+的图象在点()()00,x f x 处与x 轴相切,则实数a 的值可能为( ) A .1 B .4C .0D .2【答案】BC【解析】由题意可知,'2()36f x x x =-,因为函数()f x 的图象在点()()00,x f x 处与x 轴相切,所以320002000()30()360f x x x a f x x x ⎧=-+='=⎨-=⎩,解得0a =或4a =. 故选:BC.12.(2021·临澧县第一中学 )我国明代音乐理论家和数学家朱载堉在所著的《律学新说》一书中提出了“十二平均率”的音乐理论,该理论后被意大利传教士利玛窦带到西方,对西方的音乐产生了深远的影响.以钢琴为首的众多键盘乐器就是基于“十二平均率”的理论指导设计的.图中钢琴上的每12个琴键(7个白键5个黑键)构成一个“八度”,每个“八度”各音阶的音高都是前一个“八度”对应音阶的两倍,如图中所示的琴键的音高524C C =⋅(4C 称为“中央C ”).将每个“八度”( 如4C 与5C 之间的音高变化)按等比数列十二等份,得到钢琴上88个琴键的音阶.当钢琴的4A 键调为标准音440Hz 时,下列选项中的哪些频率(单位:Hz)的音可以是此时的钢琴发出的音( )(参考数据:122 1.414=,132 1.260=,142 1.189=,152 1.148=,162 1.122=,1122 1.059=)A .110B .233C .505D .1244【答案】ABD【解析】∵A 4 = 440,244042110==,故110Hz 是A 4往左两个“八度”A 2键的音,A 正确. 设相邻音阶的公比为q ,则12524C q C ==,∴1122q =.而A 3 = 220,A 4 = 440,A 5 = 880,112233 1.0592220q ===,B 正确; 155051.1482440n q ==≠(n ∈N *),C 不正确;16212441.4142880q ===,D 正确. 故选:ABD.三、填空题(每题5分,4题共20分)13.(2021·黑龙江鹤岗一中高三月考(文))等比数列{}n a 中,5a ,21a 是方程21150x x ++=的两根,则71913a a a 的值为___________.【答案】【解析】由题设知:5215215,11a a a a =+=-,又{}n a 为等比数列,∴521,0a a <,且2719135215a a a a a ===,而81350a a q =<,∴13a =71913a a a=故答案为:14.(2021·河南 )函数()ln xf x x x=-在区间(]0,e 上的最大值是___________. 【答案】1-【解析】由()ln x f x x x =-可得()2221ln 1ln 1x x xf x x x ---'=-=, 设()21ln g x x x =--,则()g x 在(]0,e 上递减,因为()10g =,所以当()0,1x ∈时,()0g x >,()0f x '>; 当(]1,e x ∈时,()0g x <;()0f x '<; 所以()f x 在(]0,1上递增,在(]1,e 上递减, 所以()()max 11f x f ==-, 故答案为:1-.15.(2021·河南南阳中学高二月考)已知函数6(3)3(7)()(7)x a x x f x a x ---≤⎧=⎨>⎩,若数列{}n a 满足()*()n a f n n N =∈,且{}na 是递增数列,则实数a 的取值范围是________.【答案】()2,3【解析】数列{}n a 是递增数列,又6(3)3(7)()(7)x a x x f x ax ---≤⎧=⎨>⎩,()*()n a f n n N =∈,13a ∴<<且(7)(8)f f <,27(3)3a a ∴--<解得9a <-或2a >,故实数a 的取值范围是()2,3.故答案为:()2,3.16.(2021·河南信阳)已知()2af x x x=+.若曲线()y f x =存在两条过()2,0点的切线,则a 的取值范围是___________.【答案】{|8a a <-或0}a > 【解析】由题得()212af x x '=-,设切点坐标为0002a x x x ⎛⎫+ ⎪⎝⎭,,则切线方程为()00200122a a y x x x x x ⎛⎫--=-- ⎪⎝⎭, 又切线过点()2,0,可得()002001222a a x x x x ⎛⎫--=-- ⎪⎝⎭, 整理得20020x ax a +-=,因为曲线()y f x =存在两条切线,故方程有两个不等实根且00x ≠ 若00x =,则0a =,为两个重根,不成立即满足()280a a ∆=-->,解得0a >或8a <-.故a 的取值范围是{|8a a <-或0}a > 故答案为:{|8a a <-或0}a >四、解答题(17题10分,其余每题12分,共6题70分)17.(2021·浙江宁波·高三月考)已知数列{}n b 为等差数列,数列{}n a 满足2log n n b a =,且451a b ==. (1)求数列{}n a ,{}n b 的通项公式;(2)若数列{}n c 满足n n n c a b =,求{}n c 的前n 项和n T .【答案】(1)4n b n =-,n n *∈,42n n a -=,n n *∈;(2)()()()()33552,482752,58n n n n n T n n --⎧--⋅-≤⎪⎪=⎨⎪-⋅+≥⎪⎩.【解析】(1)数列{}n b 为等差数列. 4242log log 10b a ===,51b =,则4n b n =-,n n *∈,42n n a -=,n n *∈,(2)()442n n n n c a b n -==-⋅设()442n n c n -=-⋅',n T '为数列{}n c '的前n 项和,则有:()()()()321432221242n n T n ----'=-⨯+-⨯+-⨯++-⨯,(*) ()()()()2130232221242n n T n ---'=-⨯+-⨯+-⨯++-⨯,(**)(*)式-(**)式,得()()()()()()2132143332123222242324212n n n n n T n n ---------⋅--=-⨯++++--⨯=-⨯+--⋅-'()35528n n T n -'=-⨯+.当4n ≤时,()35528n n n T T n -'=-=---⋅;当5n ≥时,()()3345527252452848n n n n T T T n n --''=-=-⋅++-=-⋅+,即()()()()33552,482752,58n n n n n T n n --⎧--⋅-≤⎪⎪=⎨⎪-⋅+≥⎪⎩18.(2021·青海师大附中高二期中(文))已知函数2()e ln 2xa f x x x =-,函数()f x 在1x =处的切线与y 轴垂直.(1)求实数a 的值;(2)设()()()g x f x f x '=-,求函数()g x 的最小值. 【答案】(1)e a =;(2)e2.【解析】(1)由已知e ()e ln xxf x x ax x'=+-,则(1)e 0f a '=-=,所以e a =.(2)2e ()e ln 2x f x x x =-,e ()e ln e x xf x x x x'=+-,则2e e()e 2x g x x x x =-+,定义域是(0,)+∞,22e (1)e ()e e (1)e x x x g x x x x x ⎛⎫-'=-+=-+ ⎪⎝⎭显然2e e 0xx+>, 所以01x <<时,()0g x '<,()g x 是减函数,1x >时,()0g x '>,()g x 是增函数,所以1x =时,()g x 取得极小值也是最小值e (1)2g =. 19.(2021·江苏省苏州第十中学校高二月考)已知数列{}n a 的前n 项和为n S ,且12a =,当2n ≥时,12n n n a S -=-.(1)求数列{}n a 的通项公式;(2)设2log n n b S =,设n n n c b S =⋅,求数列{}n c 的前n 项和为n T .【答案】(1)12,12,2n n n a n -=⎧=⎨≥⎩;(2)()1212n n T n +=-+ 【解析】(1)当2n ≥时,12n n n a S -=-,112n n n a S ++=-,两式相减可得:11122n n n n n n a S a S -++--+=-,即1112n n n n a a a -++=--,所以12n n a ,12a =不满足12n n a ,所以数列{}n a 的通项公式为12,12,2n n n a n -=⎧=⎨≥⎩; (2)当2n ≥时,由12n n n a S -=-,12n n a ,可得1112222n n n n n n S a ---=+=+=,112S a ==,满足2n n S =,所以2n n S =,可得22log log 2n n n b S n ===,2n n n n c b S n =⋅=⋅,()1231122232122n n n T n n -=⋅+⋅+⋅++-⋅+⋅, ()23412122232122n n n T n n +=⋅+⋅+⋅++-⋅+⋅,两式相减可得: 123111222222n n n n T n -+-=⋅++++-⋅()()11212221212n n n n n ++-=-⋅=---,所以()1212n n T n +=-+.20.(2021·贵州遵义 )设函数()()3221f x ax x x a R =+++∈,且函数()f x 的单调递减区间为11,3⎛⎫-- ⎪⎝⎭. (1)求函数()f x 的表达式,并求出函数()f x 的单调递增区间;(2)若函数()0f x m +=有3个不相等的实数根,求实数m 的取值范围.【答案】(1)()3221f x x x x =+++,该函数的单调递增区间为(),1-∞-、1,3⎛⎫-+∞ ⎪⎝⎭;(2)231,27⎛⎫-- ⎪⎝⎭. 【解析】(1)因为()()3221f x ax x x a R =+++∈,则()2341f x ax x '=++,因为函数()f x 的单调递减区间为11,3⎛⎫-- ⎪⎝⎭,即不等式()0f x '<的解集为11,3⎛⎫-- ⎪⎝⎭, 所以,1-、13-为函数()f x 的两个极值点, 即1-、13-为方程23410ax x ++=的两根,且0a >, 由韦达定理可得()41133111330a a a ⎧-=--⎪⎪⎪⎛⎫-⨯-=⎨ ⎪⎝⎭⎪⎪>⎪⎩,解得1a =,所以,()3221f x x x x =+++, 所以,()()()2341311f x x x x x '=++=++,由()0f x '>可得1x <-或13x >-, 所以,函数()f x 的单调递增区间为(),1-∞-、1,3⎛⎫-+∞ ⎪⎝⎭; (2)令()()3221g x f x m x x x m =+=++++,则()()()2341311g x x x x x '=++=++,列表如下:所以,函数()g x 的极大值为()11g m -=+,极小值为327g m ⎛⎫-=+ ⎪⎝⎭,因为函数()g x 有三个零点,则()1101230327g m g m ⎧-=+>⎪⎨⎛⎫-=+< ⎪⎪⎝⎭⎩,解得23127m -<<-. 21.(2021·皇姑·辽宁实验中学 )已知等比数列{}n a 的各项均为正数,52a ,4a ,64a 成等差数列,且满足2434a a =,数列{}n S 的前n 项之积为n b ,且121n nS b +=. (1)求数列{}n a 和{}n b 的通项公式;(2)设n n n b c a =,求数列{}n c 的前n 项和n T . (3)设21n n n n n b a d b b ++⋅=⋅,若数列{}n d 的前n 项和n M ,证明:71303n M ≤<. 【答案】(1)1()2n na ,21nb n =+(2)1(21)22n n T n +=-⋅+(3)证明见解析 【解析】(1)设等比数列{}n a 的公比为0q >,52a ,4a ,64a 成等差数列,456224a a a ∴=+,24422(2)a a q q ∴=+,化为:2210q q +-=,0q >,解得12q =. 又满足2434a a =,∴322114()a q a q =, 即114a q =,解得112a =. *1()()2n n a n N ∴=∈, 数列{}n S 的前n 项之积为n b ,1(2)n n n b S n b -∴=≥, 11221(2)n n n n nb n S b b b -∴+=+=≥, 即12(2)n n b b n --=≥,{}n b ∴是以2为公差的等差数列.又111112121S b b b +=+=,即13b =, 所以32(1)21n b n n =+-=+(2)(21)2n n n nb c n a ==+⋅,237(13225)222n n n T ∴⋅+=⋅+⋅++⋅+, 123422325272(1)2n n T n +=⋅++⋅+⋅+⋅+,两式相减得,213432222222(21)222n n n T n +-=⋅+⋅+⋅+⋅⋅+⋅++-()11222212(21)2n n n ++++-⋅-=-1(12)22n n +=-⋅-,1(21)22n n T n +∴=-⋅+ (3)2112511(21)(23)2(21)2(23)2n n n n n n n n b a n d b b n n n n +-+⋅+===-⋅++⋅+⋅+⋅ 所以数列{}n d 的前n 项和1221111111()()()31525272(21)2(23)2n n n n M d d d n n -=++⋯+=-+-+⋯+-⨯⨯⨯⨯+⋅+⋅1(23213)n n +⋅=-, 又1730M =,n M 是单调递增, 所以71303n M ≤<. 22.(2021·四川泸州老窖天府中学 )已知函数()()1ln 2a f x x a x x=+---,其中a R ∈. (Ⅰ)若()f x 存在唯一极值点,且极值为0,求a 的值;(Ⅱ)若2a e ≤,讨论()f x 在区间21,e ⎡⎤⎣⎦上的零点个数. 【答案】(Ⅰ)1a =或a e =;(Ⅱ)答案见解析.【解析】(Ⅰ)由题意,函数()()1ln 2a f x x a x x =+---, 可得()()()()221110x x a a a x x x x f x +--=--=>', ①若0a ≤时,则当()0,x ∈+∞时,恒()0f x '>成立,所以()f x 在()0,∞+上单调递增,此时函数()f x 在()0,∞+无极值点, 这与()f x 存在极值点矛盾,舍去;②若0a >,令()0f x '=,可得x a =,当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>,所以()f x 在()0,a 上单调递减,在(),a +∞上单调递增,此时()f x 存在唯一极小值点x a =,令()()()()11ln 211ln 0f a a a a a a =+---=--=,解得1a =或a e =.(Ⅱ)①当1a ≤时,()0f x '≥在21,e ⎡⎤⎣⎦上恒成立,所以()f x 在21,e ⎡⎤⎣⎦上单调递增.因为()110f a =-≤,()2222a f e e a e =+-, (ⅰ)当0a ≤时,()222221220a f e e a e a e e ⎛⎫=+-=+-> ⎪⎝⎭;(ⅱ)当01a <≤时,()2222210a f e e a a e =+->=≥, 所以()20f e >,则由零点存在性定理知,函数()f x 在21,e ⎡⎤⎣⎦上有1个零点;②当21a e <<时,当[)1,x a ∈时,()0f x '<;当(2,e x a ⎤∈⎦时,()0f x '>,所以()f x 在[)1,a 上单调递减,在(2,a e ⎤⎦上单调递增. 可得()()()()min 11ln f x f a a a ==--.(ⅰ)当a e =时,()min 0f x =,此时()f x 在21,e ⎡⎤⎣⎦上有1个零点;(ⅱ)当1a e <<时,()min 0f x >,此时()f x 在21,e ⎡⎤⎣⎦上无零点;(ⅲ)当2e a e <<时,()min 0f x <,()110f a =->.(a)当()22220a f e e a e =+-<,即42221e a e e <<-时,()f x 在21,e ⎡⎤⎣⎦上有1个零点; (b)当()22220a f e e a e =+-≥,即4221e e a e <≤-时,()f x 在21,e ⎡⎤⎣⎦上有2个零点; 综上,当1a e <<时,()f x 在21,e ⎡⎤⎣⎦上无零点;当1a ≤或a e =或4221e a e >-时,()f x 在21,e ⎡⎤⎣⎦上有1个零点; 当4221e e a e <≤-时,()f x 在21,e ⎡⎤⎣⎦上有2个零点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修2综合练习
1、如果一个水平放置的图形的斜二测直观图是一个底面为0
45,腰和上底均为1的等腰梯形, 那么原平面图形的面积是( )A 22+ B
221+ C 2
2
2+ D 21+ 2、半径为R 的半圆卷成一个圆锥,则它的体积为( )
A
3R B 3R C 3R D 3R 3、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A 2
8cm π B 212cm
π
C 216cm
π
D 220cm
π
4、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π, 则圆台较小底面的半径为( ) A 7 B 6 C 5 D 3
5、圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成0
60, 则圆台的侧面积为________
6 Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体
的体积为____________
7、已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥, 则EF 与CD 所成的角的度数为( )A 90 B 45
C 60
D 30
8、三个平面把空间分成7部分时,它们的交线有( ) A、 1条 B、 2条 C 3条 D 1条或2条
9、在长方体1111ABCD A B C D -,底面是边长为2的正方形,高为4,则点1A 到截面11AB D 的距离为( ) A
83 B 38 C 43 D 34
10、直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点,连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为( )
A
361a B 3123a C 363a D 312
1a
11、三棱锥,3,10,8,6,P A B C P A P C A B B C C A -=====则二面角
P A C B
--的大小为___ 12、P 为边长为a 的正三角形ABC 所在平面外一点且PA PB PC a ===,则P 到AB 的距离为________
13、直线13kx y k -+=,当k 变动时,所有直线都通过定点( )
A (0,0)
B (0,1)
C (3,1)
D (2,1)
14、直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A 平行 B 垂直 C 斜交 D 与,,a b θ的值有关
15、两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A 4 B
C D
16、已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的
斜率k 的取值范围是A 3
4
k ≥ B 324k ≤≤ C 324k k ≥≤或 D 2k ≤ 17、已知点(,)M a b 在直线1543=+y x 上,则2
2b a +的最小值为 18、将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,
则n m +的值是_________
19、若直线2=-y x 被圆4)(2
2=+-y a x 所截得的弦长为22,则实数a 的值为( )
A 1-或3
B 1或3
C 2-或6
D 0或4
20、直线032=--y x 与圆9)3()2(2
2=++-y x 交于,E F 两点,则∆EOF (O 是原点)
的面积为( )A
23 B 4
3
C 52 D 556
21、直线l 过点)
,(02-,l 与圆x y x 22
2=+有两个交点时,斜率k 的取值范围是( ) A ),(2222- B ),(22-
C ),(4242-
D )
,(8
1
81-
22、已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,
则圆C 的方程为( )A 、0322
2
=--+x y x B 、042
2
=++x y x C 、
03222=-++x y x
D 、042
2=-+x y x
23、动圆2
2
2
(42)24410x y m x my m m +-+-+++=的圆心的轨迹方程是
24、P 为圆12
2=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为______
25.(本小题满分13分)
一个多面体的直观图和三视图(主视图、左视图、俯视图)如图所示,M 、N 分别为A 1B 、B 1C 1的中点。
(Ⅰ)求证:MN//平面ACC 1A 1;(Ⅱ)求证:MN ⊥平面A 1BC 。
26.(本小题满分14分)
如图6,已知四棱锥ABCD P -中,PA ⊥平面ABCD , ABCD 是直角梯形,BC AD //,BAD ∠=90º
,
BC 2=(1)求证:AB ⊥PD ;
(2)在线段PB 上是否存在一点E ,使AE //平面PCD , 若存在,指出点E 的位置并加以证明;若不存在,请说明理由.
27.(本小题满分14分)如图,在正方体
1111D C B A ABCD -中,E 、F 分别是CD 1、BB 的中点.
(1)证明:F D AD 1⊥;(2)证明:面11FD A AED 面⊥; (3)设F AA 111V F AA E 2AA -的体积-,求三棱维=E
28.(本小题满分12分)
如图,在四棱锥S ABCD -中,AB AD ⊥,//AB CD ,3CD AB =,
平面SAD ⊥平面ABCD ,M 是线段AD 上一点,AM AB =,DM DC =,SM AD ⊥.
(1)证明:BM ⊥平面SMC ;
(2)设三棱锥C SBM -与四棱锥S ABCD -的体积分别为1V 与V ,求1
V V
的值.
M
S
D
C
B
A。