实验四 三相全桥逆变电路
三相全桥电压型逆变电路

此为阻感负载 导通顺序:上桥臂VT1->VT3->VT5
下桥臂VT2->VT4->VT6
5.3三相全桥电压型逆变电路
uN 为正时为桥臂1 导通期间, iU >0,V1 导通, iU <0,VD1导通; uN 为负时为桥臂4 导通期间, iU <0,V4 导通, iU >0,VD4导通;
5.3三相全桥电压型逆变电 路
纵向 换流
蓝色为iU ,红色为iV ,绿色为iW ,黑色为id 。
id为三个上桥臂电流之和。 是 V1,VD1;V3,VD3;V5,VD5电流之和。 即uUN’, u VN’, uWN’为正时的电流。 而不是iU ,iV ,iW之和。 iU ,iV ,iW之和为0。
5.4单相电流型逆变电路
5.作业
1。为什么电流型逆变电路中没有反馈二极管? 2。P149 第6题 3。 P149 第7题
L 等效为钢料及线 圈构成的电感
R 等效为钢料中产 生涡流损耗的电阻
1000~2500Hz中 频
5.5三相电流型逆变电路
采用全控型器件 任何时刻上下桥臂各仅有一个通 导通时间120度。横向换流
导通顺序:上桥臂VT1->VT3->VT5 下桥臂VT2->VT4->VT6
5.5串联二极管式电流型逆变电路(1)
5.5 无换向器电动机电流型逆变电路
利用反电势 换流属负载
vT3
换流
时U
相电
压比
V相
高
vT3
正偏
5.5电压型-电流型逆变电路对比
电压型
直流侧电压源-电容滤波 同一相内上下桥臂间纵向换流 上下桥臂采取先通后断 -留“死区” 防电压源短路
三相电压型桥式逆变电路

三相电压型桥式逆变电路三相电压型桥式逆变电路是一种常用于交流电能转换为直流电能的电路。
它的作用是将三相变压器的交流输出转换成直流输出,使得直流设备可以正常工作。
下面我们将分步骤阐述三相电压型桥式逆变电路的原理和构成。
第一步:构成三相电压型桥式逆变电路由三相桥式整流器、滤波电路、三相逆变器以及控制电路构成。
其中,三相桥式整流器将三相交流电压转化为直流电压,而滤波电路则用于过滤直流电压中的脉动,使其变成平滑的直流电压。
三相逆变器则将直流电压转化为交流电压,以满足直流设备的使用需求。
第二步:原理在三相电压型桥式逆变电路中,三相桥式整流器的作用是将三相的交流电压转换成直流电压,其中,三相桥式整流器中的六个二极管分成三组,每组内部两个二极管互相导通,这样就可以将交流电源的正、负半周分别对三相变压器的正、负半周进行整流。
当交流电压为零时,就可以实现直流电压的输出。
滤波电路中通常采用大容量的电容进行滤波,以去除直流电压中的脉动。
三相逆变器则用于将直流电压转换成交流电压。
在三相逆变器中,采用6个双向可控硅管(thyristor)组成。
通过控制双向可控硅管的通断状态和导通角度,可以控制输出交流电压的幅值和频率,从而满足直流设备的使用需求。
而控制电路则是保证整个电路正常工作的关键,它通过对三相桥式整流器和三相逆变器进行控制,来保证直流电压的稳定输出。
第三步:应用三相电压型桥式逆变电路应用广泛,特别是在电力电子领域。
它可以用于直流电驱动电机、飞行器等需要输入直流电源的设备中,同时也可以用于UPS等应急设备中。
此外,它还可以用于电力系统中的稳定调节,从而实现电网负荷调节和功率控制等功能。
总体而言,三相电压型桥式逆变电路是一种十分重要的电路结构,其在工程实践中有着广泛的应用,不仅对电力系统和工业自动化系统的发展产生了深远的影响,也推动了电力电子学科的发展。
三相全桥逆变器工作原理

三相全桥逆变器工作原理三相全桥逆变器(Three-Phase Full-Bridge Inverter)是一种电力电子变换器,能将直流电能转换为交流电能。
它的主要工作原理是通过周期性地开关控制电压和电流的方向来实现电能的转换。
1.控制器:控制器是整个逆变器的大脑,它根据输入的信号来控制逆变器的开关动作。
控制器对于逆变器的正常工作至关重要。
2.电源和滤波器:逆变器的输入是直流电能,需要通过整流电路将交流电转换为直流电。
通常使用整流桥进行整流。
在这个过程中,还需要配备滤波电容和电阻等元件来平滑直流电压波形。
3.桥路电路:三相全桥逆变器采用了桥形电路,由六个开关管构成。
通过不同的开关组合,可以实现不同的电压和电流输出。
每个开关管都有一个对应的二极管,用于消除电感器件中的反电动势。
4.逆变器输出过滤电容:在逆变器输出端需要一个过滤电容,用于平滑输出交流电压的波形。
逆变器的工作原理可以分为以下几个步骤:1.正半周工作原理:在整个逆变器工作周期的正半周中,控制器使得三相全桥逆变器的S1和S4开,S2和S3关。
这样,从直流电源通过S1和S3流入负载,同时电荷通过负载回流到S4和S2,在负载上产生了一个正电流。
2.负半周工作原理:在逆变器的负半周期中,控制器使得S1和S4关,S2和S3开。
此时,电荷从直流电源通过S2和S4流入负载,在负载上产生了一个负电流。
3.控制策略:逆变器的控制器根据负载的要求,通过改变开关管的开关状态和频率来控制输出的电压和电流。
目前常用的控制策略有矢量控制、PWM调制和脉宽调制等。
总之,三相全桥逆变器通过将直流电能转换为交流电能,为现代工业和民用电网提供了可靠的电力供应。
它的工作原理基于桥形电路和开关控制,通过不同的控制策略调整输出电压和电流,以满足不同负载的要求。
三相桥式全控整流及有源逆变电路实验200409

三相桥式全控整流及有源逆变电路实验一.实验目的⒈熟悉三相桥式全控整流及有源逆变电路的工作原理。
⒉掌握三相桥式全控整流及有源逆变电路的调试方法。
二.实验设备⒈MCL﹣31低压控制电路及仪表。
⒉MCL﹣32电源控制屏。
⒊MCL﹣33触发电路及晶闸管主回路。
⒋MCL﹣35三相变压器。
⒌MEL﹣03三相可调电阻器。
⒍二极管及开关板。
⒎双踪示波器。
三.实验原理三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。
6个晶闸管导通的顺序是按VT6–VT1 →VT1–VT2 →VT2–VT3 →VT3–VT4 →VT4–VT5 →VT5–VT6依此循环,每隔60°有一个晶闸管换相。
为了保证在任何时刻都必须有两个晶闸管导通,采用了双脉冲触发电路,在一个周期内对每个晶闸管连续触发两次,两次脉冲前沿的间隔为60°。
三相桥式全控整流电路原理图如右图所示。
三相桥式全控整流电路用作有源逆变时,就成为三相桥式逆变电路。
由整流状态转换到逆变状态必须同时具备两个条件:一定要有直流电动势源,其极性须和晶闸管的导通方向一致,其值应稍大于变流器直流侧的平均电压;其次要求晶闸管的 >90°,使U d为负值。
三相桥式全控整流电路原理图四.实验内容⒈接线在实验装置断电的情况下,按三相桥式全控整流及有源逆变电路实验线路图及接线图进行接线。
图中的可调电阻器R p,选用MEL﹣03中的其中一组可调电阻器并联,R p的初始电阻值应调到最大值。
⒉触发电路调试将MCL﹣32电源控制屏的电源开关拨向“开”的位置,接通控制电路电源﹙红色指示灯亮﹚。
⑴检查晶闸管的触发脉冲是否正常。
用示波器观察MCL﹣33脉冲观察孔“1”~“6”,应有相互间隔60o,幅度相同的双脉。
⑵用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V﹣2V的脉冲。
电力电子技术报告(4) ,实验四 三相桥式全控整流及有源逆变电路实验

实验四三相桥式全控整流及有源逆变电路实验三相桥式全控整流因仪器设备损坏未做一.实验目的1.熟悉NMCL-33组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
二.实验线路及原理主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
三.实验设备及仪器1.教学实验台主控制屏2.NMCL—33组件3.NMEL—03组件4.NMCL—31A组件5.NMCL—24组件6.双踪示波器(自备)7.万用表(自备)四.实验方法1.未上主电源之前,检查晶闸管的脉冲是否正常(1)用示波器观察NMCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(2)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。
(3)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
注:将面板上的U blf(当三相桥式全控变流电路使用I组桥晶闸管VT1~VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。
(4)将NMCL—31的给定器输出U g接至NMCL-33面板的U ct端,调节偏移电压U b,在U ct=0时,使α=150o。
调α方法:用示波器同时观察同步电压观察的U相与脉冲观察及通断控制部分的一号脉冲比对调节,示波器地端接脉冲大控制的地端。
(注意:调α角时,控制回路脉冲放大控制两点连线一定断开)2.三相桥式全控整流电路(未做)按图4-2接线,并将R D调至最大(450Ω)。
变压器1u,1v,1w为变压器220v组,2u,2v,2w为63.8v组。
图4-1三相桥式全控整流电路主回路接线图调节U ct=0,合上主电源,按实验要求调节U ct,使α=30O,按图4-2接好控制回路。
用示波器观察记录α=30O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值。
实验4 三相桥式全控整流及有源逆变电路实验

实验四三相桥式全控整流及有源逆变电路实验1.实验目的(1)了解三相全控桥式整流电路的工作原理,研究可控整流电路在电阻—电感性负载时的整流输出电压u d、电流i d、晶闸管承受的电压u VT的波形及工作情况。
(2)了解三相全控桥式有源逆变电路的工作原理,研究在不同的控制角时输出的电压电流波形。
2.实验设备及仪器(1) MCL-Ⅱ型电机控制教学实验台主控制屏;(2) MCL-18控制和检测单元及过流过压保护组件;(3) MCL-33触发电路及晶闸管主回路组件;(4)MEL-03三相可调电阻器组件(900Ω,0.41A);(5)MEL-05波形测试及开关板组件;(6)双踪示波器;(7)万用电表;3.注意事项(1) 整流电路与三相电源连接时,一定要注意相序;(2) 整流电路的负载电阻不宜过小,应使i d不超过0.8A,同时负载电阻不宜过大保证i d超过0.1A,避免晶闸管时断时续;(3) 正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
4.实验步骤1)按图接线,未上主电源之前,检查晶闸管的脉冲是否正常a.用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲。
b.检查相序,用示波器观察“1”“2”单脉冲观察孔,“1”脉冲超前“2”脉冲60°,则相序正确,否则,应调整输入电源。
c.用示波器观察每只晶闸管的控制极,阴极,应有幅值为1V—2V的脉冲。
=0时,触发脉冲滞后同步信号180︒d.调节MCL-33上锯齿波偏移电压,使Uct(即α=150︒)。
e.“交流电源输出调节”旋钮逆时针调到底,主回路串联电阻RP调至最大。
2) 研究三相桥式可控整流电路供电给阻感性负载时的工作情况:a) 将开关S 拨向左侧,接通主电源,顺时针旋转三相调压器,调节主控制屏输出电压UV U 、VW U 、WU U ,从0V 调至220V ;b) 将MCL-18组件上的开关S 1拨至正给定,S 2拨至给定;调节MCL —18上的脉冲移相电位器RP1旋钮,改变控制电压Uct ,观察在不同控制角α时的u d 、i d 、u VT 的波形;c) 记录α=30︒、α=60︒时u d 、i d 、u VT 的波形。
电力电子技术三相桥式全控整流及有源逆变电路实验报告

电力电子技术三相桥式全控整流及有源逆变电路实验报告实验目的:1.熟悉三相桥式全控整流电路和有源逆变电路的工作原理;2.学习三相桥式全控整流电路和有源逆变电路的控制方法;3.通过实验验证三相桥式全控整流电路和有源逆变电路的性能。
实验器材:1.三相交流电源;2.三相桥式全控整流电路电路板;3.电阻箱;4.示波器。
实验原理:三相桥式全控整流电路是一种常见的电力电子设备,用于将三相交流电转换为直流电。
其基本原理是通过控制整流桥中的晶闸管开通角和关断角,控制电路中负载电流的方向和大小,从而实现对电流的整流和调节。
有源逆变电路是一种将直流电转换为交流电的电力电子设备。
其基本原理是通过控制逆变桥中的晶闸管开通角和关断角,控制电路中负载电流的方向和大小,从而实现对电流的逆变和调节。
实验过程:1.将三相交流电源连接到三相桥式全控整流电路电路板;2.根据实验要求调节电源电压和频率;3.设置适当的负载电阻;4.通过控制触发电路,控制晶闸管的开通和关断;5.使用示波器观察和记录整流电流和电压波形。
实验结果:根据实验数据和示波器观察结果,整流电流和电压波形基本符合预期,呈现出期望的整流和调节性能。
实验结论:通过本次实验,我们深入理解了三相桥式全控整流电路和有源逆变电路的工作原理和控制方法。
同时,我们也验证了这两种电路的性能和实际应用。
这项实验的结果对于电力电子技术的学习和应用具有重要意义,为我们掌握和应用电力电子技术提供了实验基础和理论指导。
同时,通过实验的过程,我们也提高了实验操作的能力和实验数据处理的技巧。
总结:本次实验对于我们理解和掌握电力电子技术中的三相桥式全控整流电路和有源逆变电路的工作原理、控制方法和性能具有重要意义。
通过实验,我们不仅加深了对电力电子技术的理解,提高了实验操作的能力,还培养了我们的团队合作精神和实验数据处理的技巧。
通过本次实验的学习,我们对于电力电子技术的应用和发展有了更加深入的了解,相信在今后的学习和工作中,我们将能够更好地应用电力电子技术解决实际问题,为电力电子技术的发展做出更大的贡献。
电力电子实验报告(三相桥式全控整流和有源逆变电路实验)docx

实验报告课程名称:电力电子技术指导老师:成绩:实验名称:三相桥式全控整流和有源逆变电路实验实验类型:探索验证同组学生姓名:三相桥式全控整流和有源逆变电路实验一、实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
(2)了解集成触发器的调整方法及各点波形。
二、实验线路及原理实验线路如图4-7所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
三、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)观察整流状态下模拟电路故障现象时的波形。
图4-7三相桥式全控整流及有源逆变电路图四、实验设备(1)MCL现代运动控制技术实验台主控屏。
(2)给定、零速封锁器、速度变换器、速度调节器、电流调节器组件挂箱。
(3)三相芯式变压器。
(4)滑线变阻器。
(5)双踪记忆示波器。
(6)数字式万用表。
五、思考题(1)如何解决主电路和触发电路的同步问题?本实验中,主电路三相电源的相序能任意确定吗?从同一个三相电源接出两路,一路接到整流变压器,由整流变压器得到主电路电压,这就是晶闸管两端电实验名称:三相桥式全控整流和有源逆变电路实验姓名:学号:装订线压;而另一路接到同步变压器,通过同步变压器再结合阻容滤波器得到触发电路的输入电压。
通过整流变压器连接组与同步变压器连接组配合,再结合阻容滤波器产生的移相效应得到相匹配的主电路电压和触发脉冲。
一般来说采用宽脉冲触发或双窄脉冲触发,而本实验采用的是双窄脉冲触发不能任意确定三相电源相序,因为三相全控整流电路由六只晶闸管控制,按一定顺序导通。
若三相电源相序发生变化,触发脉冲无法同步,则电路不能正常工作。
(2)本实验中,在整流向逆变切换时,对α角有什么要求?为什么?α角要大于90°,因为只有这样,才有Ud=Ud0(α=0时的Ud值)*cosα<0,从而使变流电路工作在逆变状态,实现逆变功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四三相全桥有源逆变电路
一、实验目的
1.加深理解三相桥式有源逆变电路的工作原理
2.研究三相桥式有源逆变电路逆变的全过程
3.掌握三相全桥有源逆变电路MATLAB的仿真方法,会设置各模块的参数。
二、预习内容要点
三相全桥有源逆变电路带阻感性负载在α所取不同角度下的运行情况。
三、实验仿真模型
三相全桥有源逆变电路
四、实验内容及步骤
对三相全桥有源逆变电路带阻感性负载在在α所取不同角
度下的运行情况进行仿真并记录分析改变脉冲频率时的波形。
(1)器件的查找
以下器件均是在MATLAB R2014a环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找
(2)三相对称正弦交流电源要求设置参数
Um=50V、f=50Hz初相位依次为0°、-120°、-240°。
选择阻感性负载,R=2Ω,L=0.01H,C=inf
仿真波形及分析
α=30度时的波形
α=60度时的波形
α=90度时的波形
α=120度时的波形
α=150度时的波形
仿真波形图
从仿真结果可以看到α=30°和α=60°时,电路工作在整流状态,负载电压为正值,变流电路输出电压波形正面积大于负面积,平均电压大于零。
当α=120°和α=150°时,负载电压为正值,输出电压波形正面积大于负面积,平均电压为负,电路工作在逆变状态;α=90°时,电路工作在中间态平均电压为0。
五、实验总结
采用Matlab/Simulink对三相半波有源逆变电路进行仿真分析,避免了常规分析方法中繁琐的绘图和计算过程,使
得仿真运算更加方便快捷。
同时,能用示波器随时地观察仿真波,使得仿真更具有直观性,实性。
通过这次课题研究,激发我们学习电力电子技术的兴趣,使我对整流电路和逆变电路有了深刻的理解,提高了对MATLAB软件的操作能力。
应用Matlab/Simulink进行仿真,在仿真过程中可以灵活改变仿真参数,并且能直观地观察到仿真结果随参数的变化情况,适合电力电子技术的教学和研究工作。