语音信号去噪

合集下载

小波分析的语音信号噪声消除方法

小波分析的语音信号噪声消除方法

小波分析的语音信号噪声消除方法小波分析是一种有效的信号处理方法,可以用于噪声消除。

在语音信号处理中,噪声常常会影响语音信号的质量和可理解性,因此消除噪声对于语音信号的处理非常重要。

下面将介绍几种利用小波分析的语音信号噪声消除方法。

一、阈值方法阈值方法是一种简单而有效的噪声消除方法,它基于小波变换将语音信号分解为多个频带,然后通过设置阈值将各个频带的噪声成分消除。

1.1离散小波变换(DWT)首先,对语音信号进行离散小波变换(DWT),将信号分解为近似系数和细节系数。

近似系数包含信号的低频成分,而细节系数包含信号的高频成分和噪声。

1.2设置阈值对细节系数进行阈值处理,将细节系数中幅值低于设定阈值的部分置零。

这样可以将噪声成分消除,同时保留声音信号的特征。

1.3逆变换将处理后的系数进行逆变换,得到去噪后的语音信号。

1.4优化阈值选择为了提高去噪效果,可以通过优化阈值选择方法来确定最佳的阈值。

常见的选择方法有软阈值和硬阈值。

1.4.1软阈值软阈值将细节系数进行映射,对于小于阈值的细节系数,将其幅值缩小到零。

这样可以在抑制噪声的同时保留语音信号的细节。

1.4.2硬阈值硬阈值将细节系数进行二值化处理,对于小于阈值的细节系数,将其置零。

这样可以更彻底地消除噪声,但可能会损失一些语音信号的细节。

二、小波包变换小波包变换是对离散小波变换的改进和扩展,可以提供更好的频带分析。

在语音信号噪声消除中,小波包变换可以用于更精细的频带选择和噪声消除。

2.1小波包分解将语音信号进行小波包分解,得到多层的近似系数和细节系数。

2.2频带选择根据噪声和语音信号在不同频带上的能量分布特性,选择合适的频带对语音信号进行噪声消除。

2.3阈值处理对选定的频带进行阈值处理,将噪声成分消除。

2.4逆变换对处理后的系数进行逆变换,得到去噪后的语音信号。

三、小波域滤波小波域滤波是一种基于小波变换的滤波方法,通过选择合适的小波函数和滤波器来实现噪声消除。

语音信号去噪方法及其在语音识别中的应用

语音信号去噪方法及其在语音识别中的应用

语音信号去噪方法及其在语音识别中的应用语音信号在现实应用中经常遭受各种干扰与噪声,这些噪声会影响语音信号的品质,进而引起语音识别失效。

因此,语音信号去噪就成为了语音领域研究的一个重要方向。

本文将介绍几种比较常见的语音信号去噪方法及其在语音识别中的应用。

一、基于频域的去噪方法基于频域的去噪方法是将语音信号从时域转换为频域,利用频域特征对语音信号进行分析和处理。

这种方法常见的去噪算法有傅里叶变换(FFT)、短时傅里叶变换(STFT)等。

在去噪过程中,可以将频率范围内的干扰信号过滤掉,提高语音信号的信噪比。

还可以通过时域窗函数和滤波技术来实现。

基于频域的去噪方法在语音信号的短时处理和实时处理方面有着广泛的应用。

例如,在电话通信领域中,许多手机厂商都采用了该方法来实现语音通话的降噪功能。

此外,基于频域的去噪方法还可以应用在语音识别、音频编码解码等方面。

二、基于时域的去噪方法基于时域的去噪方法通常是在时域上对语音信号进行操作,在信号的各个时间点进行处理。

最常见的方法是利用数字滤波器滤除干扰信号。

而且,这种方法对于较复杂的噪声类型如白噪声来说效果较好。

基于时域去噪方法在语音识别领域中也有着广泛的应用。

例如,在话者识别中,对于前景音(说话之声)和背景音(其他噪声)的分离,就可以使用基于时域的方法。

而且,与基于频域的方法相比,基于时域的方法具有更高的计算效率。

三、基于统计学的去噪方法基于统计学的去噪方法主要是利用概率统计模型来对语音信号进行建模,从而减去噪声所带来的影响。

例如,高斯混合模型(GMM)和鲍姆-韦尔奇滤波(BWF)算法就是基于此理论出现的去噪方法。

基于统计学的去噪方法在语音识别的前期处理中也有着广泛的应用。

其中,利用GMM对语音信号模拟,在语音信号的特征提取中占据着重要的地位。

而且,鲍姆-韦尔奇滤波器算法可以将语音信号的噪声部分去除,提高识别率。

综合而言,语音信号去噪是一个非常重要的研究领域,已经在很多应用场景中得到了广泛的应用。

语音识别中的语音增强与去噪技术

语音识别中的语音增强与去噪技术

语音识别是人工智能领域中的一项重要技术,它能够将人类语音转化为文本,从而方便人机交互。

然而,在实际应用中,语音信号常常会受到各种噪声的干扰,导致语音识别准确率下降。

为了解决这个问题,语音增强与去噪技术应运而生。

语音增强技术旨在在噪声环境下增强语音信号,提高语音识别的准确性。

该技术通常采用空间信号处理的方法,将输入的噪声环境下的语音信号进行分解,将有用信号与噪声信号分离,并增强有用信号,从而减少噪声对语音识别的影响。

常见的语音增强算法包括MFCC算法、短时傅里叶变换(STFT)和倒谱编码(cepstral filtering)等。

然而,当噪声干扰特别严重时,单纯的语音增强技术可能无法完全消除噪声,此时就需要使用去噪技术。

去噪技术通过学习噪声统计特性并建立相应的模型,对输入的语音信号进行滤波处理,以消除噪声的影响。

常见的去噪算法包括Wiener滤波、盲源分离算法(BSS)、自适应滤波算法等。

其中,盲源分离算法不需要知道噪声的统计特性,具有更强的适应性和更高的去噪效果。

在实际应用中,语音增强与去噪技术通常会结合使用。

例如,在嘈杂环境中进行语音识别时,可以先使用语音增强技术增强语音信号,然后再使用去噪技术进一步消除噪声。

另外,一些新兴的技术如深度学习算法也被应用于语音增强和去噪领域,通过训练大规模的语音数据集,学习语音信号的特征和噪声的统计特性,从而实现对语音信号的高效去噪和增强。

总之,语音增强与去噪技术是提高语音识别准确率的关键技术之一。

通过采用不同的算法和方法,结合实际应用场景,可以有效地提高语音识别的性能和准确性。

随着人工智能技术的不断发展,相信未来语音增强与去噪技术将会得到更加广泛的应用和改进,为人工智能领域的发展提供更加有力的支持。

基于MATLAB语音信号处理去噪毕业设计论文

基于MATLAB语音信号处理去噪毕业设计论文

基于MATLAB语音信号处理去噪毕业设计论文语音信号在实际应用中通常不可避免地受到噪音的干扰,这使得语音信号的处理变得困难。

因此,在语音信号处理领域,去噪技术一直是一个热门的研究方向。

本文将介绍一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。

本文的主要内容分为以下几个部分。

首先,介绍语音信号处理的背景和意义。

在现实生活中,由于外界环境和设备的限制,语音信号往往会受到各种噪音的污染,如背景噪音、电磁干扰等。

因此,开发一种有效的语音信号处理去噪方法具有重要的实际意义。

其次,介绍基于MATLAB的语音信号处理去噪方法。

本文将采用小波降噪方法对语音信号进行去噪处理。

首先,对输入的语音信号进行小波变换,将信号转换到小波域。

然后,通过对小波系数进行阈值处理,将噪声系数置零,从而实现去噪效果。

最后,通过逆小波变换将信号转换回时域,并输出去噪后的语音信号。

接下来,介绍实验设计和结果分析。

本文将使用MATLAB软件进行实验设计,并选取一组含有不同噪声干扰的语音信号进行测试。

通过对不同噪声信号进行处理,比较不同参数设置下的去噪效果,评估提出方法的性能。

最后,总结全文并展望未来的研究方向。

通过本次研究,我们可以看到基于MATLAB的语音信号处理去噪方法在去除噪音方面具有较好的效果,并具有很大的应用潜力。

然而,该方法仍然有改进的空间。

未来的研究可以在算法优化、参数选择和应用场景等方面进行深入研究,进一步提高语音信号处理去噪的效果和性能。

总的来说,本文介绍了一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。

通过对实验结果的分析和对未来研究方向的展望,本文为从事语音信号处理领域的研究人员提供了一定的参考和启示。

语音上行去噪经典算法

语音上行去噪经典算法

语音上行去噪经典算法语音去噪是指在语音通信或语音处理过程中,采用算法来减少或消除噪声对语音信号的影响,使语音更加清晰。

常用的语音去噪算法包括经典的谱减法、Wiener 滤波器和子空间方法等。

1. 谱减法是一种经典的语音去噪算法。

它基于傅里叶分析,将语音信号从时域转换到频域,通过对频域幅度进行修剪来减少噪声。

该算法的基本原理是在短时傅里叶变换(STFT)的基础上,对每个频带的幅度进行修正,减小低信噪比(SNR)的频带的幅度,然后进行逆变换得到去噪后的语音。

2. Wiener滤波器是一种以最小均方误差为准则的自适应滤波器。

该算法假设语音信号和噪声信号是高斯随机过程,通过最小化均方误差来估计信号和噪声的功率谱密度。

Wiener滤波器的基本原理是在频域采用逐帧处理,通过估计语音信号和噪声信号的功率谱密度比值,计算出每个频带的Wiener滤波器增益,然后将滤波器增益应用到频谱上得到去噪结果。

3. 子空间方法是一种基于信号与噪声在子空间中的性质来进行去噪的方法。

该算法利用信号与噪声在统计上的互相独立性,在子空间中对语音信号和噪声信号进行分离。

子空间方法常用的算法包括主成分分析(PCA)、独立成分分析(ICA)和稀疏表示等。

谱减法、Wiener滤波器和子空间方法是常用的语音去噪算法,它们在实际应用中有各自的优缺点。

谱减法简单易实现,适用于低噪声的情况,但在高噪声环境中会产生伪声;Wiener滤波器对于高噪声环境和非高斯噪声具有较好的去噪效果,但在弱信号和非平稳噪声环境下效果较差;子空间方法具有较好的去噪效果,对于非线性噪声具有较好的适应性,但计算复杂度较高。

除了经典算法外,近年来也出现了一些使用深度学习进行语音去噪的方法,如基于卷积神经网络(CNN)的去噪自编码器、基于循环神经网络(RNN)的长短时记忆网络(LSTM)等。

这些算法通过学习大量训练数据,利用神经网络的强大拟合能力来进行语音信号和噪声信号之间的映射,从而实现去噪效果。

语音信号去噪处理方法研究

语音信号去噪处理方法研究

语音信号去噪处理方法研究一、引言语音信号去噪处理是语音信号处理领域的重要研究方向,其主要目的是消除语音信号中的噪声干扰,提高语音信号的质量和可识别性。

随着科技的不断发展,越来越多的应用场景需要对语音信号进行去噪处理,如语音识别、电话会议、数字通信等。

因此,研究语音信号去噪处理方法具有重要意义。

二、常见噪声类型在进行语音信号去噪处理前,需要先了解常见的噪声类型。

常见的噪声类型包括以下几种:1.白噪声:频率范围广泛,功率谱密度恒定。

2.脉冲噪声:突然出现并迅速消失的脉冲。

3.人类说话声:人类说话时产生的杂音。

4.机器嗡鸣:由机器运转产生的低频杂音。

5.电源干扰:由电子设备产生的高频杂波。

三、传统去噪方法传统的去噪方法主要包括滤波法、谱减法和子带分解法。

1.滤波法:将语音信号通过滤波器进行滤波,去除噪声信号。

但是,滤波法只能去除特定频率范围内的噪声,对于频率随时间变化的噪声无法处理。

2.谱减法:通过计算语音信号和噪声信号的功率谱,将低于一定阈值的频率成分视为噪声信号,并将其减去。

但是,谱减法会导致语音信号失真和降低可识别性。

3.子带分解法:将语音信号分解为多个子带,在每个子带上进行去噪处理。

但是,子带分解法需要大量计算,并且对于频率随时间变化的噪声也无法处理。

四、基于深度学习的去噪方法近年来,基于深度学习的去噪方法逐渐成为研究热点。

基于深度学习的去噪方法主要包括自编码器、卷积神经网络和循环神经网络等。

1.自编码器:自编码器是一种无监督学习模型,可以从数据中学习特征表示。

在语音信号去噪处理中,可以将自编码器作为一个降噪模型,输入噪声信号,输出去噪后的语音信号。

自编码器可以学习到语音信号的特征表示,并去除噪声。

2.卷积神经网络:卷积神经网络是一种针对图像处理的深度学习模型。

在语音信号去噪处理中,可以将卷积神经网络应用于语音信号的时频域表示,学习时频域上的特征表示,并去除噪声。

3.循环神经网络:循环神经网络是一种针对序列数据处理的深度学习模型。

基于小波变换的语音信号去噪技术研究

基于小波变换的语音信号去噪技术研究

基于小波变换的语音信号去噪技术研究语音信号作为一种重要的信息载体,在日常生活和工业生产中广泛应用。

随着社会的不断发展和科技的不断进步,对语音信号的要求也越来越高。

但是,在实际应用中,语音信号往往受到各种噪声的干扰,严重影响了信号质量和准确性。

因此,去除语音信号中的噪声,成为了语音处理领域中一个重要的研究方向。

小波变换是一种非常有效的信号分析工具,广泛应用于图像处理、信号处理等领域。

在语音信号去噪方面,小波变换也被用来分析和处理语音信号。

本文将介绍基于小波变换的语音信号去噪技术的研究进展以及相关问题。

一、小波变换小波变换是一种多尺度分析工具,通过将信号分解成不同尺度的子信号,可以对信号进行深入分析和处理。

小波变换的本质是将信号转换到小波域,从而更好地分析和处理信号。

小波变换可以分为离散小波变换和连续小波变换两种。

离散小波变换是将信号离散化后进行变换,适用于数字信号处理。

而连续小波变换是将信号在连续时间域上进行变换,适用于模拟信号处理。

二、语音信号去噪技术传统的语音信号去噪技术有很多,比如基于差分算法的去噪技术、基于局部统计量的去噪技术、基于频域滤波的去噪技术等。

这些方法具有一定的效果,但是在某些情况下效果并不理想,比如噪声比较强、语音信号频率较低等情况下。

基于小波变换的语音信号去噪技术是一种新兴的技术,具有很好的效果。

该技术通过将语音信号分解到小波域中,利用小波系数之间的相关性处理噪声,然后将处理后的信号反变换回到时域中。

三、基于小波变换的语音信号去噪技术的研究在基于小波变换的语音信号去噪技术方面,目前研究较多的是基于软阈值方法的去噪技术和基于最小均方误差方法的去噪技术。

1. 基于软阈值方法的去噪技术基于软阈值方法的去噪技术是一种比较简单的处理方法,其基本思想是对小波系数进行处理,将小于一定阈值的系数置为零,大于一定阈值的系数保持不变。

这种方法可以有效地去除高频噪声,但对于内部噪声的处理效果较差。

(完整版)基于MATLAB的FIR滤波器语音信号去噪

(完整版)基于MATLAB的FIR滤波器语音信号去噪

*****************实践教学******************兰州理工大学计算机与通信学院2013年春季学期《信号处理》课程设计题目:基于MATLAB的FIR滤波器语音信号去噪专业班级:姓名:学号:指导教师:成绩:摘要本次课程设计是基于MATLAB的FIR滤波器语音信号去噪,在设计过程中,首先录制一段不少于10秒的语音信号,并对录制的信号进行采样;其次使用MATLAB会出采样后的语音信号的时域波形和频谱图;然后在给原始的语音信号叠加上噪声,并绘出叠加噪前后的时域图及频谱图;再次设计FIR滤波器,针对语音信号的性质选取一种适合的窗函数设计滤波器进行滤波;最后对仿真结果进行分析。

设计出的滤波器可以满足要求。

关键词: FIR滤波器;语音信号;MATLAB仿真目录一 FIR滤波器设计的基本原理 (1)1.1滤波器的相关介绍 (1)1.1.1数字滤波器的概念 (1)1.1.2 IIR和FIR滤波器 (1)1.2利用窗函数法设计FIR滤波器 (1)1.2.1窗函数法设计FIR滤波器的基本思想 (1)1.2.2窗函数法设计FIR滤波器的步骤 (2)1.2.2窗函数法设计FIR滤波器的要求 (2)1.2.3常用窗函数的性质和特点 (3)1.2.4 语音处理中的采样原理 (3)二语音信号去噪实现框图 (5)三详细设计 (7)3.1 信号的采集 (7)3.2 语音信号的读入与打开 (7)3.3 语音信号的FFT变换 (8)3.4含噪信号的合成 (9)3.5 FIR滤波器的设计 (10)3.6 利用FIR滤波器滤波 (11)3.7 结果分析 (14)总结 (15)参考文献 (16)附录 (17)致谢 (21)一 FIR滤波器设计的基本原理1.1滤波器的相关介绍1.1.1数字滤波器的概念数字滤波器(Digital Filter,简称为DF)是指用来对输入信号进行滤波的硬件和软件。

所谓数字滤波器,是指输入、输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语音信号去噪摘要:在现代各种通信系统中,由于自然界中的各种各样的复杂噪声不免会掺杂在其中,数字信号处理这门经典学科恰好能够解决这个问题,其中最通用的方法就是利用滤波器来滤除这些杂波噪声,FIR数字滤波器就是滤波器设计的基本部分。

本论文研究的主要内容就是基于Matlab软件仿真设计一个数字滤波器,将掺杂在语音信号中的高频噪音消除,在此将分析消除高频噪音前后语音信号的时域及频域特性,对比分析即可验证滤波前后特性差别。

在本课题中,将利用简单的窗函数法来设计FIR数字滤波器,通过Matlab仿真说明所设计滤波器的正确性。

通过这次毕业设计,将会进一步理解语音信号原理分析及滤波处理,为更好的设计滤波器打好基础。

关键词:Matlab;窗函数法;FIR数字滤波器目录1 引言 (2)1.1 课题研究现状 (2)1.2 课题研究目的 (2)1.3 课题研究内容 (2)1.4 MATLAB软件设计平台简介 (3)2 原始语音信号采集与处理 (3)2.1 课题设计步骤及流程图 (3)2.2 语音信号处理 (4)2.2.1 语音信号的采集 (4)2.2.2 语音信号的时域频谱分析 (5)2.2.3 语音信号加噪与频谱分析 (7)3 FIR数字滤波器的设计 (9)3.1 数字滤波器基本概念 (9)3.2 常用窗函数介绍 (10)3.3 FIR数字滤波器概述 (10)3.4 FIR滤波器的窗函数设计 (10)3.5 滤波器的编程实现 (13)3.6 用滤波器对加噪语音信号进行滤波 (14)3.7 回放语音信号 (17)4 结论 (18)致谢 (19)参考文献 (20)1 引言1.1 课题研究现状20世纪60年代中期数字信号处理领域形成的诸多富有实践性的的理论和算法,如快速傅立叶变换(FFT)以及各种数字滤波器等是语音信号数字处理的各项理论和技术基础。

在70年中后期之后,线性预测技术(LPC)已经用于语音信号的信息压缩和特征提取,并已成为语音信号处理中非常重要的一个工具。

80年代语音信号处理技术的重大发展是隐马尔可夫模型(HMM)描述语音信号过程的产生过程。

进入上世纪90年代以来,语音信号采集与分析技术在实际应用方面取得了许多突破性的研究进展。

近年来,随着科学技术的不断进步,人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项科学研究课题是促进其发展的催生力,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。

1.2 课题研究目的语音是人类获取知识和各种各样信息的重要手段和最初来源,人类离不开自然界中各种不同的语音,但在获取语音的过程中,将不可避免的会受到外界环境的干扰和影响,如各种机器的轰鸣声或者自然界太多的电磁噪声干扰等这些不可避免的有害噪声信号都会附加掺杂在语音信号中,这样获取的语音信号将不再是单纯的语音,掺杂的噪声不但降低了语音质量和语音的可懂度,严重时将导致不可预知的不良效果。

语音信号处理的好坏将影响并导致语音信号的好坏,只有通过将这些语音信号进行一系列的的数字处理,才能将那些非必要的噪声杂波妥善滤除,得到纯净的单纯的语音信号。

现在社会衍生了很多现代的语音通信方式,手机通话、QQ 或MSN等这些语音聊天软件以及语音小说等,涉及语音的方方面面已经存在于我们生活中的大部分,因此语音信号去噪处理是具有现实意义的研究课程。

1.3 课题研究内容1.用MATLAB程序对原始语音信号进行采样,并绘制出采样后语言信号时域波形和频谱图,并针对此图分析语音信号特点。

2.将干扰噪声加入到已经获取的语音信号中,然后进行频谱分析,并对比未加入噪声的信号,分析差异。

3.设计FIR数字滤波器,并对被噪声污染的语音信号进行滤波,画出滤波前后信号的时域和频谱,对滤波前后有噪音与无噪音的语音信号进行比较,分析信号的变化,从而验证所设计滤波器的滤波效果。

4.回放语音信号。

1.4 MATLAB软件设计平台简介Matlab是MATrix和LABoratory的缩写,是由Mathworks公司开发的一套用于科学工程计算的可视化高性能软件,是一种交互式的以矩阵为基本数据结构的系统,应用广泛。

MATLAB的主要特点如下:(1) 程序的可移植性良好应用于其他程序。

(2) 程序限制宽泛,程序设计自由。

有大量已经系统定义的函数可直接应用,并且能够用户自定义函数。

(3) 语言简洁,使用灵活方便,库函数相当丰富。

(4) 源程序向大众开放。

用户可灵活的对源文件进行修改以及加入自己的设计语音构成新的工具箱。

(5) 最后MATLAB的一个重要特点是功能强大的工具箱。

MATLAB包含两个重要的部分:核心部分和各种可选的工具箱。

2 原始语音信号采集与处理2.1 课题设计步骤及流程图本课题设计主要是针对一段原始语音信号,加入设计噪声后,用窗函数法设计出的FIR滤波器对加入噪声后的语音信号进行滤波去噪处理,并且分析对比前后时域和频域波形。

课题的设计流程图如下图2.1所示。

图2.1 课题设计流程图2.2 语音信号处理2.2.1 语音信号的采集将话筒输入计算机的语音输入插口上,启动录音机,要求为8000HZ,8位单声道的音频格式,如下图2.2所示,按下录音按钮,接着对话筒一段话,说完后停止录音,屏幕左侧将显示所录声音的长度。

点击放音按钮,可以实现所录音的重现。

以文件名“1”保存入C:\ MATLAB \ work 中。

图2.2 语音信号的采集2.2.2 语音信号的时域频谱分析Matlab软件平台下,利用wavread函数对语音信号进行采样,采集出原始信号波形与频谱,[y,fs,bits]=wavread('Blip',[N1 N2]),用于读取语音,采样值放在向量y中,f s表示采样频率(Hz),bits表示采样位数。

[N1 N2]表示读取从N1点到N2点的值(若只有一个N的点则表示读取前N点的采样值)。

其程序如下:[y,Fs,bits]=wavread('1.wav');y=y(:,1); sigLength=length(y);Y = fft(y,sigLength);Pyy = Y.* conj(Y) / sigLength;halflength=floor(sigLength/2);f=Fs*(0:halflength)/sigLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');t=(0:sigLength-1)/Fs;figure;plot(t,y);xlabel('Time(s)');得到原始语音信号时域波形如下图2.3所示,频域幅度谱如下图2.4所示。

从图中可以看出语音信号有两个特点:在时域内语音信号随着时间的延续而缓慢变化,但在一较短时间内,语音信号基本保持稳定;在频域内语音信号的频谱量主要集中在300~3400Hz的范围内,利用这个特点,可以利用一个带通滤波器将此范围内的语音信号频率分量取出,然后按8000Hz的采样频率对语音信号进行采样,就可以取得离散的语音信号。

图2.3 原始信号时域波形图2.4 原始信号频谱2.2.3 语音信号加噪与频谱分析利用MATLAB程序产生3.8kHz的余弦信号噪声加入到语音信号中,模仿语音信号被污染,并对其频谱分析。

其主要程序如下:fs=8000;x1=wavread('1.wav');t=(0:length(x1)-1)/8000;f=fs*(0:1023)/2048;Au=0.05;d=[Au*cos(2*pi*3800*t)]'; %噪声为3.8kHz的余弦信号x2=x1+d;y1=fft(x1,2048);y2=fft(x2,2048);figure(1)运行程序后得到加噪后的语言信号波形如下图2.5所示。

图2.5 加噪后的语音信号从上图可以看出,加入3.8KHz的噪声信号后,在时域图上与原有信号的时域图有明显差异,在幅度“0”位置处附近多出了高频成分,使加噪后的语音信号显得更加紧凑。

plot(t,x2)xlabel('time(s)');ylabel('幅度');figure(2)subplot(2,1,1);plot(f,abs(y1(1:1024)));xlabel('Hz');ylabel('幅度');subplot(2,1,2);plot(f,abs(y2(1:1024)));xlabel('Hz');ylabel('幅度');sound(x2,fs,bits);运行程序后得到原始语音信号和加噪后的语言信号的频谱如下图2.6所示。

图2.6 原始语音信号频谱与加噪后的语音信号频谱比较从上图对比可以看出,加噪后的语音信号表现在频谱图上在3.8KHz的位置多出一个高频脉冲成分,表现在回放语音上能听到很刺耳很不舒适的噪音,原有信号听着比较模糊。

3 FIR数字滤波器的设计3.1 数字滤波器基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的一种数字滤波形式。

因此,数字滤波的概念个模拟滤波的相同,只是信号的形式和实现滤波方法不同。

由于数字滤波通过数值运算实现滤波,所以其处理精度高、稳定、体积小,重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。

3.2 常用窗函数介绍常用的窗函数有矩形窗(Rectangle Window )、三角窗(Bartlett Windows )、汉宁窗(Hanning ),又称为升余弦窗、海明窗(Hamming ),又称为改进的升余弦窗,除了以上几种常用窗函数以外,尚有布拉克曼(Blackman )窗、凯塞(kaiser )窗等。

对于选择何种窗函数,应充分考虑被处理信号的性质与处理要求等。

如果仅要求准确分辨出主瓣频率,而不考虑这种幅值精度,则可选用主瓣宽度较窄从而便于分辨的矩形窗,例如探测物体的自然震动频率等;如果分析的信号是窄带信号,而且具有较强的干扰噪声信号出现的话,则应当选用旁瓣幅度较小的窗函数,如汉宁窗、三角窗等。

3.3 FIR 数字滤波器概述FIR(Finite Impulse Response)滤波器又叫有限长单位冲激响应滤波器,是数字信号处理系统中最基本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。

因此,FIR 滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。

这类滤波器对于脉冲输入信号的响应最终趋向于0,因此而得名。

相关文档
最新文档