基于小波变换的语音信号去噪(详细)
小波分析的语音信号噪声消除方法

小波分析的语音信号噪声消除方法小波分析是一种有效的信号处理方法,可以用于噪声消除。
在语音信号处理中,噪声常常会影响语音信号的质量和可理解性,因此消除噪声对于语音信号的处理非常重要。
下面将介绍几种利用小波分析的语音信号噪声消除方法。
一、阈值方法阈值方法是一种简单而有效的噪声消除方法,它基于小波变换将语音信号分解为多个频带,然后通过设置阈值将各个频带的噪声成分消除。
1.1离散小波变换(DWT)首先,对语音信号进行离散小波变换(DWT),将信号分解为近似系数和细节系数。
近似系数包含信号的低频成分,而细节系数包含信号的高频成分和噪声。
1.2设置阈值对细节系数进行阈值处理,将细节系数中幅值低于设定阈值的部分置零。
这样可以将噪声成分消除,同时保留声音信号的特征。
1.3逆变换将处理后的系数进行逆变换,得到去噪后的语音信号。
1.4优化阈值选择为了提高去噪效果,可以通过优化阈值选择方法来确定最佳的阈值。
常见的选择方法有软阈值和硬阈值。
1.4.1软阈值软阈值将细节系数进行映射,对于小于阈值的细节系数,将其幅值缩小到零。
这样可以在抑制噪声的同时保留语音信号的细节。
1.4.2硬阈值硬阈值将细节系数进行二值化处理,对于小于阈值的细节系数,将其置零。
这样可以更彻底地消除噪声,但可能会损失一些语音信号的细节。
二、小波包变换小波包变换是对离散小波变换的改进和扩展,可以提供更好的频带分析。
在语音信号噪声消除中,小波包变换可以用于更精细的频带选择和噪声消除。
2.1小波包分解将语音信号进行小波包分解,得到多层的近似系数和细节系数。
2.2频带选择根据噪声和语音信号在不同频带上的能量分布特性,选择合适的频带对语音信号进行噪声消除。
2.3阈值处理对选定的频带进行阈值处理,将噪声成分消除。
2.4逆变换对处理后的系数进行逆变换,得到去噪后的语音信号。
三、小波域滤波小波域滤波是一种基于小波变换的滤波方法,通过选择合适的小波函数和滤波器来实现噪声消除。
matlab小波变换信号去噪

matlab小波变换信号去噪Matlab是一款非常强大的数据分析工具,其中小波变换可以应用于信号去噪的领域。
下面将详细介绍基于Matlab小波变换的信号去噪方法。
1、小波变换简介小波变换是时频分析的一种方法,它将信号分解成尺度与时间两个维度,能够保持信号的局部特征,适用于非平稳信号的分析。
小波变换的本质是将信号从时域转换到时频域,得到更加精细的频域信息,可以方便的对信号进行滤波、去噪等处理。
2、小波去噪方法小波去噪是指通过小波分析方法将噪声与信号分离并且去除的过程。
小波去噪的基本步骤是通过小波分解将信号分解成多尺度信号,然后对每一个分解系数进行阈值处理,去除一部分小于阈值的噪声信号,最后将处理后的分解系数合成原始信号。
3、基于Matlab的小波变换信号去噪实现在Matlab中,可以使用wavemenu命令进行小波变换,使用wthresh命令对小波分解系数进行阈值处理,利用waverec命令将阈值处理后的小波分解系数合成原始信号。
下面给出基于Matlab实现小波变换信号去噪的步骤:(1)读取信号,并可视化观测信号波形。
(2)通过wavedec命令将信号进行小波分解得到多个尺度系数,展示出小波分解系数。
(3)通过绘制小波系数分布直方图或者小波系数二维展示图,估计信号的噪声强度。
(4)根据阈值处理法对小波系数进行阈值处理,获得非噪声系数和噪声系数。
(5)通过waverec命令将非噪声系数合成原始信号。
(6)可视化效果,比较去噪前后信号的波形。
针对每个步骤,需要熟悉各个工具箱的使用知识。
在实际应用中,还需要根据特定的数据处理需求进行合理的参数设置。
4、总结小波去噪是一种常见的信号处理方法,在Matlab中也可以方便地实现。
通过实现基于Matlab小波变换的信号去噪,可以更好地应对复杂信号处理的需求,提高数据分析的准确性和精度。
基于小波变换的信号去噪研究

频率特性 , 的振荡性随 1ll 咖 /a的增大而增大 , ( n是
频 率参 数, b是 时域 参数 在 实 际问题 中, 取 为 紧支 集 或衰 减较 快 的函数,  ̄ g a l , 率均 具有 局部 性 q3 uN
处理 、地震信号处 理 以及 数据压缩 处理等许 多领域 中
得到 了广泛 的应用 。 小波分 析 , 是泛 函分析 、 傅立 叶分析 、 条理论 、 样 调 和分析 以及 数值分析 等多个学 科相互 交叉 、相 互融 合
由 小波函 ) 于 数 满足f (t 。 说明咖) ,)= 这 5dO t f £ 具
有 振荡 特性, 它的这 一性质 反 映了小 波 函数 的某 种
展, 但具有强大生命力的新学科技术。近些年来 , 小波
分析成 为信号处 理 中的研究 热点 ,不仅仅在 理论上 取 得 了很 多突破性 的进 展 , 而且 还在 图像 处理 、 音信 号 语
其中
6 (n . 1 ≠0 J, £
() 2
频率 局部化 特征 。如果有效 信号 与噪音在频 谱上呈 现
明显 的分 离特 征, 能够通 过小 波变 换在 相平 面 r 就 时
是小 波 函数 的共轭 。 由于连续 小波 变换
问一 率 平 面) 将有 效信 号 与噪 音 区分开 来 , 到 滤 频 上 达பைடு நூலகம்
, +∞ '
∈ ) 通过 一带通 滤波 器 的滤波, 了更好 的理 解小 为 波 作为 系统 的概念, 引入小波变 换的另一 定义 :
4 X=IXI I l, 。 ‘ l 咖 1
J 一∞
w ̄ /t ,
5
f
H
[ ] d .
( 3 )
小波变换小波阈值去噪

小波变换小波阈值去噪
小波变换是一种常用的信号处理方法,可以将信号分解成不同频率的小波分量,并对每个分量进行分析和处理。
小波阈值去噪则是一种基于小波变换的信号去噪方法,它利用小波分解将信号分解成不同频率的小波分量,然后根据小波系数的大小进行阈值处理,将较小的小波系数置零,从而达到去除噪声的目的。
小波阈值去噪方法的步骤主要包括信号分解、阈值处理和信号重构三个过程。
首先,将待处理的信号进行小波分解,得到各个频率的小波系数。
然后,根据所选的阈值方法,确定阈值大小,对小波系数进行阈值处理,将小于阈值的系数置零。
最后,将处理后的小波系数进行逆变换,即可得到去噪后的信号。
常用的小波阈值去噪方法包括硬阈值和软阈值。
硬阈值将小于阈值的系数直接置零,而软阈值则采用更加平滑的方式将系数逐渐减小到零。
两种方法各有优缺点,具体选择应根据实际情况和需求进行。
小波阈值去噪方法在信号处理、图像处理、音频处理等领域得到了广泛应用,其优点包括去噪效果好、处理速度快、对信号特征的保留能力强等。
但是,在实际应用中也存在一些问题,如阈值的确定、小波基函数的选择等,需要认真考虑和处理。
- 1 -。
如何使用小波变换进行信号去噪处理

如何使用小波变换进行信号去噪处理信号去噪是信号处理领域中的一个重要问题,而小波变换是一种常用的信号去噪方法。
本文将介绍小波变换的原理和应用,以及如何使用小波变换进行信号去噪处理。
一、小波变换的原理小波变换是一种时频分析方法,它可以将信号分解成不同频率和时间尺度的成分。
与傅里叶变换相比,小波变换具有更好的时域分辨率和频域分辨率。
小波变换的基本思想是通过选择不同的小波函数,将信号分解成不同尺度的波形,并通过对这些波形的加权叠加来重构信号。
二、小波变换的应用小波变换在信号处理中有着广泛的应用,其中之一就是信号去噪处理。
信号中的噪声会影响信号的质量和准确性,因此去除噪声是信号处理的重要任务之一。
小波变换可以通过将信号分解为不同尺度的波形,利用小波系数的特性来区分信号和噪声,并通过滤波的方式去除噪声。
三、小波变换的步骤使用小波变换进行信号去噪处理的一般步骤如下:1. 选择合适的小波函数:不同的小波函数适用于不同类型的信号。
选择合适的小波函数可以提高去噪效果。
2. 对信号进行小波分解:将信号分解成不同尺度的小波系数。
3. 去除噪声:通过对小波系数进行阈值处理,将小于一定阈值的小波系数置零,从而去除噪声成分。
4. 重构信号:将去噪后的小波系数进行逆变换,得到去噪后的信号。
四、小波阈值去噪方法小波阈值去噪是小波变换中常用的去噪方法之一。
它的基本思想是通过设置一个阈值,将小于该阈值的小波系数置零,从而去除噪声。
常用的阈值去噪方法有软阈值和硬阈值。
软阈值将小于阈值的小波系数按照一定比例进行缩小,而硬阈值将小于阈值的小波系数直接置零。
软阈值可以更好地保留信号的平滑性,而硬阈值可以更好地保留信号的尖锐性。
五、小波变换的优缺点小波变换作为一种信号处理方法,具有以下优点:1. 可以提供更好的时域分辨率和频域分辨率,能够更准确地描述信号的时频特性。
2. 可以通过选择不同的小波函数适用于不同类型的信号,提高去噪效果。
3. 可以通过调整阈值的大小来控制去噪的程度,灵活性较高。
基于平移不变小波的语音信号去噪研究

Th td f o si g a nsn a e nT a sain eS u yo u t Sin l Ac c De ig B s do rn lt i o
Iv r n a ee n a i t v lt a W
YUAN i Fe
( ol e f l t nc Eetcl nier gT i o Istto S I E H 。 J S T i o 2 50 , h a C l g o Ee r i& l r aE g ei , a h u ntu f C&T C . U a h u 2 3 oC i ) e co ci n n z i e N z n
( 动 技 与 用 21年 O 第 期 < 化 术 应 》 01 第3卷 8 自
通 信 与信 息 处 理
Comm u i a i n an n or t n Pr c s i n c to d I f r i o e s na o
基 于 平 移 不 变 小 波 的 语 音信 号去 噪研 究
寰 飞
( 南京理 工大学泰州科 技学 院 电子 电气 工程学 院 , 江苏 泰州 2 5 0 ) 2 3 0
摘 要: 通过小波 阈值方法可以去除语音 中的噪声 ,但它 的结果 中会 出现诸如 P sd — i s e o Gb 现象之类的情 况。为消 除此类情况 ,将 u b
平移不变量小 波变换 引入 到语音信号去 噪中 ,并结合阈值 方法进行去噪处理 。经过仿真实验 ,证明这种方法 比一般 的阈值 方法有很大改进 ,提高 了信噪 比。 关键词 : 音信号 ; 语 小波变换 ; 阈值去噪 ; 平移不变 中图分类号 : N9 2 3 T 1 .5 文献标识码 : A 文章编号 :o 3 2 l2 l)8 0 4 — 3 1 0—74 (0 10 - 0 0 0
小波变换去噪原理

小波变换去噪原理在信号处理中,噪声是不可避免的。
它可以是由于传感器本身的限制、电磁干扰、环境噪声等原因引入的。
对于需要精确分析的信号,噪声的存在会严重影响信号的质量和可靠性。
因此,去除噪声是信号处理的重要任务之一。
小波变换去噪是一种基于频域分析的方法。
它通过分析信号在不同频率上的能量分布,将信号分解成多个频率段的小波系数。
不同频率段的小波系数对应不同频率的信号成分。
根据信号的时频特性,我们可以对小波系数进行阈值处理,将低能量的小波系数置零,从而抑制噪声。
然后,将处理后的小波系数进行反变换,得到去噪后的信号。
小波变换去噪的原理可以用以下几个步骤来描述:1. 小波分解:将原始信号通过小波变换分解成不同频率的小波系数。
小波系数表示了信号在不同频率上的能量分布情况。
常用的小波函数有Haar小波、Daubechies小波、Morlet小波等。
2. 阈值处理:对小波系数进行阈值处理。
阈值处理的目的是将低能量的小波系数置零,从而抑制噪声。
常用的阈值处理方法有硬阈值和软阈值。
硬阈值将小于阈值的系数置零,而软阈值则对小于阈值的系数进行衰减。
3. 逆变换:将处理后的小波系数进行反变换,得到去噪后的信号。
反变换过程是将小波系数与小波基函数进行线性组合,恢复原始信号。
小波变换去噪具有以下几个优点:1. 时频局部性:小波变换具有时频局部性,可以在时域和频域上同时进行分析。
这使得小波变换去噪可以更加准确地抑制噪声,保留信号的时频特性。
2. 多分辨率分析:小波变换可以将信号分解成不同频率的小波系数,从而实现对信号的多分辨率分析。
这使得小波变换去噪可以对不同频率的噪声进行不同程度的抑制,提高去噪效果。
3. 适应性阈值:小波变换去噪可以根据信号的能量特性自适应地选择阈值。
这使得小波变换去噪可以更好地适应不同信号的噪声特性,提高去噪效果。
小波变换去噪在信号处理中有广泛的应用。
例如,在语音信号处理中,小波变换去噪可以用于语音增强、音频降噪等方面。
小波去噪原理

小波去噪原理
小波去噪是一种信号处理的方法,通过将信号分解为不同频率的小波系数,并对这些小波系数进行处理,来实现去除噪声的目的。
其原理主要包括以下几个步骤:
1. 小波分解:利用小波变换将原始信号分解为不同频率的小波系数。
小波变换是通过将信号与一组小波基函数进行卷积运算得到小波系数的过程,可以得到信号在时频域上的表示。
2. 阈值处理:对于得到的小波系数,通过设置一个阈值进行处理,将小于该阈值的小波系数置零,而将大于该阈值的小波系数保留。
这样做的目的是去除噪声对信号的影响,保留主要的信号成分。
3. 逆小波变换:通过将处理后的小波系数进行逆小波变换,将信号从小波域恢复到时域。
逆小波变换是通过将小波系数与小波基函数的逆进行卷积运算得到恢复信号的过程。
4. 去噪效果评估:通过比较原始信号和去噪后信号的差异,可以评估去噪效果的好坏。
常用的评价指标包括信噪比、均方根误差等。
小波去噪的原理基于信号在小波域中的稀疏性,即信号在小波系数中的能量主要分布在较少的小波系数上,而噪声的能量主要分布在较多的小波系数上。
因此,通过设置适当的阈值进行处理,可以去除噪声对信号的影响,保留原始信号的主要成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试信号处理作业题目:基于小波变换的语音信号去噪年级:级班级:仪器科学与技术学号:姓名:日期:2015年6月基于小波变换的语音信号去噪对于信号去噪方法的研究是信号处理领域一个永恒的话题。
经典的信号去噪方法,如时域、频域、加窗傅立叶变换、维纳分布等各有其局限性,因此限制了它们的应用范围。
小波变换是八十年代末发展起来的一种新时-频分析方法,它在时-频两域都具有良好的局部化特性;并且在信号去噪领域获得了广泛的应用。
目前已经提出的小波去噪方法主要有三种:模极大值去噪、空域相关滤波去噪以及小波阈值去噪法。
阈值法具有计算量小、去噪效果好的特点,取得了广泛的应用。
然而在阈值法中,阈值的选取直接关系到去噪效果的优劣。
如果阈值选取过小,那么一部分噪声小波系数将不能被置零,从而在去噪后的信号中保留了部分噪声信息;如果阈值选的偏大,则会将一部分有用信号去掉,使得去噪后的信号丢失信息。
1、语音信号特性由于语音的生成过程与发音器宫的运动过程密切相关,而且人类发音系统在产生不同语音时的生理结构并不相同,因此使得产生的语音信号是一种非平稳的随机过程(信号)。
但由于人类发生器官变化速度具有一定的限度而且远小于语音信号的变化速度,可以认为人的声带、声道等特征在一定的时间内(10- 30ms)基本不变,因此假定语音信号是短时平稳的,即语音信号的某些物理特性和频谱特性在10-30ms的时间段内近似是不变的,具有相对的稳定性,这样可以运用分析平稳随机过程的方法来分析和处理语音信号。
在语音增强中就是利用了语音信号短时谱的平稳性。
语音信号基本上可以分为清音和浊音两大类。
清音和浊音在特性上有明显的区别,清音没有明显的时域和频域特性,看上去类似于白噪声,并具有较弱的振幅;而浊音在时域上有明显的周期性和较强的振幅,其能量大部分集中在低频段内,而且在频谱上表现出共振峰结构。
在语音增强中可以利用浊音所具有的明显的周期性来区别和抑制非语音噪声,而清音由于类似于白噪声的特性,使其与宽带平稳噪声很难区分。
由于语音信号是一种非平稳、非遍历的随机过程,因此长时间时域统计特性对语音信号没有多大的意义,而短时谱的统计特性对语音信号和语音增强有着十分重要的作用。
语音信号短时谱幅度统计特性的时变性,使得语音信号的分析帧在趋于无穷大时,根据中心极限定理,其短时谱的统计特性服从高斯(Gauss)分布,而在实际应用时只能在有限帧长下进行处理,因此,在有限帧时这种高斯分布的统计特性是一种近似的描述,这样就可以作为分析宽带噪声污染的带噪语音信号增强应用时的前提和假设。
2、常用的信号分析方法2.1傅立叶变换傅立叶变换(Fourier transform ,FT )由下式定义:正变换:()()j t f f t e dt ωω+∞--∞=⎰;逆变换: ()()j t f t f e dt ωω+∞-∞=⎰对于确定信号和平稳随机信号,傅立叶变换是信号分析和信号处理技术的理论基础,有着非凡的意义,起着巨大的作用。
傅立叶变换把时间域与频率域联系起来,()f ω具有明确的物理含义,通过()f ω 来研究()f t ,许多在时域内难以看清的问题,在频域中往往表现的非常清楚。
但正是由于傅立叶变换的域变换特性,()f t 与()f ω彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。
作为变换核的j t e ω±的幅值在任何情况下均为1,即1j t e ω±=,因此,频谱()f ω在任一频率处的值是由实践过程()f t 在整个时间域()~-∞+∞上的贡献决定的;反之,过程()f t 在某一时刻的状况也是由()f ω在整个频率域()~-∞+∞上的贡献决定的。
如果要想知道所分析信号在突变时刻的频率成分,那么傅立叶变换是无能为力的,因为傅立叶变换的积分作用平滑了非平稳信号的突变部分。
傅立叶变换能提取出函数在整个频率轴上的频率信息,却不能反映信号在局部时间范围内的特征。
对于变频信号,如音乐、地震、回波信号 灯,此时所关心的恰恰是信号在局部时间范围内(特别是突变部分)的信号特征(一般是频率成分)。
对非平稳信号用傅立叶变换进行分析,不能提供完全的信息,也即通过傅 立叶变换,可以知道信号所含有的频率信息,但无法知道这些频率信息究竟出现在哪些时间段上。
可见,若要提取局部时间短的频率信息,傅立叶变换已经不再实用。
2.2 小波变换小波分析是一种窗口面积固定但其形状可以改变,时间窗和频率窗都可改 变的时频局域化分析方法,即在低频部分具有较高的频率分辨率和较低的时间 分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,所以被称为数学显微镜。
正是这种特性,小波变换具有对信号的自适应性。
小波变换具有以下的特点和作用:(1)具有多分辨率的特点,可以由粗到细逐步观察信号;(2)我们可以把小波变换看成用基本频率特性为()ψω的带通滤波器在不同尺度a 下对信号做滤波。
由于傅立叶变换的尺度特性,如果()t ψ的傅 立叶变换是()ψω,则 t a ψ⎛⎫ ⎪⎝⎭的傅立叶变换是 ()a a ψω,因此这组滤波器具有品质因数恒定的即相对带宽(带宽与中心频率之比)恒定的特点。
(3)适当的选择基本小波,使()t ψ在时域上为有限支撑,()ψω在频域上也比较集中,便可以是小波变换在时频两域都具有表征信号局部特征的 能力,这样就有利于检测信号的瞬态或奇异点。
3、小波去噪的基本理论3.1 信号和噪声在小波域各个尺度上的传播特性信号的奇异性或非正则性结构往往包含了它的本质信息。
例如,图像亮度的不连续性表示其中含有边缘;在心电图或雷达信号中,令人感兴趣的信息包含在信号的峰变处。
可以证明,信号的局部正则性可有其小波变换幅值随尺度参数的衰减特性来刻画,奇异性和边缘可以通过确定小波变换在细尺度下的局部模极大值来刻画。
图1,给出一带噪阶越信号的离散二进小波变换。
从图中可以看出,原始信号在尖锐变化点在每个尺度上都产生极大值点,也就是说,局部模极大值点描述了信号和图像的边缘,而噪声能量却集中在小尺度上,其小波系数的幅度值随着尺度的增加迅速衰减。
即信号和噪声在多尺度空间上具有不同的特性,数学上称它们有不同的Lipschitz 指数。
图1 带噪信号多尺度小波分解设 n 是一非负整数,1n a n <≤+,如果存在两个常数 A 和00h >及 n 此多项式()n P h ,使得对任意的0h h ≤,均有()()0n f x h P h A h α+-≤ ,则称()f x 在点0x 为Lipschitz 指数 a 。
Lipschitz 指数越大,函数越光滑。
对于白噪声,可以证明它是一个处处奇异的随机分布,具有负的Lipschitz 指数1,02a εε=--∀>,其小波变换系数随着尺度的增大而减小;信号的Lipschitz 通常为正,其小波变换系数随着尺度的增大而增大。
3.2 小波基的选取与标准的傅立叶变换相比,小波分析中所用到的小波函数不具有唯一性, 即小波函数()t ψ具有多样性。
小波分析在工程应用中,一个十分重要的问题就是小波基的选取问题,虽然根据不同的标准,小波函数具有不同的类型,这些 标准通常是以下几点[1]:(1) 支撑长度:()()()(),,,t t ωψφφψω的支撑区间,是当时间或频率区域无穷大时,()()()(),,,t t ωψφφψω从一个有限值收敛到0 的长度。
支撑长度越长,一般需要耗费更多的计算时间,而且产生更多高幅值的小波系数。
(2) 对称性: 具有对称性的小波,在图像处理中可以很有效的避免相位畸变,因为该小波对应的滤波器具有线性相位特性。
(3) 消失矩:()t φ和()t ψ的消失矩阶数,对于数据压缩和特征提取是非常有用的,消失矩越大,就有更多的小波系数为零。
但在一般情况下,消失矩越高,支撑长度越长,必须做折中处理。
(4) 正则性:正则性好的小波,能在信号或图像的重构中获得较好的平滑效果,减小量化或涉入误差的影响。
但在一般情况下,正则性越好,支撑长度越长,计算时间也就越大,也必须有所权衡。
(5) 相似性: 选择和信号波形相似的小波,这对于压缩和消噪是由参考价值的。
不同的小波基对信号的描述是不同的,希望所选取的小波基能同时具有下 列性质: (1)对称性或反对称性; (2)较短的支撑; (3)正交性; (4)较高的消失 矩。
然而,Daubichie 已经证明,Haar 小波是紧支正交小波基中唯一具有对称 性(反对称性)的小波基,并且较短的支撑和较高的消失矩是一对矛盾。
所以, 为了得到小波基的对称性,就要放弃小波基的一些其他性质,或保持小波基的紧支性、正交性就只能得到近似的对称性。
dbN 小波和symN 小波是工程实践中应用最为广泛的、最具价值的小波,仿真也表明这两种小波具有很好的去噪性能。
N 是小波的阶数,即消失矩为 N ,支撑区间为2N-1,symN 是一种近似对称的小波,是对dbN 的一种改进。
在本文中,使用sym4小波。
图2 小波函数4、小波域三种去噪方法4.1 模极大值去噪信号的模极大值重构是指利用信号在各个尺度上小波系数的模极大值来重 构信号。
信号小波系数的模极大值包含了信号峰变性与奇异性,如果可以根据这些极大值点重构信号,那么就可以通过处理小波系数的模极大值而实现对信号奇异性的修改,可以通过改变模极大值来修改奇异性的强度,也可以通过抑制某些极大值点而去除信号的奇异性,这是模极大值重构的基本思想[2]。
对于白噪声,可以证明它是一个处处奇异的随机分布,具有负的Lipschitz 指数1,02a εε=--∀>,而有效的信号Lipschitz 指数通常为正。
因此,可以有小波变换模极大值点幅值随尺度增大的变化规律来区分模极大值点是由噪声还是有信号产生。
如果随着尺度增加,模极大值点的幅值迅速衰减,表明相应的奇异点具有负的 Lipschitz 指数,该模极大值点由噪声产生;反之,如果随着尺度增大,模极大值点幅值逐渐增大,说明该极大值点由信号产生。
经过以上分析,对叠加有正态白噪声的信号进行小波变换后,噪声的模极大值点个数将随着尺度因子的增加而显著减小。
在经过若干次小波变换后,由噪声对应的模极大值点已基本去除或幅值很小,而所余极值点主要由信号产生的。
故可利用这一性质由大尺度到小尺度逐级确定各个尺度上由信号产生的小波系数模极大值,然后重构信号,从而达到滤波目的。
基于以上原理,有如下滤波算法:(1) 对含噪信号进行离散小波变换,一般进行 4-5个尺度,并求出每一尺度上小波系数模极大值点;(2) 在对大尺度上,选一阈值t ,若极值点对应的幅度小于t ,则去掉该点,否则予以保留。
这样就得到最大尺度上新的模极大值点。